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Abstract

Reinforced concrete structural wallsoaeeofthe most common lateral fon@sisting systesm
in building located in high seigrity regions. \Alled structuresreexpectedo provide significant
strength and ductility undeyclic earthquake loading. In p#ris expectation ibased on the
assumption that current desapproachesuppressompression failure of the boundary element.
However,compression failuseobserved followingecent earthquakes in Chig®10)and New
Zealand2011)suggesthatthe behavior of reinforced concrete walls magnaet expectation and
further study is required

As part of a larger effomitiatedby the N#ional Earthquake Hazards Reduction Program
(NEHRP) at the Nationdhstitute of Standards and Technology (NISTjesearch program was
developed to understand and improve the seismic behavior of concret@isyadigion of that
largerresearclprogran focuses on evaluatiom, predictionof, and recommendations to improve
boundary elements in structural wahe. research is divided into three phases. The first phase uses
experimental research methods to evaluate the impact of salient study parameters on vertically loaded,
largescale rectanguleginforced concrete prismemberghat simulat¢he boundary elesnt of a
special concrete walhis experimental prograxploredhe effects of detailing of both transverse
and longitudinal reinforcememtd loading protocol on tekempressiveonfined strength and strain
capacity oboundary elements

In the second phase of research, these experimental results were combined with prior tests to
evaluate commonly used confined concrete constitutive models and current detailing requirements in
ACI 31814.The test results indicate thettangular reinfaed concrete prismembers designed to
meet the minimum ACI 3111 detailing requirements for special boundary elements exhibit little to
no significant increase in compressive strength or deformation @paocitypared tboundary

elements that do not etehose minimum requiremeiidg looking at the fullataset, a hierang of



detailing parametensas developedn order of importance, the following detailing parameters are
shown to increase both strength and strain capacity: (i) ratio of trapgversement spacing to
longitudinal bar diameter of at most 4.0, (ii) full development of transverse reinforcement legs used
to restrain longitudinal reinforcement, (iii) buckling restraint for all longitudinal reinforcement, and
(iv) increased transversenforcementatio. In addition, the results indicate that commonly used
confined concrete constitutive models-gvedict the strength and deformation capacity of ACI 318
14 compliant boundary elements. A new formulation for this model is proposdidiatedia more
accurately predict compressive performdncaddition, the neviormulation isalso shown to
provide accurate prediction of wall performance whenmplementednto modern nonlinear
analysigechniques

The third phase of the resdaused the results to investigate possible improvements to ACI 318
14 boundary element detailing requiremdimee performandeased levels of detailimgere
studied eachprovidingan estimated expected peak stress and strain capacity; the appficability
commonly used confined concrete constitutive ma@dalalso investigatefdr each detail level.
These detailing levels are intended to provide the design engineer with guidance in selecting proper

boundary element detailtogmeetspecific performaemeeds.
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Chapter 1 Introduction

Reinforced concrete structural wallsoaeeofthe most common lateral fon@sisting systesm
in buildings, especially those located in regions of high seigfaltagbuildingsare attracte
because they are expectedrawide a significant amount of lateral streagthstiffness to resist
moderate seismic demaratg]if detailed to meet current code requiremergsACl 31814[1)),
cyclic ductility to resist high seisoigenandsThis expected behavior is based on the practice of
detailingreinforced concrete structural walls to be tewsintiolled, which in most structural
engineering applications is associatedhavihgample ductility.

However, observations from recent eartkepian the Maule region of Chzéin 2010, and in
Christchurch, New Zealaif@] in 2011, indicate that the behavior of reinforcedretnstructural
walls may not meet design assumptiBesonnaissance missions following these earthquakes
reported numerous instances of damage indicative of compression failures, where significant crushing
of the confined core and buckling of the longitudinal reinforcement were observed, sorsetimes ov
the ull length of the wall.

In response, the National Earthquake Hazards Reduction Program (NEHRMagiotize
Institute of Standards améchnology (NIST) initiated a nihiaseesearch effort focusing on the
performance of reinforced concrete struttuadls under seismic loading. The research presente
this dissertation's a phaseof that larger research effort, and focuses mainlgoampressive
performance dboundary elementhé more heavily confined regions near the wall €malsn in

Figurel.l, where significant strains are expected) within reinforced concrete structural walls.

