Noise-Immune Cavity-Enhanced Optical Frequency Comb Spectroscopy

Lucile Rutkowski, Amir Khodabakhsh, Alexandra C. Johansson, and Aleksandra Foltynowicz
Department of Physics, Umeå University, Sweden

CLEO:2015, San Jose, May 2015
Laser-based Spectroscopic Technique

Expectations

- Broad spectral bandwidth
- High spectral resolution
- High absorption sensitivity
- Short measurement time with high SNR
Laser-based Spectroscopic Technique

Solutions

✓ Optical Frequency Comb

Expectations

- Broad spectral bandwidth
- High spectral resolution
- High absorption sensitivity
- Short measurement time with high SNR
Laser-based Spectroscopic Technique

Solutions
- ✓ Optical Frequency Comb
- ✓ Cavity Enhancement

Expectations
- ➢ Broad spectral bandwidth
- ➢ High spectral resolution
- ➢ High absorption sensitivity
- ➢ Short measurement time with high SNR
Laser-based Spectroscopic Technique

Solutions
- ✓ Optical Frequency Comb
- ✓ Cavity Enhancement
- ✓ Fast-scanning FTS

Expectations
- ➤ Broad spectral bandwidth
- ➤ High spectral resolution
- ➤ High absorption sensitivity
- ➤ Short measurement time with high SNR
<table>
<thead>
<tr>
<th>Solutions</th>
<th>Expectations</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Optical Frequency Comb</td>
<td>➢ Broad spectral bandwidth</td>
</tr>
<tr>
<td>✓ Cavity Enhancement</td>
<td>➢ High spectral resolution</td>
</tr>
<tr>
<td>✓ Fast-scanning FTS</td>
<td>➢ High absorption sensitivity</td>
</tr>
<tr>
<td>✓ Noise Immunity</td>
<td>➢ Short measurement time with high SNR</td>
</tr>
</tbody>
</table>
Laser-based Spectroscopic Technique

Solutions

- ✓ Optical Frequency Comb
- ✓ Cavity Enhancement
- ✓ Fast-scanning FTS
- ✓ Noise Immunity

Expectations

- ➢ Broad spectral bandwidth
- ➢ High spectral resolution
- ➢ High absorption sensitivity
- ➢ Short measurement time with high SNR

Fourier-Transform-Based **Noise-Immune Cavity-Enhanced Optical Frequency Comb Spectroscopy (FT-Based NICE-OFCS)**
FT-based NICE-OFCS Principle

OFC: Optical Frequency Comb
2P-PDH: Two-point Pound-Drever-Hall Locking
FTS: Fourier Transform Spectrometer
FFT: Fast Fourier Transform

OFC Control

Modulation

Cavity

FTS

Gas

2P-PDH

Demodulation and FFT

NICE-OFCS signal

Optical Connection
Electrical Connection
Pipeline Connection
OFC and Enhancement Cavity

\[FSR = \frac{c}{2L} \]

\[FSR = f_{\text{rep}} \]

Proper \(f_0 \)

OFC and Enhancement Cavity

Two point PDH locking:

FSR = \(f_{rep} \)
Proper \(f_0 \)

\[f_{PDH} \]

OFC and Enhancement Cavity

Two point PDH locking:
- Locking point 1 acts on f_0
- Locking point 2 acts on f_{rep}

$FSR = f_{rep}$

Proper f_0

Noise Sources

Frequency to Amplitude Noise Conversion

- OFC lines
- Cavity modes
- Optical frequency
- Trans. intensity
- Time
Noise Sources

Frequency to Amplitude Noise Conversion

- OFC lines
- Cavity modes
Noise Sources

Frequency to Amplitude Noise Conversion

1/f noise

White noise
Noise Sources

Frequency to Amplitude Noise Conversion

OFC lines	Cavity modes
Optical frequency
Time

1/f noise

Modulation

White noise
NICE-OHMS

Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectroscopy
(Alternative name: Cavity-Enhanced Frequency Modulation Spectroscopy)

NICE-OHMS

Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectroscopy
(Alternative name: Cavity-Enhanced Frequency Modulation Spectroscopy)

Noise Immunity: \[f_m = q \text{FSR} \]

