Submillimeter (THz) / Infrared Double Resonance: Regimes for molecular sensors

Sree H. Srikantaiah, Christopher F. Neese and Frank C. De Lucia
Department of Physics, Ohio State University

Ivan Medvedev
Department of Physics, Wright State University

Dane J. Phillips
IERUS Technologies

Henry O. Everitt
AMRDEC, Redstone Arsenal
Sensors for Broad Spectral Signatures

• **Broad spectral domain**: Atmospheric remote sensing and sensors for large molecules

• SubMM (THz) spectroscopy has absolute specificity at low pressures due to highly resolved rotational lines - great technique for sensing at low pressures for smaller molecules.

• Both of these scenarios share the challenge of spectral features that are broad resulting loss of sensitivity and specificity
 - Sensitivity: signature hard to separate from systematic effects
 - Specificity: fewer resolvable resolution elements

Solution and strategy:

Previous talk discussed one approach: Medium Resolution Cavity spectroscopy

In this talk we outline the second approach: **IR-THz Double resonance spectroscopy**
Double resonance spectroscopy Technique

Experimental setup

1. Choose suitable IR pump laser – absorption line coincidence
2. Monitor modulation of the linked rotational transitions (at THz frequencies) initiated by the IR pump laser
3. Establish a 3D specificity matrix (IR pump, THz probe, Time constant of the DR trace) with as many points as possible
 • to increase specificity for a particular molecule
 • dilutes spectroscopic signature in large molecules

Example 12CH$_3$F

Spectral and temporal features
Optimum regime for atmospheric pressure DR sensor

- The collisional relaxation rate at atmospheric pressure is ~ 100ps
- Saturate (or come as close as you can) in 100 ps
- Probe the directly pumped transitions before collisions equilibrate states
- => Linewidths of 10 GHz

CH$_3$F

V3=1
J12,K2

Probe frequencies

9P20 CO2 line, 100ps pulse

- 654.582 GHz
- 604.297 GHz
- 663.365 GHz
- 612.409 GHz
Experimental setup

CO₂ Hot Cell
OFID

~ 100ps

TEA CO₂ laser

Spectrometer

50ns
30 Hz
0.15 J

High speed
IR detector

THz source

Sample cell

DR signal

THz Heterodyne Receiver

6 GHz, 40 GS/s
Digitizing Oscilloscope

Fast Data acquisition system

100 ps pump laser system

Fast Data acquisition system

6 GHz, 40 GS/s
Digitizing Oscilloscope

DR signal

THz Heterodyne Receiver

100 ps pump laser system

Fast Data acquisition system
100 ps laser pulse generation: Optical free induction decay (OFID)

Time domain

- 100 ns
- ~10 ps
- 30 to 200 ps

Spectral domain

- 70 MHz
- ~100 GHz
- ~70 MHz

Diagram:
- Hybrid CO$_2$ Laser → Plasma Shutter → OFID Filter
100 ps Laser system – operational

TEA Laser (Source)
Plasma shutter (Fast Switch)
OFID filter

TEA Laser output
50 ns HWHM

Plasma Switch output
25 ns HWHM, ~ 10-20 ps falling edge

CO₂ Hot cell output
< 100 ps HWHM
Experimental Results – Phase 1 (nano-second pulse excitation)

Experiment Parameters

- **Sample**: 12CH$_3$F (1 Torr of Gas)
- **Pressure range**: 1 - 760 T (air)
 At 1 Torr there is 1 collision every 100 ns
- **Pump**: 9P20 Laser excitation (30 Hz rep rate, 600 mW Avg power)
- **Probe**: 654.582 GHz ($V_3=1$, J12,K2, Q branch)
- **Cell**: 1. 10 cm wide, 120 cm long cylindrical cell
 2. 2mm x 4mm , 30 cm long rectangular waveguide cell
- **Oscilloscope**: 6 GHz Analog BW, 50 Ohm DC coupled, 5 GS/s Sampling rate

Rotational transition being monitored
Pump Laser pulse temporal shape: Nature of Double Resonance signature

TEA CO₂ Complex laser pulse structure

Corresponding Double resonance signature

% THz Probe power modulated by the laser

60% modulation

Shows pump saturation
Pump Saturation and the Rabi Frequency

Pump power: 600 mW Avg (~ 0.4 MW Peak power)
Cell diameter: 10 cm
Rabi Frequency: 1.2 GHz
Sample pressure: 20 mT

