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ABSTRACT
Maps of classified surface features &ey output from remote sensing. Conventional methods of
pixelbased classification label each pixel independently by considerirgpnlyx el 6 s spec
properties. While these purely spediesled techniques may be applicable to many medium and
coarsacale remote sensing analyses, they may become less accurate when applied to high spatial
resolution imagery in which the pixels are smaller than the objects to be classified. At this scale,
there is a higher intrdass spectral heterogeneity. Detaileesfaand vegetation classification is
extremely challenging at this scale with both high-atdass spectral heterogeneity and rlsess
spectr al homogeneity. A solution to these iss
characteristicbut also its spatial characteristics into classification. In this study, we develop a
generalizable contextualized classification approach for high spatial resolution image classification.
We apply the proposed approach to megetation growth forms suas trees, shrubs, and herbs
in a forested ecosystem in the Sierra Nevada Mountains

Keywords: high spatial resolution imagery; contextual classification; forest classification; remote
lifeforms



To Mother and thar



ACKNOWLEDGMENT

| would like to express my great gratitude to my academic advisor Dr. Jonathan A.
Greenberg for his time amiimerouse f f ort s gui ding me through th
studies in the past two yearsouWd like to thank him for giving me challenging topics but at the
same time always being available when keddwdp. | am grateful to be his first round graduate
student. | would like to thank him from the very beginning: | greatly appreciate hsstakmg
me around the campus and introducing me to his faculty colleagues when | first met him and
visited the campus two years ago. During the past two years, | was very thankful to have the
experience working so closely with Dr. Greenberg, whichuebabé every graduate student has
such experience with his/her academic advisor. Within the past two years working with Dr.
Greenberg, | was amazed by his positive attitude to challenges, his amazing problem solving skills
and experience, his vision andoledge about the field of remote sensing, his passion about
research, and his personality. | feel really honored to be chosen by Dr. Greenberg to study with
him and to work in his lab. The past two years graduate studies with Dr. Greenberg has become a
great memory in my life. Besides, | would like to thank Dr. Greenberg for his research funding and
support. |1 would like to thank him for giving me research assistantship and taking me to high
guality conference in the field and allowing me to get accefse tpowerful computer
infrastructures, high quality computer hardware and software, very cool field equipment, and the
imagery and data archive in his lab. Finally, | would like to express my gratitude again, without my

advisor Dr. Greenberg it is impossifor me to work solely to complete my masters study.



| also would like to thank my thesis committee members, Professor James Dalling and
Professor Shaowen Wang for taking the time effmits reviewing my thess®d giving me
extremelyaluable feedba@nd advicdrom both technical and application aspects of this thesis
work | greatly appreciate their time serving as my committee meRtbérssor James Dalling is
the head of the department of plant biology and professor Shaowen Wang consistelstiyutra
of the state to conferences and meetings. | greatly appreciate they taking time out from their busy
schedule to serve as my committee members.

| also would like to thank the GGIS department for giving me a year of fellowship to allow
me to focuson my study. | would like to thank the previous department DGS Professor Flint
Colin for accepting my application and bringing the good new to me. | would like to thank our
department staff Susan and Matt for their support. | would also like to thank mgtiiustor Dr.
Jonathan Tomkin and the school of SESE staff Lara. It was a great experience being a teaching
assistant with Dr. Tomkin in the course of ESE200.

| would like to thank my parents for their support and understanding for allowing their
only dild to pursuehigh education abroad. | would like to thank my boyfriendJi2rfor his
mental support and constantly traveling to UrB@hampaign bearing the horrible Amtrak train
service to visit me. In addition, thanks Diafor his advice on the rtfeematical notatiogin my
thesis writing. | must say that without Didd s support, it i's Iimpossib
master study.

Finally, 1 would like to thank everybody | met here in UIUC. Thanks Evan Bowling in
Computer Vision (CS543) coursar being an awesome group partner for our course semester

long project. Thanks Dr. Jeffrey Wayne Matthews for his comprehensive high quality course



NRES419- Environment and Plant Ecosystem, which | greatly appreciate all the knowledge |
gained from the aose. Thanks all my dear graduate student colleagues in the department, it was
very nice to have you all in my past two years. In addition, | would like to thank all my friends
from the University of Minnesota for their mental support. Finally, specistthia some of my

close friends Danyang Chen, Hui Li, and Xinyi Tu for their accompany.

