A User's View of BALLOTS

BALLOTS (Bibliographic Automation of Large Library Operations using a Time-sharing System) is an on-line interactive library automation system that supports the acquisition and cataloging functions of the Stanford University Libraries' technical processing operations. The BALLOTS system is being implemented in a series of eleven modules. A large part of BALLOTS' development up to the development of the first module was funded by a grant from the U.S. Office of Education, Department of Health, Education, and Welfare. This paper describes the first module, BALLOTS-MARC (or simply, the MARC module), and various aspects of system hardware and software as they pertain to this module. The MARC module was scheduled for implementation in the late summer of 1972. The other modules are briefly described at the end of this paper.

The MARC module supports the production of purchase orders, catalog card sets, spine labels, and several types of file slips and management reports. An on-line MARC file stored on disk is updated from the weekly Library of Congress MARC tapes. Several indexes are maintained in the file in order to support extensive on-line interactive file searching.

The BALLOTS system operates through programmable cathode ray tube (CRT) terminals in the library that are connected to the campus facility, an IBM 360 Model 67 computer in the Stanford Computation Center, approximately one mile away. The campus facility computer also handles the faculty
and student academic and research computing requirements. About 2,000 computing jobs unrelated to BALLOTS are run on this computer each day.

The type of video display terminal being used for BALLOTS is shown in fig. 1. It consists of a keyboard, a CRT capable of displaying 1,920 characters at a time, and a 4,096-byte programmable microprocessor. The CRT terminal could be called a window into the BALLOTS system; through it the library communicates with the system. Printed outputs, like the purchase orders, catalog cards, and spine labels, are produced overnight as a result of the daily on-line activity at the terminal.

One way of describing BALLOTS is to explain how the system looks to the user and how it is used in normal day-to-day library operations. A typical book cycle will be traced in the examples that follow.

SEARCHING

A typical book processing cycle begins when the acquisition department receives a book request from a faculty or staff member requesting that a particular book be added to the collection. A sample book request is shown in
fig. 2. Book Request

fig. 2. On receiving the book request, the librarian keys in a search request for that particular book at the CRT terminal keyboard. This search request, shown shaded in fig. 3, is displayed on the CRT screen as it is keyed. (In the following figures, all the data supplied by the terminal operator is shown shaded; all the data supplied by the computer is shown unshaded.) The operator in this example chose to search (FIND or FIN) by one personal name (PN), and because he was unsure of the spelling of the author’s name (JON or JOHN), typed J. instead. The operator chose two words from the title. Because he was unsure of the spelling of CORTES, he truncated the word to CORTE#, which would locate a record for any title word beginning with “Corte.”

The search request is entered into the system, the on-line MARC file is searched, and the search results are returned to the screen in about two seconds. In the BALLOTS system, when only one record is found in a search, it is assumed that this record is the correct result, and the full bibliographic record is displayed at the terminal (fig. 4).

Searching can be done using any word or words in the title (trivial words, like THE and IN, will be recorded in an exclusion list for the file, and the system will reject them as search terms). One can also search using the LC card number, the main entry, the title statement, and added entries. And the personal name can be given to the system in various forms. For instance, in fig. 4 the author’s name turned out to be stored in the MARC file as
Fig. 3. A Search Request on the S101 Screen

```
S101  BMRC-S  ORDER  S  WED
fin pn J, M, White and t Cortez and Aztec
```

Fig. 4. A Full Bibliographic Display on the BF01 Screen

WHITE, JON EWANK MANCHIP. The following variations on this name, or any combination of them, would also be accepted as valid search terms and would locate the same record.

- WHITE, J.E.M. (initials)
- White, M. (some initials omitted)
- White, J E M (initials without periods)
- white, jon ewbank manchip (capitalization ignored)
- J.E.M. White (surname first or last)
- Manchip White, J.E. (surname first or embedded)
- White, Jo Ewb Man (first names implicit truncation)
- Whi#, J.E.M. (last name explicit truncation through use of pound sign)

The BALLOTS system makes extensive efforts to recognize different versions of a personal name, because in many of the library processing cycles the exact name of an author is not known. This helps to insure success in on-line search efforts.