(R ———————

_______________________________

Web Boundary
Element

Figurel.l. TypicalWall CossSection Showing Web and Boundary Element Regions
1



Thisdissertatiopresents the results of an experimental program that includes uniaxial testing of
nineteen (19) largeale reinforced concrete rectangular prismsrénantended to simulate the
bourdary elemen{seegrigurel.1) within reinforced concrete structural wakponding in flexure;
note that this study is not intended to evaluate shear controlded lveakxperimental program
focuses on (i) boundary element detailing, (ii) the use of crossties to restrain intermediate longitudinal
reinforcement, (iii) the effect folly restrainetbngitudinal reinforcement, and (ngd historylIn
addition, a comprehensive analytical program is presented that focuses on the accuracy of existing
predictive models, and the development of modifications and alternatives to suahsihoatdss
where they are found to be inaccurltés analytal program also includes evaluations of both
existingtestsand prototypical wall specimens using the developed mgdehngetersLastly,

specific design recommendations are presented for a range of compressive performance goals.

1.1.Research Objectives
The purpose of this research isneestigate and improvke compressiv@erformance of
reinforced concrete boundary elements through bottstaigetesting and analytsaulationThe

specific research objectiaes to

1 Evaluate the compressperformance of reinforced concrete rectangular setttains
simulateboundary elements within reinforced con@eamicstructural walla/ith the
objective of developing a hierarchgethiling parameters that have the most significant
effects on stregth and deformation.

1 Developan experimentbfvalidatedconstitutive model for unconfined and confined
boundary elementhat can be implemented into modern nonlinear structural wall

modelingechniqueso accurately predict wall performance.



1 Develop newdesign recommendations for all aspects of boundary element detailing to
better meet the expectations of conventional confined concrete models and suppressed

compression failure

1.2.Report Outline

After this introductory chapte€hapter 2presentsa comparison of the boundary element
detailing requirements in ACI 314 1]to those of earlier editions(,2008 and 2011), followed by
a brief comparison with the concrete construction code of4hitel New Zealand]. Then, the
chapter presentsammary of the reconnaissance reports following the earthquakes in Chile (in 2010)
and New Zealand (in 2011), including research needs that emerged following thbsstiyvtrgs.
chapter summarizes the existing experimental data that is releesstutdyihcluding a review of
uniaxial tests aectangular reinforced concrete pasationsandtestsof largescale structuralalls
failing in compression.

Chapter 3Jescribeshe experimental programcludingthe testingparametergest specimen
designs, material propert@s)structiontest setup anestingorocedureand the instrumentation.

Chapter gresentshe detailecheasuredxperimental datacludingobservations from each test
specimen irhie experimental prografte experimental results are discusseach of the nineteen
(19) individual specimg with each section providisgecifianformation on the loadisplacement
response, measured strain distributions, strain gauge data;adipdianat deformation for each
specimen. The chapter concludes witmgparison of the measured responseegpicimens based
on the ravtestdata.

Chapter Soresents comparisons of the measured strength and deformation respoasise of
specimens, focusing on testing parameters and détartinthis and prior research programs

Furthermoremultiple sets of specific boundary element detailing requirements are presented, each of



which represents a specific degree of compressive stadg#irain capacity; these sets of
requirements are referred to as perforraased detailing levels.

Chapter resents theimulations that were conducted ¢ttdr modeboundary eleménand
structural wallsvith poor and substandard levels of confinenkérst, the accuracy of existing
predictive models is evaluated. Nexadificationsto conventionally implemented confinement
models are proposed and vadidausing the full range of prism d&taally, this predictive tool is
used to model structural wall tests that exhibit a softening response in compression but are not
influenced by shear. Thesethodsarealso the basis of amvestigation into the efft of boundary
element length on wall performance based on a suite of prototypical walls modeled using the validated
confined concrete model

