
James L. Ames
Information Systems Management Corp.

IBM Branch Office

Pullman, Washington

PL/I FOR LIBRARY SYSTEMS

I would like to begin by emphasizing that what we are considering is a

system in particular, a computer-aided library system. The system in this

sense may be a technical services system, a serial records system, or a library

holdings information retrieval system. Each of these library systems, when

implemented, will consist of a series of interrelated computer programs which

operate on a store of information, or a data base. These programs either keep
the contained information current to reflect the true status of the system, or

provide reports, documents, and current information to the users of the

system.

Certainly these concepts, updating and querying a data base, are not

new to the data processing community. These concepts, in fact, exist in every
data processing organization at various levels of sophistication. A simple

example of such information processing might be found in a payroll system

involving a file of employee information, a data base, and a set of computer

programs to process the data. The data base in this case is updated by the

addition of new employees, by salary or benefit changes, by deletion of

former employees, or possibly by accumulation of year-to-date totals during

processing. The products of the current file would be the pay checks for the

employees and the reports used by the company and the company manage-
ment.

At the other end of the scale, one might find a corporate information

system. In part of its data base might be all of the information that affects

the budget of the corporation. Such data, which come from widely varied

sources, must be constantly updated to reflect the current status of the

budget. The data must be available for regular processing and for the manage-
ment of the corporation to retrieve and correlate as desired. Management will

then be able to "converse" with the computer to obtain information stored or

developed from information in the data base and thus have the capability to

explore new avenues as new ideas develop.

67



68 JAMES L. AMES

This latter capability is very desirable in the library as well as the

corporation. An example of this approach in the library is found in providing
an untrained library user with the capability to query the holdings of a library

by using author, title, or subject as entries. The data base in this case consists

of the library catalog. The user, who has a predefined concept relating to the

information for which he is searching, should have the capability to direct the

search and explore different avenues that may lead to the end result, a

probable source of information.

These types of systems are constructed by using one or another kind of

programming language. The language may be an assembly level language,
whose instructions closely resemble those machine functions that are built

into the computer, or a procedural language such as FORTRAN, COBOL,
ALGOL, or PL/I. Each statement in a procedural language normally generates
several machine-level instructions.

The programming language requirements of the library system, as

compared to that of the corporate information system are very similar. For

instance, in both systems we must have the capability to manipulate large files

in both a random and a sequential manner. In both systems we must be able

to do arithmetic, and have flexible facilities to print reports. If the system is

an on-line system, it is necessary to have the ability to intercept errors and

interrupts so that, for instance, program failure caused by one terminal in the

system does not affect the operation of the other terminals using the same

program. In addition, for certain errors, the program can analyze and feed

back to the user the nature of the error that caused program failure.

The library system, as one may expect, has all the requirements of the

corporate system as well as some additional ones. These additional require-

ments are caused mainly by the types of data that are encountered in the

library. Outside the library, one tends to find that most information in a

computer record is defined with a fixed length. That is, information such as

dollars, stock numbers, and often names have a fixed length field set up both

within the computer and on external storage. Typically, one might find

defined in a card, "name" in columns 1 through 20, "stock number" in

columns 29 through 30, and "price" in columns 31 through 39. Data items

that do not vary greatly in length are placed into fixed length fields, and for a

very good reason: it is much easier to write programs and manage the data

using fixed fields.

The problems of handling data become much more acute when working
with library information such as is found is bibliographic records. Authors,

titles, collations, and subjects are of variable and unpredictable length. Since a

large portion of library programming deals with such fields, it is imperative to

have the proper tools built into a programming language to manipulate easily

this type of information. It is equally important to have these tools so built in

that the programmer can conceptualize the data as it really is. For example,
to the programmer a title may be a string of characters call "title," or it may
be an array of numbers that must be handled with arithmetic type statements

and loops. If the programmer can work in terms of characters that is, search

for character patterns, compare, character strings, extract strings of characters,

insert strings of characters, and concatenate strings of characters, rather than



PL/I FOR LIBRARY SYSTEMS 69

manipulating arrays of numbers he will be more productive and the programs
that he writes will be more logical and understandable.