If the search in fig. 3 had been entered as simply FIN PN J. M. WHITE, the search might have produced more than one result (because more than one record in the data base fulfilled the search criteria). In this case (fig. 5), the
A USER'S VIEW OF BALLOTS

113

Fig. 5. Search Results Displayed on the S102 Screen

Fig. 6. Interactive Searching on the S102 Screen

results would be displayed as a numerical total of the number of records found, rather than the first of these records being displayed in its entirety. Fig. 5 shows a total of five records found that meet the search criteria. The librarian now has the choice of asking for each of the full bibliographic records to be displayed in turn, or of keying additional search criteria that, when added to the previous search request, would reduce the number of records found. This second option is shown in Fig. 6. Such iterative searching would produce the same result as displayed in fig. 4. Figs. 5 and 6 illustrate (very simply) the interactive searching capabilities of the system.

ORDERING

If the search described in the previous section has produced the desired record, and the library decides to order the book, then the terminal operator requests an ordering (OR01) screen for the same bibliographic record. This is shown in fig. 7. The terminal operator fills in the appropriate information: vendor data, accounting data, and enough additional information to produce a purchase order. In fig. 7, the values in the unshaded fields were supplied by the system as default options: PO (purchase order) for the method of procurement, 01 for the address code (stands for Stanford University), 2 for the special notification indicator (indicates that a notice is to be sent to the requester when the material is received), and WED for the searcher's initials. The system also supplied a request for one copy (1 c.) and the price ($10.00), but the operator has changed this to 2 c. and $20.00.
Many of the items on this screen are coded, since a considerable amount of repetitive data is involved in the day-to-day use of this screen. For instance, instead of putting in a specific vendor's name, a vendor ID is entered; the system uses this ID to look up the vendor's name and address in another file.
Fig. 9. Order Screen Accepted, Return to Begin Search Screen

In the example shown in fig. 7 there are three errors in the input. When the operator has decided that the ordering information is complete and has transmitted this information to the computer (by depressing the SEND button on the keyboard), BALLOTS programs perform on-line editing of all the data elements on the screen. As part of this, for instance, the budget account code (BAC) is scanned and the codes and values file is searched: this check reveals that the data contains an invalid code. As a result, the ordering screen is returned to the user. An error code, indicating the invalid code, appears on the screen preceding the BAC field. Error codes are also returned to the operator indicating that the vendor ID is an invalid code and that a field where a data element value is required is blank (the shelving location field—SHE). When the screen is edited, the system moves the first line containing an error up to the position of fourth line on the screen. The correct lines above it are not displayed. When these errors have been corrected (see fig. 8), the screen is sent a second time to the computer and the data is then accepted.

Once the final screen needed to perform a function is accepted by the system, the transaction is considered complete and the system prompts the terminal operator to go on to another activity by responding ENTRY PROCESSED (see fig. 9). As a result of the successful on-line activity shown in figs. 3-9, several outputs are printed overnight in the computer batch partition. These outputs are the purchase order (fig. 10), a catalog work slip (fig. 11) for use by the catalog department when the book arrives, and a temporary order slip (fig. 12) for use by the acquisition department.

We have looked at a typical BALLOTS ordering cycle. The cataloging cycle consists of a similar sequence of searching, input (using some different screens), and output. This cycle will be discussed in a later section.

THE PROGRAMMABLE CRT TERMINAL AND BALLOTS SOFTWARE CAPABILITIES

Several basic functions of the BALLOTS system were demonstrated in the activities just described. But this interaction between the user and the CRT terminal is only the tip of the iceberg that is the BALLOTS system. Having looked at some initial uses of BALLOTS, we can now go a little further into some components of the system.
The terminal used in the BALLOTS system is the Sanders PDS 804 programmable CRT terminal. This terminal includes a microprocessor in its hardware that permits specific computer programs to be loaded directly into the CRT terminal. These programs control the display of data entered at the keyboard and the communication of the terminal with the main computer. The Sanders CRT terminal can display 1,920 upper- and lower-case characters on a screen, in 24 eighty-character lines. The BALLOTS development staff
were able to assign specific functions to certain keys (such as the paging keys—see the last paragraph under “Protocols and Commands” section), to adapt the Sanders terminal to the uses of the system even further.

The BALLOTS terminal is programmed so that specified segments of lines on the screen or ranges of lines on the screen can be considered as single data element fields. These fields may be either protected or unprotected. A protected field is one in which the user cannot input data, although the system may display data there. During input at the keyboard, the cursor is prevented from entering protected fields; this constraint is part of the control program loaded in the terminal. (The cursor is a fast-blinking underline character that indicates to the user his position on the screen.) When the user is typing data in a field, he cannot type past that field into another field unless a CR (carriage return) or TAB key is depressed. A CR will move the cursor to the first input position on the next line; a lowercase TAB will move the cursor to the first input position of the next field (which may be on the same line or the next line). An upper-case TAB moves the cursor back to the beginning of the current field. If the cursor is already at the beginning of the field, it is moved to the beginning of the previous input field.

