SIMPLIFIED CARTESIAN BASIS MODEL FOR INTRAPOLYAD EMISSION INTENSITIES IN THE $\tilde{A} \rightarrow \tilde{X}$ BENT-TO-LINEAR TRANSITION OF ACETYLENE

BARRATT PARK, Department of Chemistry, MIT, Cambridge, MA, USA; ADAM H. STEEVES, Chemistry, Ithaca College, Ithaca, NY, USA; JOSHUA H BARABAN, Department of Chemistry, University of Colorado, Boulder, CO, USA; ROBERT W FIELD, Department of Chemistry, MIT, Cambridge, MA, USA.

The acetylene emission spectrum from the trans-bent electronically excited \tilde{A} state to the linear ground electronic \tilde{X} state has attracted considerable attention because it grants Franck-Condon access to local bending vibrational levels of the \tilde{X} state with large-amplitude motion along the acetylene \equiv vinylidene isomerization coordinate. For emission from the ground vibrational level of the \tilde{A} state, there is a simplifying set of Franck-Condon propensity rules that gives rise to only one zero-order bright state per conserved vibrational polyad of the \tilde{X} state. Unfortunately, when the upper level involves excitation in the highly admixed ungerade bending modes, ν_3^t and ν_6^t, the simplifying Franck-Condon propensity rule breaks down—so long as the usual polar basis (with v and l quantum numbers) is used to describe the degenerate bending vibrations of the \tilde{X} state—and the intrapolyad intensities result from complicated interference patterns between many zero-order bright states. We show that when the degenerate bending levels are instead treated in the Cartesian two-dimensional harmonic oscillator basis (with v_x and v_y quantum numbers), the propensity for only one zero-order bright state (in the Cartesian basis) is restored, and the intrapolyad intensities are simple to model, so long as corrections are made for anharmonic interactions. As a result of trans \leftrightarrow cis isomerization in the \tilde{A} state, intrapolyad emission patterns from overtones of ν_3^t and ν_6^t evolve as quanta of trans bend (v_3^t) are added, so the emission intensities are not only relevant to the ground-state acetylene \leftrightarrow vinylidene isomerization—they are also a direct reporter of isomerization in the electronically-excited state.