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Abstract 

Reinforced concrete structural walls are one of the most common lateral force-resisting systems 

in buildings located in high seismicity regions. Walled structures are expected to provide significant 

strength and ductility under cyclic earthquake loading. In part, this expectation is based on the 

assumption that current design approaches suppress compression failure of the boundary element. 

However, compression failures observed following recent earthquakes in Chile (2010) and New 

Zealand (2011), suggest that the behavior of reinforced concrete walls may not meet expectation and 

further study is required. 

As part of a larger effort initiated by the National Earthquake Hazards Reduction Program 

(NEHRP) at the National Institute of Standards and Technology (NIST), a research program was 

developed to understand and improve the seismic behavior of concrete walls. This portion of that 

larger research program focuses on evaluation of, prediction of, and recommendations to improve 

boundary elements in structural walls. The research is divided into three phases. The first phase uses 

experimental research methods to evaluate the impact of salient study parameters on vertically loaded, 

large-scale rectangular reinforced concrete prism members that simulate the boundary element of a 

special concrete wall. This experimental program explored the effects of detailing of both transverse 

and longitudinal reinforcement and loading protocol on the compressive confined strength and strain 

capacity of boundary elements. 

In the second phase of research, these experimental results were combined with prior tests to 

evaluate commonly used confined concrete constitutive models and current detailing requirements in 

ACI 318-14. The test results indicate that rectangular reinforced concrete prism members designed to 

meet the minimum ACI 318-14 detailing requirements for special boundary elements exhibit little to 

no significant increase in compressive strength or deformation capacity as compared to boundary 

elements that do not meet those minimum requirements. By looking at the full data set, a hierarchy of 
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detailing parameters was developed. In order of importance, the following detailing parameters are 

shown to increase both strength and strain capacity: (i) ratio of transverse reinforcement spacing to 

longitudinal bar diameter of at most 4.0, (ii) full development of transverse reinforcement legs used 

to restrain longitudinal reinforcement, (iii) buckling restraint for all longitudinal reinforcement, and 

(iv) increased transverse reinforcement ratio. In addition, the results indicate that commonly used 

confined concrete constitutive models over-predict the strength and deformation capacity of ACI 318-

14 compliant boundary elements. A new formulation for this model is proposed and validated to more 

accurately predict compressive performance. In addition, the new formulation is also shown to 

provide accurate prediction of wall performance when it is implemented into modern nonlinear 

analysis techniques. 

The third phase of the research used the results to investigate possible improvements to ACI 318-

14 boundary element detailing requirements. Three performance-based levels of detailing were 

studied, each providing an estimated expected peak stress and strain capacity; the applicability of 

commonly used confined concrete constitutive models was also investigated for each detail level. 

These detailing levels are intended to provide the design engineer with guidance in selecting proper 

boundary element detailing to meet specific performance needs. 
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Chapter 1: Introduction  

Reinforced concrete structural walls are one of the most common lateral force-resisting systems 

in buildings, especially those located in regions of high seismicity. Walled buildings are attractive 

because they are expected to provide a significant amount of lateral strength and stiffness to resist 

moderate seismic demands, and if detailed to meet current code requirements (e.g., ACI 318-14 [1]), 

cyclic ductility to resist high seismic demands. This expected behavior is based on the practice of 

detailing reinforced concrete structural walls to be tension-controlled, which in most structural 

engineering applications is associated with having ample ductility. 

However, observations from recent earthquakes in the Maule region of Chile [2] in 2010, and in 

Christchurch, New Zealand [3] in 2011, indicate that the behavior of reinforced concrete structural 

walls may not meet design assumptions. Reconnaissance missions following these earthquakes 

reported numerous instances of damage indicative of compression failures, where significant crushing 

of the confined core and buckling of the longitudinal reinforcement were observed, sometimes over 

the full length of the wall. 