It should be pointed out that all of the features described here are programmed into the terminal and are not part of the hardwired logic of the terminal. This flexibility was one of the primary reasons for choosing the Sanders programmable terminal.
There are two types of input fields in the BALLOTS system. One is a fixed length field and the other is an expandable field. In a fixed length field, the amount of space is predetermined, and only the maximum number of characters allowed for that field may be entered. If the user continues typing, the cursor will not move to the next field, but will remain at the last character position in the current field. Each additional character input will simply overlie the previous last character. The only way to get to the next field is to hit a TAB or CR key.

If data are being input to an expandable field and there is not enough room preallocated on the screen, the user keeps typing. As soon as the first character beyond the current end of the field is keyed, the microprocessor recognizes this and immediately inserts a blank line following the overflowing field, so that the continued data is input in this new line. (An expandable field always extends to the end of the line.) All the lines on the screen below the overflowing field are consequently pushed down one line on the screen, whether they are protected (the cursor cannot enter them during input) or unprotected (the user may alter their contents). Thus the user need not watch the screen to see where the “end” of an expandable field falls, since the computer will provide however much space is needed to input all the data.

Sometimes, when an input field expands beyond a single line, the last word on a line may be split and continued on the next line. Although this presents no problem for the computer software, it is difficult for the user visually to verify the screen and is aesthetically displeasing. The microprocessor software will therefore automatically adjust the data in the field, reconnecting the broken word by moving the first half of the word from the previous line down to the succeeding line. This adjustment takes place as the user is keying data.

SCREEN FORMATS

Given these basic features of the terminal software, we can look at the actual screen format developed for BALLOTS. The ordering (OR01) screen (fig. 7) is the example used; but the rules and methods described here apply to all of the BALLOTS screens.

1. The first horizontal line of the screen is called the control line; it consists of the following fields:

 A. The first field is the screen identification: OR01. This ID identifies the screen format to both the user and the computer programs.

 B. The second field is the file ID: BMRC-S. This ID notifies the user that the BALLOTS-MARC file for Stanford is being used in displaying the data.

 C. The third field is the record ID: 72140589. The search that preceded the use of the ordering screen obtained a specific title. The
record ID of this title in the MARC file is 72140589 (this is also its LC card number).

D. The fourth field is the function code: ORDER. The user supplies this information, which describes the type of work the user will be performing (in this case, ordering). (The use of this field is described in the “Protocols and Commands” Section below.)

E. The fifth field is the library identification: S for Stanford University.

F. The sixth field in the control line is the terminal operator’s initials: WED.

2. The second line on the screen in called the message line. This is used by the system to send messages to the user. In it the search argument is redisplayed, together with the search results (see figs. 4 and 5). Other possible messages include a warning that the system will be shut down in thirty minutes, or any other communication that is required from the computer system to the operator.

3. The third line is the command line; it is used for communication from the terminal operator to the computer. This could be a request to conduct a specific search or to display a specific screen. An entire command language has been developed for the BALLOTS system that includes commands for searching, requests for screens, logging on and off the system, paging commands, etc. (Some of these commands will be discussed below.) Uses of the command line can be seen in figs. 3, 4, and 6. In fig. 3 the command line has been used to request a search; in fig. 4 it has been used to request an ordering screen; in fig. 6 it has been used to add parameters to the search in progress.

4. The remaining lines on the ordering screen contain fixed length or expandable fields. If the fixed length fields are short, more than one field may be placed on the same line. This is shown in figs. 7 and 8. When a field is expandable, it must be the only field on a line. The CAT field is an example of this. The end of a field is shown on the screen by a “·” The temporary end of an expandable field is shown by a “·” in the last space on the line.

The first eight positions (character spaces) preceding each input field on the screen follow a consistent pattern. The first two positions are for the error code for the data element. If after a screen has been transmitted the on-line editing detects an error, an appropriate error code will be displayed in these first two positions (see fig. 8). Position 3 is usually protected, although it may be used by the operator in certain cases to indicate updated data elements. Positions 4, 5, 6, and 7 contain the data element mnemonics (right-justified). Position 8 is blank and protected. From position 9 to the “·” mark is the user input area. Some lines may contain more than one fixed length field. In these cases the position allowance is the same for error codes and mnemonics (see SHE on the BAC line in fig. 8).
PROTOCOLS AND COMMANDS

An elaborate system of protocols has been developed in the BALLOTS system. A protocol is a logical sequence of operations performed at the CRT terminal, requiring specific screens. The function code in the control line (ORDER in the preceding example) determines which protocol the terminal operator will be following. These protocols prescribe the availability of screens and commands to various parts of the library. Some screens are used only for display; others are used for input and update. Someone in the acquisition department would not be making changes to the holdings portion of a record; therefore, the holdings (HH01) screen would not be available to that department. On the other hand, the acquisition department would use the ordering screen in order to input vendor information and pricing information; but the ordering screen would not be available to someone in the catalog department.