Vi



L1 0] (23] L O0] 01 (=] | 5N UUT TR TR OTR RPN Vil

B U S oo ettt et e e ettt et et et et et et et e et e e et aaaaaeaaaaaaaans viii

JLIE= o [PPSR IX

Chapter 1 INTrOUCTION. .......eeiiiiieiiiii et e e e e e e e e e e reeeaeeeaas 1.

1.1. Research Background and MoOtIVaLtiQN............c..uviiieiiiiiiiiiiieeeceee e 1

1.1.1. Research Background..............ooeiiii it 1

1.1.2.Research Motivation and ODJECHIVES..........cccoiiiiiiiiiieii e 3

1.1.3. Direction & Usage of the Proposed Approach...........ccccccevivieeeieieeniiiinnee. 4.

1.2, REIAIEA WOTKS.....euiiiiiiiiiiiiiiiiiiiiiteie ettt ee e e e e e e e e e e e e e e e e e e e e e e e e e e e aaaaaaaaaaaeaaaaaaaeeans 5.
1.2.1. High Spatial Resolution Classifion Techniques in Detailed Vegetation

Classification A Brief REVIEW...........uuiiiiiiiiiiiiieeeee e 5.

TEXEUIE ANAIYSIS. ... eeeeeiiiiieeeieie e e e e e e eaeeeees 6

Objecthased apProaCh..........cc.uuiiiiiiii e 9

MUILISOUICE @PPIGEN .....oeiiiiiiiiiee e 11

Contextual APProaChL...........viiiiiiiie e 13

ChhAaPLEr 2 IMANUSCIIPDL ...veeeeete et e ettt e ettt e e e e e et e e e e e e s s bbb e e e e e e s eannsbbnnneeeaeeeaans 16

P22 R {11 o o 18 o 1o ) o PP SSPSPPPP 17

FZ20 Y 1 1 T Yo 21

General Idea and FrameWOIK ..........ooiiiiiiiiiiiii et 21

L E= T a0 (0] 1 T T T (=) £ 23

2.3 Application of Contextual Classification to Lifeform Classificatian........................ 26

STUAY ATBA. ...ttt e e e e e s et e et e e e e e b e e e e e e e e e e e nnnees 26

Remote SEeNSING IMAGEIY......cooiiiiiiiiiiii e a e e e 27

TrAINING DATAL......eeeieiiieee e 28

Model Construction and OPtIMIZAtION............ooiuuriirieie e 32

2.4, RESUIES....eeiiiii ettt ettt e e e e e ettt e e e e e e e s baar et e e e e e e e nr e eeeaeeeaaas 35

ACCUIACY ASSESSIMEINL.....uuuiiiieiii ettt e et e e e e e e e e e et e e e e eaa e e e e eeaaeees 37