What kind of capabilities should one look for in a programming language
for a library system? Perhaps a representative example would help to point
out which capabilities are necessary and which may be desirable. I would like

to use as this example an experimental system which I developed while at

Washington State University in 1968. The system was developed as a tool to

test techniques for retrieving titles from a computer-based file using an

imperfect search request. The research was directed towards providing a

library user with the ability to query the holdings of the library. The system,
I think, provides most of the facilities necessary in a programming language
when it is used to develop library systems.

For a user of this system, the question is: "Is this title held by the

library?" After the query is entered, it is analyzed by the system which takes

into account possible spelling errors, missing or additional words or phrases,

and other mistakes such as capitalization and punctuation. Based upon the

analysis, the system will search the catalog and report the findings of the

search to the user. The results of the search are either a list of "most proba-
ble" matches to the query, or a negative reply. The user can then accept the

results or rephrase the query. An example of the query and the results is

found in Figure 1 .

The system consists of two main processes which I would like to

examine in some detail to point out the different aspects of the system as far

as programming is concerned. The first of these processes constructs the library

catalog on a direct access device. The second analyzes search requests, searches

the catalog, and reports the results of the search to the system user.

The catalog together with its indexes, is built from examining the title

in raw bibliographic form. The input to the catalog building phase is a

machine-readable bibliographic record such as distributed by the MARC
Project. The files used by the system consist of two primary components, the

dictionary and the catalog. The general organization of the files within the

system may be seen in Figure 2. The catalog contains the complete biblio-

graphic citations and is used to display search results to the user. The

dictionary component is used interactively to formulate the search request and

for the primary phase of the search strategy. Each component of the system is

assumed to have entries available by random access techniques. Note that in

the case of the dictionary entry, a direct access address in this system must be

found by manipulating a string of characters. In addition to manipulating the

word for the dictionary entry, the programming language must have the

facility to store and retrieve both fixed length and variable length records on a

direct access device.

The dictionary in Figure 2 contains all the non-common words that

appear in the bibliographic entries. These words have been analyzed and

modified to compensate for spelling and typographical errors. Along with each

word entry in the dictionary is additional information that describes the

context that the word is used in, "see" references, "see also" references, and a

list of documents containing the word in the given context. The context or

attribute entry describes the type of entry in which the word was used, such



70 JAMES L. AMES

Figure 1

QUERY AND SYSTEM RESPONSE EXAMPLES

QUERY: TITLE: India's Foreign Policies.

30867 0.8667 India's Defense and Foreign Policies

END

QUERY: TITLE: MIT TECHNICAL REPORT

42136 1.0000 M. I. T. Technical Reports.

END

QUERY: TITLE: Les Integrals Eulerines.

01862 1.0000 Les Integrales Eulerinnes et Leurs

Applications.

END

QUERY: TITLE: Websters Seventh new Collegiate

Dictionary.

THIS TITLE NOT HELD BY THE LIBRARY.

Note: In the above examples the first number in the
system response is the accession number and
the second is the coefficient of similarity between
the query title and the catalog title as calculated
by the system.



PL/I FOR LIBRARY SYSTEMS 71

Figure 2

Catalog Searching System Organization

- actuol address pointer
>

implied pointer

DICTIONARY COMPONENT CATALOG COMPONENT

DICTIONARY INVERTED
FILES

Document Wo.'c

Entry Attribute Number Number



72 JAMES L. AMES

as a title entry or an author entry. The "see" reference points to a word to be

used instead of the one in the search request. The "see also" reference points
to the associated words to be used in addition to the ones appearing in the

search request. Both of these cross reference facilities are used to expand or

standardize abbreviations, and to aid the user in formulating his search re-

quest. Each entry in the document list contains two fields. One indicates a

document number that the word was used in, and the other the relative

position of this word within the entry. The relative position within the entry
is used in the algorithm to measure the degree of similarity between the

search request and a title in the catalog.

The catalog component of the system provides for storage of the catalog

and makes each catalog record directly accessible. The catalog directory as

shown in Figure 2, provides a list of catalog records together with their

physical location in the file. The program must be able to manipulate the

document identifier to yield a mapping from the identifier to the catalog

directory. It must be able to manipulate the variable length catalog record

either as a variable length record or as a series of fixed length records with a

variable number of records.