In addition to determining the uses of the various screens, the protocol system presents a logical sequence of screens to the terminal operator for each particular function. These screens are default options, and if the user does not request a variance, they are automatically displayed one after the other as each is successfully completed. For example, on the third line of fig. 4, the ordering protocol automatically supplies the next screen request for the ordering (OR01) screen; this is the default request following the display of a full bibliographic (BF01) screen.

A protocol map of the ordering function is shown in fig. 13. This is a simplified diagram representing the protocols (sequences of operations) possible in ordering. The default path is shown by the heavy line, and the available options are shown by light lines. The options available at any point in the protocol are shown on the horizontal line just below each CRT screen. For example, when the full bibliographic (BF01) screen is in use, the user may:
1. go directly to an ordering (OR01) screen (default option),
2. page to the next bibliographic record of several found in a search,
3. request a bibliographic input (BI01) screen,
4. request a supplementary input (BI02) screen,
5. begin a new search,
6. continue interactive searching (SI02), or
7. request a fresh search (SI01) screen.

Each protocol automatically displays certain commands in the third line of the screen; these can be changed by the user if the default option is not desired. (This will be illustrated below, in the "Cataloging" section.) There are several types of commands. One type tells the system which screen the operator wants to use next. These commands are simply the screen IDs (SI01, HH01, BI01, etc.) A second type instructs the system on how to handle the contents of the current set of screens. For example, the ENTER command
would cause all of the data elements on the current screen and on all previous screens used for the same bibliographic record to be processed and used to update the file. The CANCEL command would cancel all the steps taken so far by the current protocol.

A third type is the search commands. These commands use any of the available file indexes; search terms can be combined by using the logical operators AND, OR, NOT. An example of the first of these logical operators is shown in fig. 3. Here all three criteria must be satisfied in each record found. If the operator is not sure of a search term, he can input likely alternative terms using the OR operator. This approach will produce a larger number of search results. If the operator has determined certain elements that will not be part of the result he is after, he can include these following the logical operator AND NOT, and thus further refine his search criteria.

Paging commands are used to instruct the system to display additional data. If the contents of a particular bibliographic record are too large to be displayed on a single screen, these commands would allow the user to “page” forward (by displaying succeeding lines of the record) or backward through the record. This is accomplished by keying “+(P)” (for page forward) or “-(P)” (for page backward) in the command line. The BALLOTS CRT terminal has a special key to accomplish this. When a search has produced several bibliographic records, the operator may need to review each of the records found. By requesting a display of the first record and then paging forward to the other records, the operator could inspect the search results until he found the correct record. This is accomplished by keying “+B” (for next bibliographic record) or “-B” (for previous bibliographic record) in the command line. Again, the BALLOTS CRT terminal provides a special key to accomplish this.

There are many more commands in the BALLOTS system; they are described in the BALLOTS reports listed under “Selected References.”

CATALOGING

The searching and ordering cycles were described above in very simple terms. In describing the cataloging cycle, we can draw on some of the concepts since covered. Fig. 14, for instance, is a protocol map for the cataloging function.

Assume that the book ordered in “ORDERING” has been received and has been sent to the catalog department. This time, with book in hand, the operator (the cataloger) can key in a simpler search request. This request is shown in fig. 15 and consists of simply the find command, the index term mnemonic for LC card number (CRD), and the actual LC card number. (The index term refers to one of the indexes to the MARC file.) The hyphen in the number could be eliminated and the search request would still locate the
Fig. 13. Ordering Function Protocols for the MARC Module
At this point, the results determine the direction taken. If search results are zero, the operator is again presented with the S101 screen. If one record is found, it is displayed on the BF01 screen. If two or more records are found, the operator is told so on the S102 screen.

The FIND command can be modified through the use of Boolean operators. At each stage in the search, an up-to-date form of the search request is displayed in the message field of the screen. The operator does not repeat or rephrase the request already issued, but adds modifying criteria to it.

The default command, prompted in the screen's command line.

The actual commands are "+B" and "-B" for paging from one record to another, and "+(P)" and "-(P)" for paging within a record.

Optional screens. If they are not used, data is taken directly from the MARC file (BMRC) to produce outputs.