Samples of Classified Image SUDSELS........ccoooeiiiiiiiiiiiiii e 39

2.5. Conclusion and DISCUSSION........ccuiiiiiiiee e 42

rrrrrrrrrrrrrrrrrrrrrrrrrrrr

vii

,,,,,



Figures

Figure 1. Conceptual diagram of contextual classification............ccccccooeciieeriieeiiiniinnnn. 21
Figure 2. Conceptual diagram of contextual classification feature extractian.................. 22
Figure 3. Coneptual diagram of Random Forests madel...........ccccvvveeiiiiiiiiiiiie 24
FIQUIE 4. STUOWEL. .....cci ittt e et e e e e e e s e e e e e e e s e e e eeas 27
Figure 5. Flowchart of iterative process of updating training.data...............cccccceeeeerennneen 31
Figure 6. Spatial distributicof final training dataL..............coooiiiiiiiiiee e, 31
Figure 70ptimal WINAOW SIZE tEST.........uiiiiiiiiiiiiiie e 33
Figure 8. Visualizegbatial distribution of the selected variables thradifferent bands......... 35
Figure 9. Percentage of variable selected from all available in a gieef s@agch radius.....36
Figure 10. AZIMUEIN PIOL.......oiiieiieie e e e e e e e 36
Figure 11Spatial and spectral distribution of the selected variablesnugedmodel.............. 36
Figure 12. Lifeform classification result on 251x251 image subsets...........ccccccovvvivrnnnnen. 39
Figure 13Lifeform classification result on 401x401 image subsets............ccccceeeviiiirnnnnen. 40
Figure 4. Lifeform classification rdson 1600 x 1600 image SUDSEet...........ccoovviiiiiiueennn.. 41
Figure 15. Conifer tree crown size from the training data..............ccccvveveiiiiiiiiiieees 43
Figure 16Spectral profile of all ClasSeS.........ccooiiiiiiiiiiiie e A3
Figure 17. Plots of spectral profile for each classification classes.............c.ccccceeenen. 44

viii



Tables

Table 1. Eight lifeform/grothiform classes with representaigecies.............ccccooeiiivieeeenenn. 28
Table 2. Federgkographidatacommitteevegetatiordassificatiorsandardsubclasgategorie29
Table 3. ValidatiomlataSet.. . ...........uuiiiiiiiiii it e e e e e e e eaaaaeaaaaaaeas 30
Table 4. Training polygons and number of pixels extractediising5 window.................... 32
Table 5. Confusiomatrix ofal 8 aSSES..........ccuvviiiiiiiiiiiiiii 37
Table 6. User anprOdUCEIACCUIACY.........ooeiiieieeei e e e e et eeeeeeeeees 38



Chapter 1 Introduction

1.1. Research Background and Motivation

1.1.1. Research Background

One of the most importanbutcomesof remote sensingnalysgis to use imagery to
classify and delineate different objextd land cover typasn t he e a mHistoridatly, sur f a
remoteensing has been used to perform | and use;
complex mixtures of vegetation and wegetated surfaces are colpst a relatively small
number of discrete classes labeled according to, typiceityretfative fraabnal cover.For
instance, the NLC2011 Classification Systedin(et al., 20 ld ef i nes a #fAf orest o
land wit greater than 20% tree cov&vhile medium and coarse scale remote sensing (e.qg.
Landsat and MODIS imagery) with their relativetyphiemporal frequency are extremely valuable
for various longerm research and management objectives such as long term sustainable forest
management, biodiversity monitoring, carbon accounting, habitat protection, and sustainable
timber production, thessensors lack the spatial detail to resolve fine landscape featires
individuals trees and shrubs, and are thus unable to produce many of the inventory products that
are necessary for a full underdiag of ecosystems procegbeskowski et al., 29; Py 2002)
The impact of the focus on LU/LC mpjmg can be significant; the integration of these discrete
LU/LC classesinto ecosystem moliley versus using continuous fractional covers of plant
functional types leads to profound differencemodeledenergy and water flowBohan et al.

2002. Clearly, there is a need for remote sensing analyses to go beyond producing discrete LU/LC



classes, and move towards an invebtsgd approach to monitoring ecosystem characteristics,

analogous to what fieldventories can produce.

AHyperspatial 0o remote sensing, defined as
interest (typicallpl met er ground sample distance, AGSDO
and obtaining forest inventories data at an individual plant scale, including fractional plant
functional type covecrown size, speciesd above ground biomagSougeon2003 Greerberg
et al. 2005Greenberg et ak00§ Key,2001). Historically, aerial imagery comprised the bulk of
this type of image data, and the analysis techniques relied on significant field assessments and
manualinterpretation of the imageryVith the incresingly availability of hyperspatial satellite
imagery and the advance of computing infrastructure and computing power, there is a general
trend of obtaining and updating loteym detailed forest data via semmiomatic or automatic

processing of high g resoltion satellite imagery (Gougeon, 2003; Dom2005).

