OBSERVATION AND ANALYSIS OF THE A_1-A_2 SPLITTING OF CH$_3$D

MASASHI ABE, HIDEYUKI SERA, HIROYUKI SASADA, Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan.

Sub-Doppler resolution spectroscopy of CH$_3$D has been carried out for the v_1 and v_4 fundamental bands using a comb-referenced difference-frequency generation spectrometer. Thirty transitions from the low-J'' and $K'' = 3$ levels are observed with a resolution of 60 to 100 kHz, and the A_1-A_2 splitting is resolved for twenty-three of the thirty transitions. Most of them are overlapped in Doppler broadening and resolved for the first time, as far as we know. The absolute transition frequencies are determined with a typical uncertainty of 4 kHz. The A_1-A_2 splitting constant of the $K'' = 3$ levels is yielded as $2h_{3_{v=0}} = (1.5641 \pm 0.0026)$ Hz for the ground vibrational state. Those of the $K' = 3$ levels for the $v_1 = 1$ states and of the ($K' = 2$, $l = -1$) and ($K' = 4$, $l = 1$) levels for the $v_4 = 1$ state are also determined including the J'-dependent terms.