Here, "IGNore" could also be "IGN/B102" or "IGN/OR01."

Here, "IGNore" could also be "IGN/OR01."

Mandatory screen.

Here, "ENTer" could also be "ENT/FIN<search request>"
"ENT/S101"
"ENT/S102"
"ENT/BF01"
"ENT/DIS"
"ENT/SET"
"ENT/LOGOFF."

Fig. 13. Ordering Function Protocols for the MARC Module (cont.)
Fig. 14. Cataloging Function Protocols for the MARC Module
At this point, the results determine the directions taken. If search results are zero, the operator is again presented with the S101 screen. If one record is found, it is displayed on the BF01 screen. If two or more records are found, the operator is told so on the S102 screen.

The FIND command can be modified through the use of Boolean operators. At each stage in the search, an up-to-date form of the search request is displayed in the message field of the screen. The operator does not repeat or rephrase the request already issued, but adds modifying criteria to it.

The default command, prompted in the screen's command line.

The actual commands are "+B" and "-B" for paging from one record to another, and "+(P)" and "-(P)" for paging within a record.

Optional screens. If they are not used, data is taken directly from the MARC file (BMRC) to produce outputs.

Here, "IGNore" could also be "IGN/B102" or "IGN/HH01."

Here, "IGNore" could also be "IGN/HH02."

Mandatory screen.

Here, "ENTER" could also be "ENT/FIN<search request>"
"ENT/S101"
"ENT/S102"
"ENT/BF01"
"ENT/DIS"
"ENT/SET"
"ENT/LOGOFF."

Fig. 14. Cataloging Function Protocols for the MARC Module (cont.)
Fig. 15. Initial Search Input Screen

```plaintext
SI01 RMRC-S CATALOG S MDS
FIN crd 72-140589
```

Fig. 16. Cataloging Search Results

```plaintext
BF01 RMRC-S 72140589 CATALOG S MDS
FIN crd 72-140589 RESULT: 1 BOOK(S)
HH01
White, Jon Ewbank Manchlp, 1924- Cortes and the downfall of the Aztec Empire; a study in a conflict of cultures, by Jon Manchlp White. New York, St. Martin's Press [1971] 352 p. Illus., maps, plans, ports. 25 cm. $10.00

Bibliography: p. [335]-339.

```

record. If the LC card number had been known at the time the book was ordered, it could have been used as a search term as well.

Fig. 16 shows the results of the cataloger’s search. This is essentially the same screen that was displayed to the acquisition department operator when his search had been successfully completed (fig. 4), with the following differences. On the first line of the screen the system copied the function (CATALOG) and the operator’s initials (MDS) from the previous SI01 screen. The second line, the message line, reports FIN CRD 72-140589 RESULT: 1 BOOK(S). The third line, the command line, displays the next command in the cataloging protocol, a request for the holdings (HH01) screen. The rest of the screen is the same as fig. 4 except for the last line, where the ordering date, recorded at the time of ordering, has been added.

Reviewing the book in hand and comparing it with the data displayed on the screen (fig. 16), the cataloger notices that the publisher and place of publication given in the book are different from the data found in the MARC file. The file data must therefore be corrected before catalog cards can be produced from it. Since the bibliographic data displayed in fig. 16 are protected and cannot be altered by the operator, an input screen must be used to change them. The operator accomplishes this by overriding the default command line (HH01) with the command BI01—a request for the bibliographic input screen. (The terminal operator is thus using one of the
Fig. 17. Correcting a Record on the Bibliographic Input

Fig. 18. Default Holdings (HH1) Screen
other options in the catalog protocol. This is shown in the shaded portion of fig. 14.) When the operator sends this screen to the computer (by depressing the SEND button on the keyboard), the system responds by displaying the modifiable bibliographic input screen. The operator then moves the cursor to the tenth line (PP) and types in the correct publishing information (fig. 17).

After this screen has been entered and has been accepted by the system, a default holdings screen would be displayed (fig. 18). The operator would enter the information shown in the shaded areas. The LC default data in the CAL field, if left unchanged by the cataloger, indicate that the cataloger accepts the LC call number. The entries after the ETC data element describe the additional copies of the catalog card requested—in this case, for the Latin American, Sacramento State Union, and New Acquisitions catalogs. The next two data elements input by the operator (LOC and BD) are the permanent shelving locations and the bibliographic descriptors (copy and volume) of the two copies. Here, copy one is located in the main stack and copy two is located in the Institute of American History Library.