Although hyperspatialsatellite inagery (e.g. IKONOS, WorldView 2,and 3 and
Quickbird) outcompetes medium and coarse resolution satellite imagery for the level of details that
canbeolsr ved and extracted fr om havdemergedafor leabed s ur f
forest and vegetation classification using high spatial resolution imagery. Some of the challenges
reported in the literature includéow to deal with shadows causedtregs, high intralass
spectral variations, and high intéaiss spectrabmogeneityLu andWeng, 207). Conventional
classification techniques used with medium and coarse spatial resolution imagery focus on purely

spectrabased classificatiorigyt these techniquedo not appear to work in many circumstances



when applied to hyperspatial imagery. One likely explanation for this is that at medium to coarse
scale resolution (>1m GSD), each discrete LU/LC class tends to have a separable spectral
reflectane signature through the electromagnetic spectrum that is captured by different bands in
the imagery. At this scale, the intlass spectral variations often cluster around the ideal spectral
reflectance signature distribution, and can be described bpabibity distribution to model the
classification based purely on the spectral characteristics. At high spatial resolution, however, the
pixel sizes are often smaller than classes of interest, and there exists high spectral variations within
a given classs well as among classes. The weak separability of spectral characteristics often makes
it impossible to use solely spectral information to achieve satisfactory classification results. Using
conventional spectrabsed classification techniques gpédrsatialimagery results in pixels with

identical spectral responses belonging to different classes being misclassified, and classification
resul ts of-&ndme phpaevredo ae fiifseacltt, wher e pixels fall/
may be clas®@fl into multiple different classes. The limitations and decreasing of classification
accuracy when applying conventional fmaséd approaches in high spatial resolution image
classification have been stated in several studies (Woodcock and Straflevlai@8au et al.,

1990; Greenberg et &006; Yu et al., 2006; Lu and Weng, 2007).

1.1.2. Research Motivation and Objectives

This study was motivateteed to improve the precision and accuracy of use/land cover
classification applied toyperspatiasatdite imagery. The objective of this study was to overcome
several challenges of applying conventional classification techniqugsetspdtialimagery

classification, especially in forestry and vegetation classifépgoifically, we are asking



1 Isthere a way to incorporate spatial information with spectral information together to
perform classification in yperspatial multispectral satellite imagery for forest
classification/applications?

1 Can contextual (neighborhood pixels) information be modeléabel the class of a given
pixel?

1 Can the contextual information be modeled with an advancegharametric machine
learning algorithm?

1 Can this contextual classification solve some challenges such as shadow and high intra &
inter<lass spectral var@is in hyperspatiaimagey classification, especially in vegetation

classification?

In this study, a general algorithm and approach is developed to overcome some of the
challenges inyperspatial imagecgjassification. The proposed approach takes adpebdf fine
contextual details in yperspatiaimagery and uses the contextual and spectral information

together to improve classification capability.

1.1.3. Direction & Usage of the Proposed Approach

Different from many existing studies and approachesémabnly be used to perform a
certain level of classificati@@ranklin 2001) the proposed approach is able to map and perform
classifications in different scaléo suit different classification needs. Individual species
composition in lifeform clasevel can be classified first and then an upper level classification (e.g.

forest cover type) can be generated based on the lifeform level classification. To better use the



proposed approach, it is critical to understand the idea and theoretical framisawsket! ithe

methods section in chapter 2. Generally, the proposed approach can be tried in high spatial
resolution classificati on t amilarspectrd propertiesp2) e 6 s ¢
there exists a high spectral variationkiwitlass, 3), there is no obvious geometric properties of

the classification classes, 4) individual or groups of plants composition is desired (e.g. capture open
canopy crowns as well as shrubs in the open space), 5) similar context of plant spesigscompo
patternsexist across large landscégpg. large area herb land can be found growing together with
hardwood species, which both tend to live in areas with a relatively high watethiabialleys),

6) shadow is a problem (one important and iegcdontribution of the proposed approach is that

shadow is not a problem anymore, on the contrary, shadow can contribute important information

to aid in classification.)

1.2. Related Works

1.2.1. High Spatial Resolution Classification Techniques in Dalallegetation Classificatioin
A Brief Review

Many technigues have been developed to improve classification performance in
hyperspatiaimagery. The approaches generdllynta four groups: 1) texturanalysis, 2) object
oriented approaches, and 3) nmdtirce approaches, and 4) contextual approaches. Each
approach has its unique advantages and works well in certain application settings. We discuss
below each of the four approaches in detail together with referenced literatures and application

examples.



