A SEMI-AUTOMATED COMBINATION OF CHIRPED-PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE SPECTROSCOPY

KYLE N CRABTREE, Department of Chemistry, The University of California, Davis, CA, USA; MARIE-ALINE MARTIN-DRUMEL, Spectroscopy Lab, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA; MICHAEL C McCARTHY, Atomic and Molecular Physics, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA; SYDNEY A GASTER, TAYLOR M HALL, DEONDRE L PARKS, GORDON G BROWN, Department of Science and Mathematics, Coker College, Hartsville, SC, USA.

A combination of chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy and cavity Fourier transform microwave (c-FTMW) spectroscopy has been used to analyze the spectra of 3,4-difluorobenzaldehyde and two distinct fluoropyridine – carbon dioxide complexes. In all cases, the 8 – 18 GHz CP-FTMW spectrum was measured, and the most intense transitions were chosen for further analysis. The intensities of the identified transitions were measured at multiple polarization powers using the c-FTMW spectrometer. Subsequently, a series of double-resonance experiments were performed on these transitions, again using the c-FTMW spectrometer, in order to discover which transitions shared a common quantum state. Following the double-resonance experiments, the assignments of the spectra were trivial. The results of the spectroscopic analysis, as well as the semi-automated method, will be presented.