HIGH-RESOLUTION LASER SPECTROSCOPY OF 14NO$_3$ RADICAL: VIBRATIONALLY EXCITED STATES OF THE B^2E' STATE

KOHEI TADA, Graduate School of Science, Kobe University, Kobe, Japan; SHUNJI KASAHARA, Molecular Photoscience Research Center, Kobe University, Kobe, Japan; TAKASHI ISHIWATA, Information Sciences, Hiroshima City University, Hiroshima, Japan; EIZI HIROTA, The Central Office, The Graduate University for Advanced Studies, Hayama, Kanagawa, Japan.

High-resolution fluorescence excitation spectra of 14NO$_3$ radical were intermittently recorded in the region 15860 cm$^{-1}$ to 16050 cm$^{-1}$ corresponding to the transitions to the vibrationally excited states of the B^2E' state. Well-separated rotational lines were found to disappear as the vibrational energy increases. The 16050 cm$^{-1}$ region is almost unstructured even in the high-resolution measurement, and its rotational analysis is almost impossible. The rotational assignment of the 15870 cm$^{-1}$ region is possible and it has been undertaken by the ground state combination differences and the Zeeman effect observation.