- Since the Rabi Frequency exceeds the collision rate at 20 mT, the pump will be broadened and neighboring K states are also pumped to saturation
- K = 0, 1, 2, 3, 4 are within the pump range
- K = 0 is not pumped because it has zero dipole matrix element for the transition and is a forbidden transition for Q branch

654.582 GHz (V₃=1, J12, K2, Q branch)
Pressure Dependence of Double Resonance Signal

- Pressure Dependence of Double Resonance Signal
- DR Signal at Atmospheric Pressure (1T of $^{12}\text{CH}_3\text{F}$ in 760 T Atmosphere)
- Graphs showing time (us) vs. pressure and time (us) vs. current (μA), with different pressures indicated (1T, 2T, 3T, 4T, 5T, 10T)
- Graphs demonstrating the variation of DR signal amplitude (V) with time (us) at atmospheric pressure
Pressure Dependence of Double resonance signature

Experimental Results

Small signal gain simulation
1. J and K levels relax within 1 - few gas kinetic collisions

2. Vibrational relaxation takes ~10000 collisions

3. We want to operate in a timeframe before the pumped J levels relax,
 - At 1 T, before 100 ns
 - At 760 T, before 100 ps
DR Signal Amplitude (1 collision limit) degradation with pressure

At 1 Torr when Collision rate (~100 ns) is matched By the pump pulse width (100 ns) we see a very strong DR signal (500 times stronger) in the first few ns of the DR trace => when we move to 100 ps pump pulse at 760 T we should see a similar enhancement
Very high Sensitivity

Detection of 20 mT CH₃F in 760 T of atmospheric air

With 50 ns IR pump
Signal : noise = 10:1
Dilution = 20 mT in 760 T
Path length = ~ 1 feet

Extending the result to 100 m (300 ft) path
the sensitivity can be estimated to be:
(0.02/760)*(1/10)*(1/300) = 8.6 ppb

Sensitivity estimate: 8.6 ppb
IR –THz Double resonance Technique : Issues

• As outlined and demonstrated, this technique is very attractive and effective for application as sensors in broad spectral domain

• This technique has an issue: Spectral Sparcity of the Pump laser

• The TEA CO₂ laser provides discrete excitation frequencies, which limits its applicability to different molecules
Solution: Quantum Cascade Laser as the IR pump source

Example: $^{12}\text{CH}_3\text{F}$

TEA laser - Only one coincidence

QCL > 30 IR lines accessible
QCL Double Resonance at low pressure– Chirped Excitation

- **Sample**: $^{12}\text{CH}_3\text{F}$
- **IR Pump**: 1022 cm$^{-1}$ (9.78 μm)
 - Current modulation (10 KHz, 6 Vpp)
 - IR Pump Sweep Bandwidth: 1 GHz
 - Power: 10 mW

- **THz Probe**: CW @ 654.64 GHz (K=0)
- **Sample Cell**: Waveguide sample cell
 - Cross section: 5 mm by 3 mm
 - Length: 30 cm

V3=1 Rotational THz spectrum
Experimental details:
1. QCL is swept 1022.6 ± 0.05 cm$^{-1}$ at 1 kHz repetition rate (bottom trace) to provide the pump pulse and overlap the J=12 vibrational transition.

2. THz system is consecutively tuned to detect $K=0$, 1, 2 rotational transitions of $v_3=1$ vibrational state.

3. THz signal enhancement induced by the IR pump is observed at appropriate time offsets from the beginning of the IR chirp.
Sensitivity Enhancement: Sample Cells with Smaller Cross Section

The absorption strength of the GS lines (~50%) suggests that if we fully saturated the IR transitions the expected gain in $v_3=1$ signal would be ~25%. The observed 4% gain is a factor 6 below optimal.

Reduction of cell size (ongoing) would raise Rabi frequency by a factor of 4, which would bring us closer to the optimum performance.
Summary

- IR –THz double resonance spectroscopy is an attractive technique for spectroscopy of scenarios where we encounter broad spectral features.

- 100 ns pump data looks very promising.

- **Part per billion** sensitivity demonstrated

- **100 ps pump laser is operational** and hence ps regime experiment is very close.

- Issue of spectral sparcity for the pump laser has been addressed by incorporating a QCL as a tunable chirped pulse IR pump and demonstrating that the technique works.
This work was supported by grants from:

Defense Threat Reduction Agency (DTRA)