The dictionary is built by extracting a title from the bibliographic

record, manipulating, and analyzing it. This title is processed as follows:

1) All punctuation is removed from the title by serially examining
each character. Some are changed to blanks; others are deleted.

2) Each lower case alphabetic character is changed to upper case

by logically OR'ing it with a bit string of 01000000 on the IBM 360.

3) The title is broken down into its individual words and the

relative position of these words is marked. This is accomplished by

searching for the blanks between words.

4) Each word is then processed against a list of common words,

and the common words are deleted from the list of title words.

5) Each remaining word is examined character by character from

left to right and the abbreviated form of the word is constructed. This

abbreviated form is especially constructed to compensate for spelling

variations.

6) Each remaining triple (word, document number, and relative

position) is then added to the dictionary.

For an example, see Figure 3. Note that the above procedure involves con-

siderable character string searching, character string comparing, substring

extraction, character manipulation, character string concatenation, character

string comparisons, and logical operations. Adding to the dictionary again

requires the ability to read and update the direct access files.

When a query to the file is made, the search request title is processed as

in steps 1-5 above. The dictionary is then searched for each of the remaining
words. The list of document number word position pairs is retrieved for each

non-common word found in the dictionary. Each list is sorted by document

number as the primary sort key and secondarily by word position. Each

document number in each list is then associated with its corresponding word,

and the lists are merged to form as an end result a reconstruction of the

original titles as they appeared after being processed, as in steps 1-5 above.



PL/I FOR LIBRARY SYSTEMS 73

Figure 3

AN EXAMPLE OF TITLE AND QUERY PREPROCESSING
PRIOR TO MATCHING.

STEP RESULTS

Design Principles for an On-Line Information
Retrieval System.

1 Design Principles for an On-Line Information
Retrieval System.

2 DESIGN PRINCIPLES FOR AN ONLINE
INFORMATION RETRIEVAL SYSTEM.

DESIGN 1

PRINCIPLES 2

FOR 3

AN 4
ONLINE 5

INFORMATION .8

RETRIEVAL 7
SYSTEM 8

DESIGN



74 JAMES L. AMES

The preceding system was successfully programmed using PL/I level F in

a period of less than two months. This short period of time for a system of

this complexity and diversity of demands upon the resources of a computer is

attributable to PL/I for several reasons expanded upon below.

Many different programming techniques and operations were necessary
to accomplish this task. Very involved character manipulation was needed.

The ability to build and access several direct access files using different

accessing techniques was needed. The ability to handle variable length records

and variable length data was necessary. An arithmetic capability was needed to

calculate similarity coefficients, calculate direct access addresses, and provide
various counters. It was necessary to perform both internal and external sorts.

PL/I provided the ability to perform each of these in a direct and easily

programmed manner. The internal sort was programmed in PL/I in about half

a day.
A second important aspect of the language that aided in the con-

struction of the system was the ability to construct and test small components
of the system independently. The system was constructed in a highly modular

manner which, in addition to de-bugging, provided the ability to modify
individual components of the system. For instance, the matching algorithm
could be easily changed without affecting the rest of the system. PL/I as a

language lends itself very readily to modular program construction.

The speed with which the system was developed was accelerated signifi-

cantly by the excellent diagnostic capability of the language. The IBM PL/I

implementation provides extensive diagnostic messages and analysis both at

the time that the program is compiled, and when the program is executing.

The execution time error handler provides in addition, the ability for the

programmer to diagnose and recover from likely errors through the use of the

ON statement.

In addition to the capabilities mentioned above, PL/I provides very

flexible format control for printing reports, catalogs, or catalog cards if so

desired. In addition, the same flexible format control is available to build

strings of text internally. Also of significance to the library or text-handling

user is the list-processing feature of the language. This feature provides a very

flexible and efficient manner to handle text and lists of unknown length.

To utilize the flexibility and scope of the language, one must pay a

price. This price is probably realized in terms of slightly larger programs and

slower compilation speed. In my opinion, however, this price is very small

when weighed against the productivity gain realized by the library programmer
and the advantages of having a single comprehensive language to learn and use

when implementing a library system.