In response, the National Earthquake Hazards Reduction Program (NEHRP) at the National 

Institute of Standards and Technology (NIST) initiated a multi-phase research effort focusing on the 

performance of reinforced concrete structural walls under seismic loading. The research presented in 

this dissertation is a phase of that larger research effort, and focuses mainly on compressive 

performance of boundary elements (the more heavily confined regions near the wall ends, shown in 

Figure 1.1, where significant strains are expected) within reinforced concrete structural walls. 

 

Figure 1.1. Typical Wall Cross-Section Showing Web and Boundary Element Regions 
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This dissertation presents the results of an experimental program that includes uniaxial testing of 

nineteen (19) large-scale reinforced concrete rectangular prisms that are intended to simulate the 

boundary elements (see Figure 1.1) within reinforced concrete structural walls responding in flexure; 

note that this study is not intended to evaluate shear controlled walls. The experimental program 

focuses on (i) boundary element detailing, (ii) the use of crossties to restrain intermediate longitudinal 

reinforcement, (iii) the effect of fully restrained longitudinal reinforcement, and (iv) load history. In 

addition, a comprehensive analytical program is presented that focuses on the accuracy of existing 

predictive models, and the development of modifications and alternatives to such models in situations 

where they are found to be inaccurate. This analytical program also includes evaluations of both 

existing tests and prototypical wall specimens using the developed modeling parameters. Lastly, 

specific design recommendations are presented for a range of compressive performance goals. 

1.1. Research Objectives 

The purpose of this research is to investigate and improve the compressive performance of 

reinforced concrete boundary elements through both large-scale testing and analytical simulation. The 

specific research objectives are to: 

¶ Evaluate the compressive performance of reinforced concrete rectangular sections that 

simulate boundary elements within reinforced concrete seismic structural walls with the 

objective of developing a hierarchy of detailing parameters that have the most significant 

effects on strength and deformation. 

¶ Develop an experimentally-validated constitutive model for unconfined and confined 

boundary elements that can be implemented into modern nonlinear structural wall 

modeling techniques to accurately predict wall performance. 
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¶ Develop new design recommendations for all aspects of boundary element detailing to 

better meet the expectations of conventional confined concrete models and suppressed 

compression failure. 

1.2. Report Outline 

After this introductory chapter, Chapter 2 presents a comparison of the boundary element 

detailing requirements in ACI 318-14 [1] to those of earlier editions (i.e., 2008 and 2011), followed by 

a brief comparison with the concrete construction code of Chile [4] and New Zealand [5]. Then, the 

chapter presents a summary of the reconnaissance reports following the earthquakes in Chile (in 2010) 

and New Zealand (in 2011), including research needs that emerged following those events. Lastly, the 

chapter summarizes the existing experimental data that is relevant to the study, including a review of 

uniaxial tests on rectangular reinforced concrete prism sections, and tests of large-scale structural walls 

failing in compression. 

Chapter 3 describes the experimental program, including the testing parameters, test specimen 

designs, material properties, construction, test setup and testing procedure, and the instrumentation. 

Chapter 4 presents the detailed measured experimental data, including observations from each test 

specimen in the experimental program. The experimental results are discussed for each of the nineteen 

(19) individual specimens, with each section providing specific information on the load-displacement 

response, measured strain distributions, strain gauge data, and out-of-plane deformation for each 

specimen. The chapter concludes with a comparison of the measured response of the specimens based 

on the raw test data. 

Chapter 5 presents comparisons of the measured strength and deformation response of prism 

specimens, focusing on testing parameters and detailing from this and prior research programs. 

Furthermore, multiple sets of specific boundary element detailing requirements are presented, each of 
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which represents a specific degree of compressive strength and strain capacity; these sets of 

requirements are referred to as performance-based detailing levels. 

Chapter 6 presents the simulations that were conducted to better model boundary elements and 

structural walls with poor and substandard levels of confinement. First, the accuracy of existing 

predictive models is evaluated. Next, modifications to conventionally implemented confinement 

models are proposed and validated using the full range of prism data. Finally, this predictive tool is 

used to model structural wall tests that exhibit a softening response in compression but are not 

influenced by shear. These methods are also the basis of an investigation into the effect of boundary 

element length on wall performance based on a suite of prototypical walls modeled using the validated 

confined concrete model. 