When the holdings screen has been completed and sent to the computer, acceptance of it by the system (showing that the catalog build protocol—see fig. 14—is completed) is signified by the appearance of the search input (SI01) screen (fig. 19). The message line on the screen shows that the holdings entry was accepted by the system and the operator is free to go on to the next task. The SI01 screen is the default screen to begin any new operation.

Commands can be linked in order to reduce the number of screens required to process a book. For example, the operator can combine the ENTER command (to complete the cataloging process) with the FIND command (to search the file for the next book to be processed), keying both commands in the command line (line 3). If both the entry and the search are successful, a bibliographic display screen will appear for the next book, with ENTRY PROCESSED and the search command displayed in the message line (line 2).

As a result of the cataloging activity, a set of catalog cards and spine labels will be produced. The default option entered by the system in the CT (catalog cards) and SL (spine labels) data element fields in fig. 18 signified "yes" to the production of these items. This is done in an overnight batch operation. The computerized records for all of the catalog cards to be produced for each physical catalog will be collected and sorted in filing.
sequence by the system before the cards are actually printed. Figs. 20 and 21 are samples of main entry and shelflist catalog cards. This completes the basic cycle of cataloging a book found in the MARC file.

HARDWARE CONFIGURATION AND FILES

The BALLOTS CRT terminals are located in the Stanford Main Library in the acquisition and catalog departments (see fig. 22). These terminals are connected via twisted pair cables to a PDP-11 minicomputer in the Stanford Computation Center. The PDP-11 can handle approximately thirty to forty terminals. The PDP-11, in turn, is connected to an IBM 2701 parallel data adapter, which is connected to a selector channel on the Stanford Computation Center campus facility's IBM 360 Model 67 computer. The 360/67 runs the BALLOTS programs along with general timeshared and batch campus computing jobs. The high speed printer at the Computation Center is an IBM 1403, capable of printing 1,100 lines per minute. All regular and special forms for the library are printed on this high speed printer except for spine labels. The spine labels are printed on an IBM 2741 typewriter terminal with a modified platen. The spine labels are heat sensitive with a plastic covering to protect the printed information. The characters are printed using an Orator type ball, which was designed for IBM Selectric typewriters but can be used on the 2741 typewriter terminal.

The BALLOTS files were stored on CDC 23141 direct-access disk drives. Recently, the Stanford Computation Center (SCC) installed CDC 23142 double density direct-access disk drives to replace the 23141s. These provide twice as much storage on disk packs of the same physical size as those previously used. As a result, the BALLOTS file storage costs have been reduced.

FULL SYSTEM DESCRIPTION

The full BALLOTS system is being implemented in a series of eleven modules (self-contained sets of services). Each module will add services to the library, including new forms, screens, and files. Everything described so far is contained in the first module, called BALLOTS-MARC. Fig. 23 illustrates the major features of each module.

The shaded portions of the figure are those aspects of the full system that are incorporated in the BALLOTS-MARC module. This first module handles the ordering and cataloging of titles found in the MARC file. The MARC file shown in fig. 23 is preceded by the number 1. This indicates that the MARC file is available in the first module. The output documents produced by the BALLOTS-MARC module are identified in the same way. These include purchase orders, catalog cards, spine labels, process slips, standing search
White, Jon Ewbank Manchip, 1924-
Cortes and the downfall of the Aztec Empire;
a study in a conflict of cultures, by Jon
352p. illus., maps, plans, ports. 25cm.

Bibliography: 335-339.

1. Cortes, Hernando, 1465-1540. 2. Mexico -
History - Conquest, 1519-1540. I. TITLE. LA
SC L

72-140589

Fig. 20. Main Entry Catalog Card

White, Jon Ewbank Manchip, 1924-
Cortes and the downfall of the Aztec Empire;
a study in a conflict of cultures, by Jon
352p. illus., maps, plans, ports. 25cm.

Bibliography: 335-339.

OSL MDS 72-140589

Fig. 21. Shelf List Catalog Card
Fig. 22. BALLOTS Hardware Configuration
CLINIC ON APPLICATIONS OF DATA PROCESSING

MODULE SCREENS

1. RAILS-MARC
 - Full Ethnographic Display (FED)
 - Ethnographic Input (IFM, -93)
 - General System Screen (GSS)
 - Holdings (Output Request) (HOM)
 - Operating (ORL)
 - Search Input (SIF, -92)

2. IN PROCESS FILE (IPF)
 - Full Acquisition Display
 - Ethnographic Update
 - Holdings Update
 - Acquisition Update
 - Ethnographic/Acquisition/Holdings Display
 - Matrix (Single item vs. Status)