Chapter presentsleailing recommendations based on the research presentetisgdtiation
The chaptesummarizes the prior work asdntended t@rovide enough backgroundiestand
alone The information in this chapteringended to inform and benediésign erngeers in that it
both identifies the relatively poor performance associategrailboundary elements meeting the
minimum detailing requirements in ACI-2481], and provides simple tools to predict the strength
and ductility based on detailing. Ttlgapter also presermisposedperformancdased detailing
levelsand associated expected strength and strain capacitgll ashe applicability of existing
predictivanodels

Chapter 8presents summargf workandconclusionsrom the research prograresented in

thisreport In addition, recommendations for future workveaade



Chapter 2 Literature Review

Recent earthquakieave demonstrated the vulnerability of concrete walls. In particular, there is
concern about theompressiveesponse of boundary elements. This research project was undertaken
to study the impact of saliecdnfinementdetails onstrength and deformalylitThis chapter
considers prior work on compressive boundary elements with an eye towards developing the
experimental testing prograhe chapter is organized into three padsearch impetus
experimental testing of specimegyresentingtructural wih boundary elements, and lasgale
experimental testing of reinforced concrete structural walls.

The research wastiateddue tothe seismic performance of walls in recent earthquakes. T
initial part of the chapteevieve both code requirements atiet seismic performance of walled
buildingsSectior2.1.1is a comparison of ACI 318 [6] (no difference for boundary elements from
ACI 31808[7] and ACI 3184[1] In addition, Sectia&.1.1lcompares the U.S. code (ACI 318) to
those of Chil¢4] and New Zealanb]. This information is prudent as the research in this report is
based on observed wall performance following earthquakieseif2] and New ZealanfB], as
described in Secti@nl.2Sectior2.1.2resents the results of seismic testing (building scale) in Japan,
however the results are discussed in terms of ACI 318 requirements, and therefore a comparison with
the Japanese concretdeds not necessaBectior?.1.3summarizepublishedesearch needs with
respect to & construction as a result of the wall performance observed follow20d @h&laule
region earthquake in Chile.

To develop the experimental program, prior experimental research was gathered and evaluated.
Sectior2.2focuses on the existing database of experimental tes@ntaogular reinforced concrete
prismcompression membeiMany of these tessemulated compressieundary elements within
strucdural walls, however the review is not limaeshly thee tests. The objective of this review is
to ensure that thexperimentaksearch program does not duplicate existing tests, and to identify gaps
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in the literaturen addition, a rectangular prisi@tabase of these tests was developed and used to
evaluate salient parameters on the compressive redpandéo validate the proposed predictive
strength and deformation capacity expredsioosnfined rectangular regions in reinforced concrete
wals,

SectiorR.3gathers a selectddtabasef structural wallests The walitestdatabasécuses on
wall tests that (i) failed due to compressive damagebioutigary element, and (ii) had-tow
moderate levels of shear stress dentesgitha® . @psh Themeasured foredisplacemertdata
areused to validate the proposedfined concrete constitutive model, including compressive energy,
as discussed Chapter gseeFigure6.33. The proposed modeling techniqwese developed and
calibrated to the rectangular prisst data obtained from thigsearch progrgmevaluation of
supplemental prism data (from the dapandvall tests provide an independent meansdel

validation.

2.1.Research Impetus

This sectioprovides information that taken together forms the impetus of this research project.
First, a comparison of pertinent editions of ACI 318 (2008, 2011 1dhés30esented, along with
comparisons with concremonstructions codes from Chile aNeéw Zealand. Seconthe
performance of reinforced concrete bugdifollowing recent earthquakesl seismic testing
revieved. Finally, pertinent research negualslished with respect to performance of reinforced

concrete wallgreprovided.

2.1.1.Summary of ACI 318 Detailing Proarsio@emparisons to Applicable Codes
This section presents the current ACI-BA8L] provisions for bondary elements in special
reinforced concrete structural walls. Furthermore, the current provisions are compared to those of

previous editions (2008 and 2011). Note that the boundary element detailing requirements in ACI



31811[6]and ACI 3188[7]are identical, and therefore comparison is made jointly for these editions
to avoid repetition.