Texture Analysis
Textural features extract information of local spatial staiist& greyscalemageusing

fixedsize local windows surrounding a given pikekture features can capture and evaluate
whether a single layer gsegleimagehas charderistics of homogeneity, linear structure (grey

tone linear dependencies), contrast, edges, comp&gityNatual texture features of an object
surface such as the grain of a wood and the ripple of a wave can be represented by specific
mathematical tressformation and can be calculated by computer in @éstolay. Haralick (1973)

first developed a set of generalizable procedure for extracting texture properties by computing local
spatial statistical variations of tone values of an image data anddataoteous attentions from

the remote sensing community. By setting a searching distance of a moving window, different
angular neareseighbor gratone spatiatlependence matrices were computed to represent
different texture features. These calculatgdrdaare then added as additional bands, and the
classification is then conducted using conventionaldpaseld spectral classification classifier.
Adding texture features is the mostly widely used approach ihgsdl high spatial resolution

imagery lassification among the remote sensing comm(initgnd Weng, 207).

Different texture features capture different properties of an image. Whether or not the
computed texture features actually are useful in discriminating different classlessifigtion
systemneeds to be tested and investigated. This requires time and research efforts to identify
suitable texture features witleltuned parameters that wovke | | with oneds <cl as
and the landscape of the study area. In additionyreexeatures are computed using a moving

window. Determining a proper window semd shapdo capture the texture features of the



targeting classification classes is crid@ding additionaltexture feature laygcan increase or

decrease classificatiaccurac{Mather and Tso, 2009).

Among the vegetation remote sensing community, feature extraction methods proposed by
Haralick have been previously appliBdgiet et al., 2014&im 2009;Lu and Weng2007; Pu
2012;Ruiz, 2004; Wulder 2004; Yu et al00B). Since the level of classification, the composition
of landscape (vegetation) in the study area, and texture features selep@@maters used
varied widelybelow | summarize and cite two works that related to detailed forest cover type and

speaes composition classification using texture featuresyp#rspatiaimagerydata.

Ruiz et al. 2009 tested four texture feature extractions: 1) statistical methods based on
grey level coccurrence matrices, 2) energy filters and edgeness fad&abpBYilters, and 4)
wavelet transform based methods to classify seven forest landscape tgpesithitdrest, mid
density forest, areas combining fesbstib, shrubs, scattered trees, scattered shrubs and olive
trees. They explored a Mediterrandarest where there was a wide variety of structural and
vegetation diversity. A QuickBird panchromatic image resampled to &8D was used to
compute various texture features. They reported that the texture approach is efficient in separating
landscapeypes that have spectral heterogeneity where unique intensity variations can be found in
greyscale (black/white) image; while landscape types that have unique spectral response but are
very homogeneous in gseale image are not suitable to use textatterés to separate the
classification objects/classes, such as pasture land and cereal crops or fallow. In addition, they

reported the main limitation of using texture features was the border effect. Since each texture



feature was computed using a localing window of neighborhood pixels, error values were

more cumulated at the transition area and they suggested further studies to reduce the border
effect. Finally, they stated that there was no benchmark for the use of texture extraction method
for clasdication, every single classification study has to test and find out the best texture features
and parameters to suit the classification area and the purpose of the study, and apriori knowledge

of the study area is required.

Franklin et al. (2000) testedexture features at different classification hierarciti@$
forest plots in mixediood and boreal forests in Canada using airboypersgtial multispectral
imagery (0.3n&SD) for species composition classification (hierarchical teypEcles nameitla
percentage coverage; hierarchical level 2: conifer or hardwood with percentage coverage; and
hierarchical level 3: three classes of muxedl, deciduous, and coniferous). They reported that
adding texture features generally improved classificatima@cby 145%, however in some of
their 26 plots, adding texture features did redheeaccuracy. In some of their plots, species
composition appeared spectral distinctions for classification purpose, adding texture features in
contrast confused thisdlinctiveness and reduced accuracy. They discussed the uncertainty in the
incorporating the texture features in high spatial resolution imagery classification in forest
applications and provided a checklist for better choosing texture features in \asgifisation

needs with tracing references in their discussion session.



