VIBRATIONAL SPECTROSCOPY OF BENZENE-(WATER)$_N$ CLUSTERS WITH $N = 6, 7$

DANIEL P. TABOR, EDWIN SIBERT, Department of Chemistry, The University of Wisconsin, Madison, WI, USA; RYOJI KUSAKA, Chemistry, Hiroshima University, Higashi-Hiroshima, Japan; PATRICK S. WALSH, TIMOTHY S. ZWIER, Department of Chemistry, Purdue University, West Lafayette, IN, USA.

The investigation of benzene-water clusters (Bz-(H$_2$O)$_n$) provides insight into the relative importance of hydrogen bond interactions in cluster formation. Taking advantage of the higher resolution of current IR sources, isomer-specific resonant ion-dip infrared (RIDIR) spectra were recorded in the OH stretch region (3000-3750 cm$^{-1}$). A local mode Hamiltonian for describing the OH stretch vibrations of water clusters is applied to Bz-(H$_2$O)$_6$ and Bz-(H$_2$O)$_7$ and compared with the RIDIR spectra. These clusters are the smallest water clusters in which three-dimensional H-bonded networks containing three-coordinate water molecules begin to be formed, and are therefore particularly susceptible to re-ordering or re-shaping in response to the presence of a benzene molecule. The spectrum of Bz-(H$_2$O)$_6$ is assigned to an inverted book structure while the major conformer of Bz-(H$_2$O)$_7$ is assigned to an S_4-derived inserted cubic structure in which the benzene occupies one corner of the cube. The local mode model is used to extract monomer Hamiltonians for individual water molecules, including stretch-bend Fermi resonance and intra-monomer couplings. The monomer Hamiltonians divide into sub-groups based on their local H-bonding architecture (DA, DDA, DAA) and the nature of their interaction with benzene.