3. PURCHASE ORDER/ORIGINAL CATALOGING

4. NON-PURCHASE ORDER MATERIAL

5. CATALOG DATA FILE (CDF)
 - Reference Display
 - Reference Input
 - Reference Update

6. INVENTORY FILE (INF)

7. BOOK CATALOG

8. AUTOMATIC CLAIMING & CANCELLING

9. CIRCULATION
 - Circulation Display
 - Circulation Input

10. STANDING ORDER AND OUT-OF-PRINT
 - Reserve Processing
 - Reserve Processing Display

11. RESERVE PROCESSING

The diagram illustrates the flow of data processing in a clinic, showing the interaction between library, computer center, and various terminals and files. The screens and modules are labeled with specific functions related to data processing, such as cataloging, inventory, circulation, and standing orders.
requests, and certain statistical and management reports.

The standing search request capability of the MARC module is a convenience to the library and performs a unique selective dissemination of information (SDI) function for a specific title. In a search of the MARC file, a title may not be found that the cataloger believes eventually will appear there (because it is a recent publication in English). In such a case, the cataloger can request that the system retain this search request and match it against all incoming MARC records during each weekly update. If a match is found, the cataloger will be notified on a special standing search request (SSR) notice.

The lower left-hand portion of fig. 23 itemizes the screens added to the system with each new module. The BALLOTS-MARC module uses the full bibliographic display screen (BF01), the bibliographic input screens (BI01, BI02), the general system screen (GS01—not described in this paper), the holdings screen (HH01), the ordering screen (OR01), and the search screens (SI01, SI02).

The eleven production modules that make up the full BALLOTS system are described below in the order in which they will be implemented.

1. BALLOTS-MARC. The library material processed by the MARC module is English-language monograph material appearing on weekly MARC tapes. (The restriction to English-language material is a consequence of the current scope of MARC; all roman alphabet languages are supported by this module.) The file in this module is an on-line MARC file of the most recent six to twelve months of MARC records. The file is essentially read-only, except for the addition of date codes for records processed by users. The actual size of the on-line file will depend on the requirements of the network libraries (see CLAN section below) balanced against file storage costs. Purchase orders, process forms for technical processing files, catalog card sets, and the spine labels are produced on request for any titles in the MARC file. Automatic weekly searches to match user requests with new additions to the file are available through the standing search feature. In this first module no permanent on-line records are maintained during technical processing other than the full MARC record, although a tape copy of the records for each book cataloged is retained for later use. Such on-line record keeping will appear in modules 2, 5, and 6. This module processes approximately 35 percent of Stanford’s acquisitions and 26 percent of its cataloging. The percentage of support to network library processing (again, see CLAN section below) is slightly larger than the Stanford figures in this and later modules.

2. MARC-IPF (MARC In-Process File). This module adds an in-process file and additional printed outputs such as claim and cancellation notices, when requested by library staff. Only MARC material is handled; when a record is found in MARC it is transferred to the IPF and is retained there as an updatable record throughout technical processing. Since the record
will not be purged from the IPF until modules 5 and 6 have been implemented, the file will represent all titles ordered and cataloged by the library using the automated system. A record in MARC-IPF can be used again if additional copies of a book are ordered.

3. Purchase Order/Original Cataloging. No new file is added with this module, but the use of the IPF file is expanded considerably with the addition of new bibliographic records input entirely at the terminals. Acquisition and cataloging (NPAC-National Program for Acquisition and Cataloging) notices can be produced. The scope of the material for which a record is created is expanded. It adds all non-MARC roman alphabet material that requires a purchase order in ordering, and any material that requires original cataloging. Thus, if a record is not found in the MARC file, a new IPF record is created using the terminal. This module will process an additional 52 percent of acquisitions and 42 percent of cataloging. Thus services at this point will cover 87 percent of acquisitions and 68 percent of cataloging.

4. Non-purchase Order Material. The scope of material added to the IPF is expanded to include non-purchase order material receipt—gift, exchange, approval, and blanket orders. In addition, an invoice-claiming feature is included to inform the acquisition department of material for which no invoice has been received within thirty days. This module will process an additional 7 percent of acquisitions and 6 percent of cataloging. Modules 1 through 4 will process a total of 94 percent of acquisitions and 74 percent of cataloging.

5. Catalog Data File (CDF). This module involves building the on-line catalog data file. Since the implementation of module 1, BALLOTS will have saved bibliographic information, and this data will be used to create the CDF. From this point on, all catalog records will enter the CDF after the record for a given title is no longer required in the IPF. As the CDF grows, it will become an increasingly valuable reference tool for acquisition, cataloging, and patrons’ use.

