REACTIVE INTERMEDIATES IN 4He NANODROPLETS: INFRARED LASER STARK SPECTROSCOPY OF DIHYDROXYCARBENE

BERNADETTE M. BRODERICK, CHRISTOPHER P. MORADI, GARY E. DOUBERLY, Department of Chemistry, University of Georgia, Athens, GA, USA; LAURA McCASLIN, JOHN F. STANTON, Department of Chemistry, The University of Texas, Austin, TX, USA.

Singlet dihydroxycarbene (HOCOH) is produced via pyrolytic decomposition of oxalic acid, captured by helium nanodroplets, and probed with infrared laser Stark spectroscopy. Rovibrational bands in the OH stretch region are assigned to either trans,trans- or trans,cis- rotamers on the basis of symmetry type, nuclear spin statistical weights, and comparisons to electronic structure theory calculations. Stark spectroscopy provides the inertial components of the permanent electric dipole moments for these rotamers. The dipole components for trans,trans- and trans,cis- rotamers are (μ_a, μ_b) = (0.00, 0.68(6)) and (1.63(3), 1.50(5)), respectively. The infrared spectra lack evidence for the higher energy cis,cis- rotamer, which is consistent with a previously proposed pyrolytic decomposition mechanism of oxalic acid and computations of HOCOH torsional interconversion and tautomerization barriers.