ACI 318 prescribes detspéetiagdérengdi spments f{f
(SBE$ within special reinforced concrete structural waldl 318 does not have specific
nomencl at ug e cfioarl 6o0nboonundary el ement s, and t he
henceforth referred t o OBE,OBbEsardusedavhegBEsate oot ndar y
required.SBEsare required per ACI 314 [1] and ACI 3188/11 [7], [6] where significant
compression strains are expected, which is determined basateoitral axis depth uskguation
2.1 andEquation2.2, respectivel\ote that for 2% drift (as is commonly assumed), these equations
result in the need for special boundary elements where the neutral axis is at least 6% or 8% of the wall

length, respectively.

, »
cO50D ABh,
o

cO

Equation2.1

m Equation2.2

Recent changes to the 2014 edition are based heavily on the recommendationd&jyakdllace
include newerticakpacing limits for transverse reinforceme@8Rs spacing limits for restrained
longitudinal bars in all boundary element types, the trigger for r&Rirsand minimum thickness
requirementd.able2.1 outlines the detailing requirementsIBEsandSBEsfor both ACI 31814
[1]and ACI 3188/11[7], [6], with danges indicated in ré&dgure2.1is a representative boundary
element crossection with the various detailing parameters indicated. Variables not shown on the
figure include,, the wall lengtin,, the unbraced height of the wathe neutral axis depth calculated
at the nominal moment with expected axial |dgde gross crosectional areA,, the confined
concrete core aref@ the 28day cylinder compressive strength, fanithe yield strength of the

transverse reinforcement.



Table2.1. Comparison of ACI 31B4[1]and ACI 3188/11[7][6] Boundary Element Detailing Requirements

ACI 31808[7] / ACI 318-11[6] ACI 31814[1]
B.E. . Code - . .
Class Design Par. Section Pro~\/|5|on Code Section Provision
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Figure2.1. Annotated Schematic Boundary Element Geston

As the research impetus for this project is closely tied to the damage observed in Chilean wall
structures following the 2010 Maule region earth{Rjakas prudent to make note of the Chilean
concrete building code (NCh430.0f2pgBas well, which is based on ACI-B&87]. Detailing
requirements prescribed in NCh430.0fZ8D8&atch those documented in ACI-8B37], with the
exception of special boundary element detailing, which is not f@julteerefore, the detailing of
boundary elements in Chilearlsvis only required to meet the equivalent of the ACOS[G
requirements for ordinary boundary elem@B&S§).

The research impetus for this project is also based on the observed damage in N¢8j. Zealand
Although this code (NZS 31Q12006) is not based on ACI 318, it does includesinatayboundary
element detailing requirements. For example, longitudinal bars must be restrained at most every 200
mm (not that this is nearly half the maximpresented in ACI 3481[1]) using a hoop or seismic
crosstie (with at least a 1860Kk). Also, the transverse reinforcement must be vertically spaced a
maximum of six (6) times the longitudinal bar diameter; simila€l(t81814 [1])) minimum

transverse reinforcement ratios and minimum boundary element lengths are also required.



2.1.2Response of Reinforced Concrete Wall Structures under Seismic Demands

Observabns from recent earthquakes idirig the 2018auleearthquake i€hile[2], andthe
2011Christchurchearthquake iNew Zealand3] provide insight into the performance of modern
reinforced concrete structural wétdlowing both earthquakes, several compression failures (often
crushing and bar buckling along nearly the entire wall lemtgberésedurther in Sectio.1.2.1
were reportedReconnaissanaeportsclearly indicate the need for further investigatiorsutio
compression failureBhese observations are not necessarily surprising, as similar behaviors have been
shown in laboratory structural wall testis dsscribed in Sectigrl.2.3

In addition fullscaleearthquaksimulatortesting performedh Japan provides an excellent
opportunity tocomparehe seismicgrformance of reinforced concrete wall buildings under seismic
demandsn a laboratory and the fielthis section provides a summary of the initial reconnaissance
reports published by the Earthquake Engineering Research Institute d&BRI),athe reorts

and observations following the building testing performed in Japan

2.1.2.1PostEarthqguak@®bservation oReinforced Concrete Wall Damaglaule Region, Chile,

