With the advent of third-generation synchrotron light sources, it has been demonstrated that higher-order corrections to the dipole approximation are necessary for the description of light-matter interactions in the soft x-ray range. These effects, known as ‘nondipole effects’, present themselves as asymmetries in the angular distributions of photoelectrons. Chiral molecules, known to have asymmetries in photoelectron angular distributions when exposed to circularly polarized light, have been proposed to demonstrate a chiral-specific nondipole effect when exposed to linearly polarized light. We present the first-ever measurement of nondipole chiral angular distributions for the case of each enantiomer of camphor in the photon energy range 296-343eV.