Chapter 7 presents detailing recommendations based on the research presented in this dissertation. 

The chapter summarizes the prior work and is intended to provide enough background to be stand 

alone. The information in this chapter is intended to inform and benefit design engineers in that it 

both identifies the relatively poor performance associated with certain boundary elements meeting the 

minimum detailing requirements in ACI 318-14 [1], and provides simple tools to predict the strength 

and ductility based on detailing. The chapter also presents proposed performance-based detailing 

levels and associated expected strength and strain capacity, as well as the applicability of existing 

predictive models. 

Chapter 8 presents a summary of work and conclusions from the research program presented in 

this report. In addition, recommendations for future work are made. 
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Chapter 2: Literature Review 

Recent earthquakes have demonstrated the vulnerability of concrete walls. In particular, there is 

concern about the compressive response of boundary elements. This research project was undertaken 

to study the impact of salient confinement details on strength and deformability. This chapter 

considers prior work on compressive boundary elements with an eye towards developing the 

experimental testing program. The chapter is organized into three parts: research impetus, 

experimental testing of specimens representing structural wall boundary elements, and large-scale 

experimental testing of reinforced concrete structural walls. 

The research was initiated due to the seismic performance of walls in recent earthquakes. The 

initial part of the chapter reviews both code requirements and the seismic performance of walled 

buildings. Section 2.1.1 is a comparison of ACI 318-11 [6] (no difference for boundary elements from 

ACI 318-08 [7]) and ACI 318-14 [1]. In addition, Section 2.1.1 compares the U.S. code (ACI 318) to 

those of Chile [4] and New Zealand [5]. This information is prudent as the research in this report is 

based on observed wall performance following earthquakes in Chile [2] and New Zealand [3], as 

described in Section 2.1.2. Section 2.1.2 presents the results of seismic testing (building scale) in Japan, 

however the results are discussed in terms of ACI 318 requirements, and therefore a comparison with 

the Japanese concrete code is not necessary. Section 2.1.3 summarizes published research needs with 

respect to U.S. construction as a result of the wall performance observed following the 2010 Maule 

region earthquake in Chile. 

To develop the experimental program, prior experimental research was gathered and evaluated. 

Section 2.2 focuses on the existing database of experimental testing on rectangular reinforced concrete 

prism compression members. Many of these tests simulated compressive boundary elements within 

structural walls, however the review is not limited to only those tests. The objective of this review is 

to ensure that the experimental research program does not duplicate existing tests, and to identify gaps 
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in the literature. In addition, a rectangular prism database of these tests was developed and used to 

evaluate salient parameters on the compressive response of, and to validate the proposed predictive 

strength and deformation capacity expressions for confined rectangular regions in reinforced concrete 

walls. 

Section 2.3 gathers a selected database of structural wall tests. The wall-test database focuses on 

wall tests that (i) failed due to compressive damage in the boundary element, and (ii) had low-to-

moderate levels of shear stress demand (less than 5.0*ãfcõ psi). The measured force-displacement data 

are used to validate the proposed confined concrete constitutive model, including compressive energy, 

as discussed in Chapter 6 (see Figure 6.33). The proposed modeling techniques were developed and 

calibrated to the rectangular prism test data obtained from this research program; evaluation of 

supplemental prism data (from the database) and wall tests provide an independent means of model 

validation. 

2.1. Research Impetus 

This section provides information that taken together forms the impetus of this research project. 

First, a comparison of pertinent editions of ACI 318 (2008, 2011, and 2014) is presented, along with 

comparisons with concrete constructions codes from Chile and New Zealand. Second, the 

performance of reinforced concrete buildings following recent earthquakes and seismic testing is 

reviewed. Finally, pertinent research needs published with respect to performance of reinforced 

concrete walls are provided. 