When the Catalog Data File module has been implemented, it will be possible for any searcher in the library to search the catalog data file (CDF) for recent acquisitions shelved and in circulation, to search the in-process file (IPF) for new titles on order but not yet cataloged and shelved, and to search the MARC file for recent Library of Congress catalog records—in a single search request. As new acquisitions are added to the collection, the catalog data file will become an extremely effective reference tool. After two or three years of use, the catalog data file should reflect all recent acquisitions. Any new publication should be in the catalog data file if the book is shelved, or in the in-process file if it is on order. This eliminates a considerable amount of manual searching.

6. Inventory File. Machine-readable bibliographic and holdings records
already exist for all 60,000 titles now in Stanford's Meyer Undergraduate Library. In this module, these records will be converted to BALLOTS format and used to build an on-line Meyer inventory file (INV). At this point, Meyer cataloging processing will work directly with the on-line file. This file will be used later on for reference and for the patrons' access to the complete holdings of the undergraduate library. Other libraries with the entire collection in machine-readable form can be handled in a similar manner.

7. Book Catalog. This module can be used to create any book catalog done in the Stanford format. At Stanford it will allow the Meyer book catalog to be produced directly from the INV file without going through the punched card process presently used.

8. Automatic Claiming and Cancelling. This module adds programs to review IPF records automatically, to determine if ordered material is overdue. Material may be claimed several times and finally cancelled if the dealer does not respond. The acquisition department may override a scheduled claim or a cancellation.

9. Circulation. This module is designed to handle the complexities of the research library circulation system. Using data from the inventory file, a Meyer Library self-service circulation system will be implemented first, including charging, discharging, initial check-in, circulation searching, recall, holds, overdue processing, fine handling, and fine payments.

10. Standing Order and Out-of-Print Desiderata. The capability of establishing standing orders (SO) and receiving the nonserial materials arriving with SOs will be added with this module. In addition, out-of-print items (OP) will be added to the IPF and search and quote letters produced for OP dealers. If an OP item can be procured, it can be ordered using the record already in the IPF.

11. Reserve Processing. This module adds reserve book ordering and processing for users. It will be added to the services offered to Meyer staff through the use of the INV and IPF.

The BALLOTS system design includes several features unique among the major on-line library automation systems using CRT terminals (such as the Ohio College Library Center—OCLC—and the Experimental Library Management System—ELMS—of IBM). The most notable of these are the programmable CRT terminal that aids the user in input and display; the protocol structure and the command language associated with it; the standard screen format; the fact that an entire screen is entered and processed at one time, rather than just one data element; and the flexible interactive searching capability. The method of searching used in BALLOTS was developed by a sister project, SPIRES (Stanford Public Information Retrieval System), whose connection with BALLOTS is outlined in the reports listed under "Selected References."
CLAN (CALIFORNIA LIBRARY AUTOMATION NETWORK)

The features of the BALLOTS system have been kept as generalized as possible, so that the system could be adopted for use in other libraries. At the present time, the staffs of two autonomous libraries at Stanford (The Law Library and Lane Medical Library) and of five libraries in the San Francisco Bay area are preparing for the implementation of parts of the BALLOTS system in their libraries. These libraries have been reviewing the BALLOTS specifications in order to note any changes or additions they require. To date, the number of these changes seems to be very small, and they do not represent any substantial modification of the BALLOTS system. Assuming adequate funding, the plan for network implementation is as follows.

For the first four to eight months after a module has been implemented and placed in operation at Stanford, it will be closely observed and monitored. During this period, the network version of the module will be checked out and tested for network use, and the network libraries will install equipment and conduct training classes and acceptance tests. When all this is completed, the module will be put into network pilot operation. Thus, the module will undergo four to eight months of heavy use in its original version prior to its network installation. This will reduce implementation time and effort for the network users.

The BALLOTS system is intended to provide a library tool operating in the library's daily production environment. The system was designed with the help of the library, and will be used by the library staff. No special terminal operators will be hired. Throughout the designing of the system, continual efforts were made to create a system as convenient and useful as possible to the library staff. At a number of points in the system, smoothing the way for the user has meant increasing the complexity of the BALLOTS analysts' and programmers' tasks. This paper has made no attempt to describe the programmed structure underlying BALLOTS operations. Rather, it gives an overview of these operations as they are seen and participated in by the librarian or technical processing assistant.

Selected References

The following publications describe the initial planning and designing of BALLOTS, the development of the proposed network, and the evolution of the system from 1967 to 1971.