NICE-OHMS

Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectroscopy
(Alternative name: Cavity-Enhanced Frequency Modulation Spectroscopy)

Noise Immunity: \(f_m = q \text{FSR} \)

Electric Fields beat @ \(f_m \)

Frequency to amplitude noise immune signal

Comb-Cavity Matching

- Impractically long linear cavity for typical OFC sources (e.g. 1.8 m for f_{rep} 250 MHz)

General case

\[f_{rep} = 3 \text{ FSR} \quad \text{and} \quad f_m = \text{FSR} \]
Comb-Cavity Matching

- Impractically long linear cavity for typical OFC sources (e.g. 1.8 m for f_{rep} 250 MHz)
- Instability/cross-talk from sideband-sideband beatings

General case

\[f_{\text{rep}} = 3 \times \text{FSR} \quad f_m = \text{FSR} \]

Comb-Cavity Matching

- Impractically long linear cavity for typical OFC sources (e.g. 1.8 m for f_{rep} 250 MHz)
- Instability/cross-talk from sideband-sideband beatings

General case

- $f_{rep} = 3 \text{ FSR}$
- $f_m = \text{ FSR}$

Filter solution

- $f_{rep} = 4/3 \text{ FSR}$
- $f_m = \text{ FSR}$

Comb-Cavity Matching

- Impractically long linear cavity for typical OFC sources (e.g. 1.8 m for \(f_{\text{rep}} \) 250 MHz)
- Instability/cross-talk from sideband-sideband beatings

General case

\[f_{\text{rep}} = 3 \text{ FSR} \quad f_m = \text{FSR} \]

Filter solution

\[f_{\text{rep}} = \frac{4}{3} \text{ FSR} \quad f_m = \text{FSR} \]

- Shorter linear cavity (80 cm)
- Lower transmitted power
- No sideband-sideband beatings – higher stability

Experimental Setup

- **Er:fiber femtosecond laser:** 1.5-1.6 µm, 250 MHz repetition rate, 120 mW
- **Cavities:**
 - finesse ~1100 / ~9000, length 80 cm, FSR 187 MHz
- **Two-point Pound-Drever-Hall lock**

- OFC – optical frequency comb
- EOM – electro-optic modulator
- FC – fiber collimator
- PBS – polarizing beam splitter
- FTS – Fourier transform spectrometer
- BPF – band-pass filter
- LPF – low-pass filter
- FFT – fast Fourier transform
- Ph – phase shifter
- DDS – direct digital synthesizer
- PDH – Pound-Drever-Hall locking electronics
- f_{PDH} – PDH modulation frequency
- f_m – NICE-OFCS modulation frequency.

Experimental Setup

- **Er:fiber femtosecond laser**: 1.5-1.6 µm, 250 MHz repetition rate, 120 mW
- **Cavities**: finesse ~1100 / ~9000, length 80 cm, FSR 187 MHz
- **Two-point Pound-Drever-Hall lock**
- **Fast-scanning FTS with a couple of moving back-to-back retro-reflectors**: 0.8 m/s OPD Scan, ~0.5 s measurement time for 750 MHz resolution
- **Synchronous demodulation and FFT**

OFC – optical frequency comb
EOM – electro-optic modulator
FC – fiber collimator
PBS – polarizing beam splitter
FTS – Fourier transform spectrometer
BPF – band-pass filter
LPF – low-pass filter
FFT – fast Fourier transform
Ph – phase shifter
DDS – direct digital synthesizer
PDH – Pound-Drever-Hall locking electronics

\(f_{PDH} \) – PDH modulation frequency
\(f_m \) – NICE-OFCS modulation frequency.

Experimental Setup

- **Er:fiber femtosecond laser:** 1.5-1.6 µm, 250 MHz repetition rate, 120 mW
- **Cavities:** finesse ~1100 / ~9000, length 80 cm, FSR 187 MHz
- **Two-point Pound-Drever-Hall lock**
- **Fast-scanning FTS with a couple of moving back-to-back retro-reflectors:** 0.8 m/s OPD Scan, ~0.5 s measurement time for 750 MHz resolution
- **Synchronous demodulation and FFT**
- **Passive lock of the f_m to the cavity FSR using f_{rep} clocked DDS**

Diagram:
- OFC – optical frequency comb
- EOM – electro-optic modulator
- FC – fiber collimator
- PBS – polarizing beam splitter
- FTS – Fourier transform spectrometer
- BPF – band-pass filter
- LPF – low-pass filter
- FFT – fast Fourier transform
- Ph – phase shifter
- DDS – direct digital synthesizer
- PDH – Pound-Drever-Hall locking electronics
- f_{PDH} – PDH modulation frequency
- f_m – NICE-OFCS modulation frequency.

