ADDITIONAL MEASUREMENTS AND ANALYSES OF H$_{2}^{17}$O AND H$_{2}^{18}$O

JOHN PEARNSON, SHANSHAN YU, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA; ADAM WALTERS, IRAP, Université de Toulouse 3 - CNRS - OMP, Toulouse, France.

Historically the analysis of the spectrum of water has been a balance between the quality of the data set and the applicability of the Hamiltonian to a highly non-rigid molecule. Recently, a number of different non-rigid analysis approaches have successfully been applied to 16O water resulting in a self-consistent set of transitions and energy levels to high J which allowed the spectrum to be modeled to experimental precisiona. The data set for 17O and 18O water was previously reviewed and many of the problematic measurements identifiedc, but Hamiltonian modeling of the remaining data resulted in significantly poorer quality fits than that for the 16O parent. As a result, we have made additional microwave measurements and modeled the existing 17O and 18O data sets with an Euler series modeld. This effort has illuminated a number of additional problematic measurements in the previous data sets and has resulted in analyses of 17O and 18O water that are of similar quality to the 16O analysis. We report the new lines, the analyses and make recommendations on the quality of the experimental data sets.