2.1.1. Summary of ACI 318 Detailing Provisions, and Comparisons to Applicable Codes 

This section presents the current ACI 318-14 [1] provisions for boundary elements in special 

reinforced concrete structural walls. Furthermore, the current provisions are compared to those of 

previous editions (2008 and 2011). Note that the boundary element detailing requirements in ACI 
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318-11 [6] and ACI 318-08 [7] are identical, and therefore comparison is made jointly for these editions 

to avoid repetition.  

ACI 318 prescribes detailing requirements for ònon-specialó and special boundary elements 

(SBEs) within special reinforced concrete structural walls. ACI 318 does not have specific 

nomenclature for ònon-specialó boundary elements, and therefore such boundary elements are 

henceforth referred to as òordinaryó boundary elements (OBEs); OBEs are used when SBEs are not 

required. SBEs are required per ACI 318-14 [1] and ACI 318-08/11 [7], [6] where significant 

compression strains are expected, which is determined based on the neutral axis depth using Equation 

2.1 and Equation 2.2, respectively. Note that for 2% drift (as is commonly assumed), these equations 

result in the need for special boundary elements where the neutral axis is at least 6% or 8% of the wall 

length, respectively. 

 c Ó 
lw

6001.5Ǣu/hw
 Equation 2.1 

 c Ó 
lw

600Ǣu/hw
 Equation 2.2 

 

Recent changes to the 2014 edition are based heavily on the recommendations by Wallace [8], and 

include new vertical spacing limits for transverse reinforcement in OBEs, spacing limits for restrained 

longitudinal bars in all boundary element types, the trigger for requiring SBEs, and minimum thickness 

requirements. Table 2.1 outlines the detailing requirements for OBEs and SBEs for both ACI 318-14 

[1] and ACI 318-08/11 [7], [6], with changes indicated in red. Figure 2.1 is a representative boundary 

element cross-section with the various detailing parameters indicated. Variables not shown on the 

figure include lw, the wall length, hu, the unbraced height of the wall, c, the neutral axis depth calculated 

at the nominal moment with expected axial loads, Ag, the gross cross-sectional area, A ch, the confined 

concrete core area, fcõ, the 28-day cylinder compressive strength, and fyt, the yield strength of the 

transverse reinforcement. 
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Table 2.1. Comparison of ACI 318-14 [1] and ACI 318-08/11 [7] [6] Boundary Element Detailing Requirements 

  ACI 318-08 [7] / ACI 318-11 [6] ACI 318-14 [1] 

B.E. 
Class 

Design Par. 
Code 

Section 
Provision Code Section Provision 

OBE 

lbe,min 21.9.6.4a άὥὼ
ὧ πȢρὰ
ὧ
ς

 18.10.6.5 άὥὼ
ὧ πȢρὰ
ὧ
ς

 

bmin - - 18.10.6.4a,b άὥὼ
ὬȾρφ
ρςͼ

 

hmax 21.6.4.2 14ó 18.7.5.2e άὭὲ
ςὦȾσ
ρτͼ

 

smax 21.6.4.3 8ó 18.10.6.5 άὭὲ
φὨ
φͼ

 

Ash,min 21.6.4.4 No Requirement - No Requirement 

Crosstie 
Hook Ext,õs 

2.2 (7.1.4) άὥὼ
φὨ
σͼ

 25.3.2 άὥὼ
φὨ
σͼ

 

SBE 

lbe,min 21.9.6.4a άὥὼ
ὧ πȢρὰ
ὧ
ς

 18.10.6.5 άὥὼ
ὧ πȢρὰ
ὧ
ς

 

bmin - - 18.10.6.4a,b άὥὼ
ὬȾρφ
ρςͼ

 

hmax 21.6.4.2 14ó 18.7.5.2e άὭὲ
ςὦȾσ
ρτͼ

 

smax 21.6.4.3 άὭὲ

ὦȾσ
φὨ

τ
ρτ Ὤ

σ

 18.10.6.5 άὭὲ

ὦȾσ
φὨ

τ
ρτ Ὤ

σ

 