2010

On February 27, 2010, a BI18 earthquake struck the Maule region of Chile, one oy lar
recorded earthquakes in history. According to an EERI Special Earthquaké2Repotind
accelerations of at least 0.05g were recorded for more than 2 minutes. The epicenter was located on
the coast in a densely popuatgion of Chile between Concépand Constituén, with ground
shaking occurrings far North as Yia del Mar. Maximum ground accelerations as high as 0.93g
(horizontalwere recorded 0] (the maximum vertical acceleration was measured gtadti@Ogyh

the EERI report indicates that certain accelerometer stations reported reaching the maximum

instrumentation limit, and therefore likely true maximigtg have beeover 1.0g.
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As discussld in the EERI repof®], the majority of large buildings in Chile are constructed using
reinforced concrete structural wall systems, typically in a fiskb@oafiguration ighbone refers
to a configuration in which apai walls runs the length of the building, withogonal, connected
walls in the transverse direa). An example of this configuration type is the Festival buildiriguin Vi
del Mar, shown iRigure2.2. This type of building layout resulted in asymmietrid {shaped or L
shaped) wall sections that were often undetiakdue to the lower demandg (shear and axial
load) in a more redundant syst@snomparedwith a corewvall type structuréAsymmetric wall
sections are typically associated laigfercompressiomemands due to unbalanced normal forces

and higher extreme strains in the stem.

® = ©au s ©306® e D@ e g‘)m@ 751 % L ros
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!
“Transverse” Wall ~ “Longitudinal” Wall L

Figure2.2. Floor plan of Festal building in Vifia del M{8]

Numerousbuildingsof this layout exhibited apparent compression failureslowidloor(s)
otransversewalls. These failures typically included crushing of the eaacestilong the full length
of the wall, as wedk longitudinal bar buckling. S@ramplsof thisfailure mechanism askown

in Figure2.3. Note the wall shown iRigure2.3(b) is planar at the ground floor, however is flanged
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above; such a configuration can lead to significant strain demands at the ground floor from the

unbalaced normal forces above.

(b)

Figure2.3. Wall damage in Santiago, hild(photo: J. Wallag¢e), J. Dragovich {b)

The final damage state consistently appears toimbdimation of ae crushing and bar buckling,
as shown in the additional photosFigure2.4. This observation suggests a strotagioaship
between the strengtiféformation capacity of structural walls, and the stabithye d&dngitudinal

reinforcementihtegrity of the confined core.
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(b)

Figure2.4. Chilean wall damaffel](a) photo: F. Naeim (b) photo: F. Naeim (c) photo: J. Moehle (d) photo: J.

Dragovich (e) photo: J. Moehle (f) photo: J. Moehle
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Somedamaged walbppeared to exhilatvidence of large tensile strains prior to compressive
failures[11] Large tensiomyclesnear the extreme boundary fibers of a typitally result in
significant horizontal cracking and yielding of longitudinal reinforcement, which has been shown to
result in drastically reducedlwaimpressive capadit®] An example of this behavior was observed
in the Plaza del Rio building im&idel Mar, shown ifRigure2.5, however its important to note
that this is more of a wall pier as opposed to.AWedllpiers are portions of a structural wall separated

in some fashion (typically horizontally) from the main wall by an opening.

Figure2.5. Wall damage of Plaza del Mar Building in Vifia d¢lLijar

2.1.2.2PostEarthquak®©bservationof Reinforced Concrete Wal<Christchurch, New Zealand,

2010and2011

On September 4, 2010, a Il earthgake struck the Canterbury region of New Ze§l&id
The earthquake was located relatively far form largely populated areas, and therefore minimal
structural damage occurtbdre However, on February 22, 2011,,&6N eartfuake, struck near
the most populated area in the region, the city of Christ¢Blrthis earthquake, considered an
aftershock of the September 2010 earthquake, resulted in more casualties and structural damage due
to its clser proximity and higher level of shaliigure2.6 shows relative locations of the two

earthquakesvhere the stars indicate épécenter locatien
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Figure2.6. Epicenter Location for Christchurch Earthquakes in (a) 2010, and (Y2011

A reconnaissance team organized by EERI and the Pacific Earthquake Engineering Research
(PEER) Center investigated and reported on the effects of the second edBhqinekmmajority of
buildings over four stories in Christchurch are reinforced concrete construction, typically using
momeniframes or structural wid as the primary latelaad resistingystems. These structures
performed as intended during the earthquake, with the exception of a few confgifes=s noted

in the report; examples ateown inFigure2.7 andFigure2.8.
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Stairwell