Spectra and Noise Immunity

OPD domain interferogram
- Absorption features clearly visible in the interferogram

After FFT
- 1% CO$_2$ in 500 Torr N$_2$
- Cavity finesse: ~ 1100
- Spectral Bandwidth: 40 nm
- Spectral resolution: 750 MHz
- Acquisition time: 0.5 s

Spectra and Noise Immunity

OPD domain interferogram
- Absorption features clearly visible in the interferogram
- Mismatch of f_m and FSR declines the noise immunity and decreases the SNR

After FFT
- 1% CO$_2$ in 500 Torr N$_2$
- Cavity finesse: \sim1100
- Spectral Bandwidth: 40 nm
- Spectral resolution: 750 MHz
- Acquisition time: 0.5 s

Signal modelization

Electric field: comb modulated at f_m and Doppler shifted by v/c

\[\omega_n \pm \omega_m \left(1 \pm \frac{2v}{c}\right) \]
Signal modelization

Electric field: comb modulated at f_m and Doppler shifted by v/c

$$\text{Doppler shift} = (\omega_n \pm \omega_m) \left(1 \pm \frac{2v}{c}\right)$$
Signal modelization

Electric field: comb modulated at f_m and Doppler shifted by v/c

\[
E_{\pm} = \sum_{n} \sum_{k=-1,0,1} \frac{E_n}{4} J_k(\beta) T_{n,k} e^{i[(\omega_n+k\omega_m)(t\pm\Delta t/c)]} + c.c.
\]
Signal modelization

Electric field: comb modulated at f_m and Doppler shifted by v/c

$$E_\pm = \sum_n \sum_{k=-1,0,1} \frac{E_n}{4} J_k(\beta) T_n,k e^{i(\omega_n + k\omega_m)(t \pm \frac{\Delta}{c})} + \text{c.c.}$$

Intensity: beating of the two combs demodulated at f_m and $\phi = \pi / 2$

$$I_{\omega_m} = J_0(\beta) J_1(\beta) \sum_n I_n \left\{ \cos\left(\omega_n \frac{\Delta}{c}\right) \cos\left(\omega_m \frac{\Delta}{2c}\right) \text{Re}(T_{n,0} T^*_{n,-1} - T^*_{n,0} T_{n,+1}) + \sin\left(\omega_n \frac{\Delta}{c}\right) \sin\left(\omega_m \frac{\Delta}{2c}\right) \text{Re}(T_{n,0} T^*_{n,-1} + T^*_{n,0} T_{n,+1}) \right\}$$
Signal modelization

Electric field: comb modulated at f_m and Doppler shifted by v/c

$$E_{\pm} = \sum_{n} \sum_{k=-1,0,1} \frac{E_n}{4} J_k(\beta) T_{n,k} e^{i[(\omega_n+k\omega_m)(t\pm\Delta c)]} + c.c.$$

Intensity: beating of the two combs demodulated at f_m and $\phi = \pi / 2$

$$I_{\omega_m} = J_0(\beta)J_1(\beta) \sum_{n} I_n \left\{ \cos \left(\omega_n \frac{\Delta}{c} \right) \cos \left(\omega_m \frac{\Delta}{2c} \right) \text{Re} \left(T_{n,0} T_{n,-1}^* - T_{n,0}^* T_{n,1} \right) + \sin \left(\omega_n \frac{\Delta}{c} \right) \sin \left(\omega_m \frac{\Delta}{2c} \right) \text{Re} \left(T_{n,0} T_{n,-1}^* + T_{n,0}^* T_{n,1} \right) \right\}$$