Ash,min 21.6.4.4 πȢπω
ίὦὪ

Ὢ
 18.10.6.4f άὥὼ

ừ
Ử
Ừ

Ử
ứπȢσίὦ

ὃ

ὃ
ρ
Ὢ

Ὢ

πȢπω
ίὦὪ

Ὢ

 

Crosstie 
Hook Ext,õs 

2.2 (7.1.4) άὥὼ
φὨ
σͼ

 25.3.2 άὥὼ
φὨ
σͼ
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Figure 2.1. Annotated Schematic Boundary Element Cross-Section 

As the research impetus for this project is closely tied to the damage observed in Chilean wall 

structures following the 2010 Maule region earthquake [2], it is prudent to make note of the Chilean 

concrete building code (NCh430.Of2008 [4]) as well, which is based on ACI 318-08 [7]. Detailing 

requirements prescribed in NCh430.Of2008 [4] match those documented in ACI 318-08 [7], with the 

exception of special boundary element detailing, which is not required [9]. Therefore, the detailing of 

boundary elements in Chilean walls is only required to meet the equivalent of the ACI 318-08 [7] 

requirements for ordinary boundary elements (OBEs). 

The research impetus for this project is also based on the observed damage in New Zealand [3]. 

Although this code (NZS 3101-1 2006) is not based on ACI 318, it does include many similar boundary 

element detailing requirements. For example, longitudinal bars must be restrained at most every 200 

mm (not that this is nearly half the maximum presented in ACI 318-14 [1]) using a hoop or seismic 

crosstie (with at least a 135o hook). Also, the transverse reinforcement must be vertically spaced a 

maximum of six (6) times the longitudinal bar diameter; similar (to ACI 318-14 [1]) minimum 

transverse reinforcement ratios and minimum boundary element lengths are also required. 
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2.1.2. Response of Reinforced Concrete Wall Structures under Seismic Demands 

Observations from recent earthquakes including the 2010 Maule earthquake in Chile [2], and the 

2011 Christchurch earthquake in New Zealand [3] provide insight into the performance of modern 

reinforced concrete structural walls. Following both earthquakes, several compression failures (often 

crushing and bar buckling along nearly the entire wall length, as described further in Section 2.1.2.1) 

were reported. Reconnaissance reports clearly indicate the need for further investigation into such 

compression failures. These observations are not necessarily surprising, as similar behaviors have been 

shown in laboratory structural wall tests, as is described in Section 2.1.2.3. 

In addition, full-scale earthquake-simulator testing performed in Japan provides an excellent 

opportunity to compare the seismic performance of reinforced concrete wall buildings under seismic 

demands in a laboratory and the field. This section provides a summary of the initial reconnaissance 

reports published by the Earthquake Engineering Research Institute (EERI), as well as the reports 

and observations following the building testing performed in Japan. 

2.1.2.1. Post-Earthquake Observation of Reinforced Concrete Wall Damage in Maule Region, Chile, 

2010 

On February 27, 2010, a Mw 8.8 earthquake struck the Maule region of Chile, one of the largest 

recorded earthquakes in history. According to an EERI Special Earthquake Report [2], ground 

accelerations of at least 0.05g were recorded for more than 2 minutes. The epicenter was located on 

the coast in a densely populated region of Chile between Concepción and Constitución, with ground 

shaking occurring as far North as Viña del Mar. Maximum ground accelerations as high as 0.93g 

(horizontal) were recorded [10] (the maximum vertical acceleration was measured at 0.70g), although 

the EERI report indicates that certain accelerometer stations reported reaching the maximum 

instrumentation limit, and therefore likely true maximums might have been over 1.0g. 
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As discussed in the EERI report [2], the majority of large buildings in Chile are constructed using 

reinforced concrete structural wall systems, typically in a fishbone-like configuration (fishbone refers 

to a configuration in which a pair of walls runs the length of the building, with orthogonal, connected 

walls in the transverse direction). An example of this configuration type is the Festival building in Viña 

del Mar, shown in Figure 2.2. This type of building layout resulted in asymmetric (i.e., T-shaped or L-

shaped) wall sections that were often under 8 in. thick due to the lower demands (i.e., shear and axial 

load) in a more redundant system as compared with a core-wall type structure. Asymmetric wall 

sections are typically associated with larger compression demands due to unbalanced normal forces 

and higher extreme strains in the stem. 