Elevator Damaged
core wall

Figure2.8. Damage taeinforced concrete sttucal wall in Christchurch, N3] (photos: Sritharan, Elwood)

As noted in the report, the compression damagextensive although lgahave been properly
detailecper the existing requirements of the New Zealand concrete construction code, NZS 3101
2006[5]. The report specifically iddid the lower floor(s) of fivie fifteenstory buildings as
exhibiting the majority of compression failuFégure2.8 shows damage to brshapedvall where
the endexperienced large tensile and compressive strains, due to its configuration, resulting in what

appears to be a compression failure mode.
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2.1.2.3Structural Testing of F#icale Reinforc&tbncrete Building, Japan, 2015

This section presents the results of an investigation on reinforced concrete building performance.
This discussion is included here as it shows the presence of confailessgmstructural walls as
part ofabuilding sgtem, similar to the observations from the earthquakes describeN aippy et
al.[15]performed a shake table test of asiudle, foustory reinforced concrete building using multi
directional loading at thelBefense faility in Japan. The building consisted of reinforced concrete
moment frames in one direction, and reinforced concrete structural walls in the other; both systems
were designed to mest) (Architectural Institute of Japdhp] the Japanese seismic construction
code however were reported in terms of ACFBLEH].

As noted in the report, there warajor revisions to both theSJand Japanese design codes in
the 19700s ana potrpd&fOridasice oobowiag majer sautthqtiakes in each country.
Despite improvements to the Japanese code, reinforced concrete buildings sustained significant
damage following the more recent 1995 Hyoge&ahu earthquake in Japan. Review of this study
is limited to the performance of the structural watlse laboratory tesh photo of the structure

prior to testing is shown kigure2.9 for reference.
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Figure2.9. Photo of FulScale Structure Specimen on tlizefense Shake Talpis]

The purpose of the test performed by Nagae §54lwas to inestigate and quantify the
performance of reinforced concrete lateral systems designed to (20ff@ntapanese codes.
However, included in the reparasan investigation into the compliance of the structural systems
with respect to ACI 31B1 [6], the latest version at the time of testing. The authosthateahe
walls net the design requirements per ACI-BIL&] for special structural walyme of the
boundary elementset the requireemts for special boundary eleraent

Wall construction details are showfigure2.10. As shown, the Wa were approximately 10 in.
thick, and just over 8 feet long, with boundary element transverse reinfoveetnalspacig
ranging from about 3 to 4 icenterqd d, of 4.20r 5.3; those with 3 inspacing were codsred
special boundary elemeriise transverse reinforcemeatiosin each dimension of the boundary

elementvere about 1.0% and 0.8%.
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Figure2.10. Wall Construction Details of[Befense Tegdimensions in mnjl5]

For comparison purpes (with ACI 3181 [6]), the two types of walls are assessed here with
respect to the detailing requirements for boundary elements in A@[H18he typeA walls (See
Figure2.10) are considered special per ACI-BILE] however do not meet the new minimum
transverse reinforcement ratio requiremantdCl 31814 [1], and therefore would now be
considered ordinary. The typevalls are considered ordinary by both edifibeseutral axis depth
is unknown (as the loading conditions were not specifqaltyed), antherefore an evaluation is
not possible, however the minimum boundary element length requirement did not change between
ACI 31811[6] and ACI 318L4 [1] and therefore it is expected that eendary element length
would still be considered sufficient.

Following the mukHilirectional testing, the walls exhibited significant compressive failures at each
end over a height of approximately il f8om the bas@&he compression failures includaghing
of the concrete and bar buckling of the longitudinal reinforcefitt@ntthe boundary elementée
authorsspecificallypoted that regardless of the fact that the boundary elements met (or ngarly met
the case of 4 in. spadinige requiremés for special boundary elemdgper ACI 318L1[6]), the
magnitude antypeof observedlamage was surprisiagggestinthe need for further investigation.

A photo of the wall damage observed following the test is shBignre2.11
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