For weak absorption lines:

$$\begin{bmatrix} \delta^F_{n,-1} - \delta^F_{n,+1} \\ 2 - \delta^F_{n,-1} - 2\delta^F_{n,0} - \delta^F_{n,+1} \end{bmatrix}$$

- Direct cavity-enhanced absorption like signal which makes NICE-OFCS calibration-free
Signal modelization

Electric field: comb modulated at f_m and Doppler shifted by v/c

$$E_{\pm} = \sum_{n} \sum_{k=-1,0,1} \frac{E_n}{4} J_k(\beta) T_{n,k} e^{i[(\omega_n + k\omega_m)(t \pm \frac{\Delta}{c})]} + \text{c.c.}$$

Intensity: beating of the two combs demodulated at f_m and $\phi = \pi / 2$

$$I_{\omega_m} = J_0(\beta) J_1(\beta) \sum_n I_n \left\{ \cos \left(\frac{\omega_n \Delta}{c} \right) \cos \left(\frac{\omega_m \Delta}{2c} \right) \text{Re} \left(T_{n,0} T_{n,-1} - T_{n,0}^* T_{n,+1} \right) \\ + \sin \left(\frac{\omega_n \Delta}{c} \right) \sin \left(\frac{\omega_m \Delta}{2c} \right) \text{Re} \left(T_{n,0} T_{n,-1}^* + T_{n,0}^* T_{n,+1} \right) \right\}$$

For weak absorption lines:

$$\begin{bmatrix} \delta_{n,-1}^F - \delta_{n,+1}^F \\ 2 - \delta_{n,-1}^F - 2\delta_{n,0}^F - \delta_{n,+1}^F \end{bmatrix}$$

- Direct cavity-enhanced absorption like signal which makes NICE-OFCS calibration-free

Signal modelization

Electric field: comb modulated at f_m and Doppler shifted by v/c

$E_{\pm} = \sum_{n} \sum_{k=-1,0,1} \frac{E_n}{4} J_k(\beta)T_{n,k} e^{i[(\omega_n+k\omega_m)(t\pm\Delta/c)]} + c.c.$

Intensity: beating of the two combs demodulated at f_m and $\phi = \pi / 2$

$I_{\omega_m} = J_0(\beta)J_1(\beta)\sum_n I_n \begin{cases} \cos\left(\frac{\omega_n \Delta}{c}\right) \cos\left(\frac{\omega_m \Delta}{2c}\right) \text{Re}\left(T_{n,0}T_{n,-1}^* - T_{n,0}^*T_{n,1}\right) \\ + \sin\left(\frac{\omega_n \Delta}{c}\right) \sin\left(\frac{\omega_m \Delta}{2c}\right) \text{Re}\left(T_{n,0}T_{n,-1}^* + T_{n,0}^*T_{n,1}\right) \end{cases}$

For weak absorption lines:

- Direct cavity-enhanced absorption like signal which makes NICE-OFCS calibration-free

Signal modelization

Electric field: comb modulated at f_m and Doppler shifted by v/c

$$E_\pm = \sum_n \sum_{k=-1,0,1} \frac{E_n}{4} j_k(\beta) T_{n,k} e^{i(\omega_n + k\omega_m)(\pm \Delta c/n)} + c.c.$$

Intensity: beating of the two combs demodulated at f_m and $\phi = \pi / 2$

$$I_{\omega_m} = J_0(\beta) J_1(\beta) \sum_l I_n \left\{ \begin{array}{l} \cos\left(\omega_n \frac{\Delta}{c}\right) \cos\left(\omega_m \frac{\Delta}{2c}\right) \text{Re}\left(T_{n,0} T_{n,-1}^* - T_{n,0} T_{n,+1}^*\right) \\ + \sin\left(\omega_n \frac{\Delta}{c}\right) \sin\left(\omega_m \frac{\Delta}{2c}\right) \text{Re}\left(T_{n,0} T_{n,-1}^* + T_{n,0} T_{n,+1}^*\right) \end{array} \right\}$$

For weak absorption lines:

- Direct cavity-enhanced absorption like signal which makes NICE-OFCS calibration-free
- Interferogram intensity ponderated by the envelopes induced by the modulation frequency