 

Figure 2.2. Floor plan of Festival building in Viña del Mar [8] 

Numerous buildings of this layout exhibited apparent compression failures in the lower floor(s) 

òtransverseó walls. These failures typically included crushing of the concrete core along the full length 

of the wall, as well as longitudinal bar buckling. Some examples of this failure mechanism are shown 

in Figure 2.3. Note the wall shown in Figure 2.3(b) is planar at the ground floor, however is flanged 
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above; such a configuration can lead to significant strain demands at the ground floor from the 

unbalanced normal forces above. 

 
 

(a) (b) 

Figure 2.3. Wall damage in Santiago, Chile [11] (photo: J. Wallace (a), J. Dragovich (b)) 

The final damage state consistently appears to be a combination of core crushing and bar buckling, 

as shown in the additional photos in Figure 2.4. This observation suggests a strong relationship 

between the strength/deformation capacity of structural walls, and the stability of the longitudinal 

reinforcement/integrity of the confined core. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 2.4. Chilean wall damage [11] (a) photo: F. Naeim (b) photo: F. Naeim (c) photo: J. Moehle (d) photo: J. 

Dragovich (e) photo: J. Moehle (f) photo: J. Moehle 
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Some damaged walls appeared to exhibit evidence of large tensile strains prior to compressive 

failures [11]. Large tension cycles near the extreme boundary fibers of a wall typically result in 

significant horizontal cracking and yielding of longitudinal reinforcement, which has been shown to 

result in drastically reduced wall compressive capacity [12]. An example of this behavior was observed 

in the Plaza del Rio building in Viña del Mar, shown in Figure 2.5, however it is important to note 

that this is more of a wall pier as opposed to a wall. Wall piers are portions of a structural wall separated 

in some fashion (typically horizontally) from the main wall by an opening. 

  

Figure 2.5. Wall damage of Plaza del Mar Building in Viña del Mar [11] 

2.1.2.2. Post-Earthquake Observations of Reinforced Concrete Walls in Christchurch, New Zealand, 

2010 and 2011 

On September 4, 2010, a Mw 7.1 earthquake struck the Canterbury region of New Zealand [13]. 

The earthquake was located relatively far form largely populated areas, and therefore minimal 

structural damage occurred there. However, on February 22, 2011, a Mw 6.3 earthquake, struck near 

the most populated area in the region, the city of Christchurch [3]. This earthquake, considered an 

aftershock of the September 2010 earthquake, resulted in more casualties and structural damage due 

to its closer proximity and higher level of shaking. Figure 2.6 shows relative locations of the two 

earthquakes, where the stars indicate the epicenter locations. 
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(a) (b) 

Figure 2.6. Epicenter Location for Christchurch Earthquakes in (a) 2010, and (b) 2011 [14] 

A reconnaissance team organized by EERI and the Pacific Earthquake Engineering Research 

(PEER) Center investigated and reported on the effects of the second earthquake [3]. The majority of 

buildings over four stories in Christchurch are reinforced concrete construction, typically using 

moment-frames or structural walls as the primary lateral-load resisting systems. These structures 

performed as intended during the earthquake, with the exception of a few compression failures noted 

in the report; examples are shown in Figure 2.7 and Figure 2.8.  
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Figure 2.7. Compression damage to reinforced concrete structural wall in Christchurch, NZ [3] (photo: Sritharan) 

 

Figure 2.8. Damage to reinforced concrete structural wall in Christchurch, NZ [3] (photos: Sritharan, Elwood) 

