INFRARED CROSS-SECTIONS OF NITRO-DERIVATIVE VAPORS: NEW SPECTROSCOPIC SIGNATURES OF EXPLOSIVE TAGGANTS AND DEGRADATION PRODUCTS

ARNAUD CUISET, GAël MOURET, Laboratoire de Physico-Chimie de l’Atmosphère, Université du Littoral Côte d’Opale, Dunkerque, France; OLIVIER PIRALI, SÉBASTIEN GRUET, AILES beamline, Synchrotron SOLEIL, Saint Aubin, France; GÉRARD PASCAL PIAU, GILLES FOURNIER, Airbus Group Innovations, Airbus, Suresnes, France.

Classical explosives such as RDX or TNT exhibit a very low vapor pressure at room temperature and their detection in air requires very sensitive techniques with levels usually better than 1 ppb. To overcome this difficulty, it is not the explosive itself which is detected, but another compound more volatile present in the explosive. This volatile compound can exist naturally in the explosive due to the manufacturing process. For example, in the case of DiNitroToluene (DNT), the molecule is a degradation product of TNT and is required for its manufacture. Ortho-Mononitrotoluene (2-NT) and para-mononitrotoluene (4-NT) can be also used as detection taggants for explosive detection.

In this study, using the exceptional properties of the SOLEIL synchrotron source, and adapted multipass-cells, gas phase Far-IR rovibrational spectra of different isomers of mononitrotoluene and dinitrotoluene have been investigated. Room temperature Far-IR cross-sections of the 3 isomer forms of mononitrotoluene have been determined for the lowest frequency vibrational bands located below 700 cm$^{-1}$. Cross sections and their temperature dependences have been also measured in the Mid-IR using conventional FTIR spectroscopy probing the nitro-derivatives vapors in a heated multipass-cell.