Signal modelization

Electric field: comb modulated at f_m and Doppler shifted by v/c

$E_{\pm} = \sum_n \sum_{k=-1,0,1} \frac{E_n}{4} j_{k}(\beta) T_{n,k} e^{i[\omega_n + k\omega_m)(t \pm \frac{\Delta}{c})] + c.c.}$

Intensity: beating of the two combs demodulated at f_m and $\phi = \pi / 2$

$I_{\omega_m} = J_0(\beta) J_1(\beta) \sum_n I_n \left\{ \begin{array}{l}
\cos \left(\omega_n \frac{\Delta}{c} \right) \cos \left(\omega_m \frac{\Delta}{2c} \right) \Re \left(T_{n,0} T_{n,-1}^* - T_{n,0}^* T_{n,+1} \right) \\
+ \sin \left(\omega_n \frac{\Delta}{c} \right) \sin \left(\omega_m \frac{\Delta}{2c} \right) \Re \left(T_{n,0} T_{n,-1}^* + T_{n,0}^* T_{n,+1} \right) \end{array} \right\}$

For weak absorption lines:

$\begin{bmatrix}
\delta_{n,-1}^F - \delta_{n,+1}^F \\
2 - \delta_{n,-1}^F - 2\delta_{n,0}^F - \delta_{n,+1}^F
\end{bmatrix}$

- Direct cavity-enhanced absorption like signal which makes NICE-OFCS calibration-free
- Interferogram intensity ponderated by the envelopes induced by the modulation frequency

Absorption lineshape model

Transmitted intensity

\[T_{n,k}(\nu) = \frac{T^2(\nu)e^{-\alpha(\nu)L}}{1 + R^2(\nu)e^{-2\alpha(\nu)L} - 2R(\nu)e^{-\alpha(\nu)L}\cos[\phi(\nu)L + \phi(\nu)]} \]

- **Molecular absorption**
- **Molecular phase shift**
- **Round trip intracavity phase shift**

\[\phi(\nu) = 4\pi \frac{\nu L}{c} = \frac{2\pi \nu}{FSR} \]

\[\phi(\Delta \nu) = 2n\pi + 2\pi \frac{\Delta \nu}{FSR} \]

- **T** – mirror transmission
- **R** – mirror reflection
- **L** – cavity length

Sensitivity and Detection Limit

- 500 ppm CO\textsubscript{2} in 500 Torr N\textsubscript{2}
- Cavity finesse: \(\sim 9000 \)
- Spectral Bandwidth: 40 nm
- Spectral resolution: 750 MHz
- Acquisition time: 0.5 s
- Noise equivalent absorption sensitivity: \(6.4 \times 10^{-11} \text{ cm}^{-1} \text{ Hz}^{-1/2} \) per spectral element
Sensitivity and Detection Limit

- 500 ppm CO\textsubscript{2} in 500 Torr N\textsubscript{2}
- Cavity finesse: \(\sim 9000\)
- Spectral Bandwidth: 40 nm
- Spectral resolution: 750 MHz
- Acquisition time: 0.5 s
- Noise equivalent absorption sensitivity: \(6.4 \times 10^{-11} \text{ cm}^{-1} \text{ Hz}^{-1/2}\) per spectral element
- CO\textsubscript{2} detection limit (multiline fitting): 450 ppb Hz\(^{-1/2}\)
 25 ppb after 330 s

Conclusions

• FT-based NICE-OFCS: broadband, highly sensitive, high resolution technique with a short acquisition time

• Calibration-free technique due to the existence of signal background (for a known cavity finesse)

• Stable, long term noise immune operation achieved with a simple passive lock

• Compatible with commercial FTIR instruments using a high bandwidth detector

• Standard and commercially available components

• Outlook: Improved model of the spectrum to decrease the concentration discrepancy
Acknowledgements

Group leader
Aleksandra FOLTYNOWICZ

Postdoctoral fellows
Lucile RUTKOWSKI
Chadi ABD ALRAHMAN (former)
Venkata R. BADARLA

PhD students
Amir KHODABAKHSH
Alexandra C. JOHANSSON

Funding sources

Kempestiftelserna
Carl Tryggers Stiftelse

Stiftelsen
Lars Hiertas Minne
Thank you for your attention!