As noted in the report, the compression damage was extensive although walls have been properly 

detailed per the existing requirements of the New Zealand concrete construction code, NZS 3101-1 

2006 [5]. The report specifically identified the lower floor(s) of five to fifteen-story buildings as 

exhibiting the majority of compression failures.  Figure 2.8 shows damage to an L-shaped wall, where 

the ends experienced large tensile and compressive strains, due to its configuration, resulting in what 

appears to be a compression failure mode. 
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2.1.2.3. Structural Testing of Full-Scale Reinforced Concrete Building, Japan, 2015 

This section presents the results of an investigation on reinforced concrete building performance. 

This discussion is included here as it shows the presence of compression failures in structural walls as 

part of a building system, similar to the observations from the earthquakes described above. Nagae et 

al. [15] performed a shake table test of a full-scale, four-story reinforced concrete building using multi-

directional loading at the E-Defense facility in Japan. The building consisted of reinforced concrete 

moment frames in one direction, and reinforced concrete structural walls in the other; both systems 

were designed to meet AIJ (Architectural Institute of Japan) [16], the Japanese seismic construction 

code, however were reported in terms of ACI 318-11 [6].  

As noted in the report, there were major revisions to both the U.S. and Japanese design codes in 

the 1970õs and 1980õs as a result of poor performance following major earthquakes in each country. 

Despite improvements to the Japanese code, reinforced concrete buildings sustained significant 

damage following the more recent 1995 Hyogoken-Nanbu earthquake in Japan. Review of this study 

is limited to the performance of the structural walls in the laboratory test. A photo of the structure 

prior to testing is shown in Figure 2.9 for reference. 
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Figure 2.9. Photo of Full-Scale Structure Specimen on the E-Defense Shake Table [15] 

The purpose of the test performed by Nagae et al. [15] was to investigate and quantify the 

performance of reinforced concrete lateral systems designed to current (2010) Japanese codes. 

However, included in the report was an investigation into the compliance of the structural systems 

with respect to ACI 318-11 [6], the latest version at the time of testing. The authors noted that the 

walls met the design requirements per ACI 318-11 [6] for special structural walls; some of the 

boundary elements met the requirements for special boundary elements. 

Wall construction details are shown in Figure 2.10. As shown, the walls were approximately 10 in. 

thick, and just over 8 feet long, with boundary element transverse reinforcement vertical spacing 

ranging from about 3 to 4 in. centers (s/ db of 4.2 or 5.3); those with 3 in. spacing were considered 

special boundary elements. The transverse reinforcement ratios in each dimension of the boundary 

element were about 1.0% and 0.8%. 
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Figure 2.10. Wall Construction Details of E-Defense Test (dimensions in mm) [15] 

For comparison purposes (with ACI 318-11 [6]), the two types of walls are assessed here with 

respect to the detailing requirements for boundary elements in ACI 318-14 [1]. The type-A walls (See 

Figure 2.10) are considered special per ACI 318-11 [6] however do not meet the new minimum 

transverse reinforcement ratio requirements in ACI 318-14 [1], and therefore would now be 

considered ordinary. The type-B walls are considered ordinary by both editions. The neutral axis depth 

is unknown (as the loading conditions were not specifically reported), and therefore an evaluation is 

not possible, however the minimum boundary element length requirement did not change between 

ACI 318-11 [6] and ACI 318-14 [1] and therefore it is expected that the boundary element length 

would still be considered sufficient. 

Following the multi-directional testing, the walls exhibited significant compressive failures at each 

end over a height of approximately 11.8 in. from the base. The compression failures included crushing 

of the concrete and bar buckling of the longitudinal reinforcement within the boundary elements. The 

authors specifically noted that regardless of the fact that the boundary elements met (or nearly met in 

the case of 4 in. spacing) the requirements for special boundary elements (per ACI 318-11 [6]), the 

magnitude and type of observed damage was surprising, suggesting the need for further investigation. 

A photo of the wall damage observed following the test is shown in Figure 2.11. 
































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