Objecbased approach
Objectbased image classification approach also has been employed to overcome the

problem of high spectral variability within class ypenspatialmagery amada, 2011Kim,

2009 Lu and Weng, 200Mlyint, 2011;Qian and Gong, 2006Yu ¢ al., 200§. Objectased
approaches first use image segmentation techniques to group relatively homogeneous pixels into
polygon objects, and then performs classification @sagmented objecBy grouping objects in
greyscale layer, the confusion of high spectral variation in a certain pixel position through all
bands is avoidedhe quality and accuracy of the segmentation in the first step is critical to the

final classi€ation results.

Hamada et al. (2011) applied objeded approach with various spectral band
combination indices as features to classifyfotiie cover types in California sage scrub
communities using different spatial resolution remote sensing IM&ROMT at 10mGSD,
QuickBird at 0.6mGSD, and infrared aerial photography at 0.168D). True shrub, subshrub,
herb, and bare ground were their classes. The -bagarl approach was successfully applied to
capture individual shrub canopies and patchesy Taported true shrub and bare ground were
relatively easy to obtain reliably classification results, but subshrub and herb remain challenging.
The objecbased approach worked well with QuickBird imagery (G$8B) where compared to
the 0.15mGSD aerialphotography, as the 0.6 m GSD did not have significant spectral variability
within a class and at the same time maintains spectral separability between classes. The high
spectral variability within a class at a 0.15m spatial resolution confused theasiegnadgurithm
to segment relatively homogeneous gray tone objects in the first step of thasHgjespproach,

which significantly influenced the final classification results.



Kim et al. 2009 applied objedbased approaches combined with textuatufes to map
the three forest types usingplrspatidlKkONOS imagery in a close canopy (dense) national forest
in North Carolina. Their classes were deciduous Heaaeéd forest, evergreen nebsieed
forest, and mixed evergreen deciduous forestoxdpmted the upper Level 3 Formation
Hierarchy level in the Federal Geographic Data Committee (FGDC) National Vegetation
Classification Standard Version 2 (FGDC, 200he of their research questions was whether
segmentation quality greatly influences d¢lassification results and they found the answer to be
yes. In addition, for forest application in their study site and classification level, they found that
adding texture features did not increase classification accuracy primarily because the texture

properties among their classes were very similar.

Yu et al. (2006)applied objedbased approaches to perform detailed vegetation mapping
of 48 classes usinggderspatiahirborne remote sensing. Their classification scheme followed the
California Vegetabn ClassificationSystem Yegetation Classification and Mapping Program,
September 2003 edition), which was more detailed than the Level 3 in the USG& |aarttl
Landcover Classification Systedingt al.,2011). They performed the objdzsed appaxh with
different features such as texture features, ancillary topographic data and geometric features and
achieved average overall amcyrof 51 percent to 58 percemthere 11 out of 43 of their

vegetation alliances achieved results of 60 percenigired(Muet al., 2006)

1C



Among the remote sensing literature, the suitability of using -bbgad approaches
appears to be limited to when the des¢l image has relatively clear edges to delineate and
segment objects that relate to thegetedclasHication objects/classes. Urban applications in
these circumstances were likely to achieve better classification results usinogeotgdct
approach. For example, Sahal. (2005)compared pixdlased and object based approach in
classifying urban gmonment and found objedriented outcompeted pidedsed approach. This
makes sense that classes with similar spectral responses like roads, path, and parking lots that are
not distinguishable kiye pixelbased approach can be segmented out as diidéjents in objeet

based approacfSoe 2011Sunet al., 200k

In vegetation applications, objpessed approaek have been found to be successthlein
level ofland cover type classification using SPOT imagery by Duro (2Bé&g)reported that
objectbased approaekdid a better job than pixbhsed approaekin classifyinggome of their
classes such asetland, riparian and mixed grassland. However, in gettezabbjectbased
approach andthe pixetbased approach had similaverall classificdon accuracy in their

classification scheme and study area.

Multisource approach
The multisource approacbf image classification uses multiple gridded data sources,

geometrically e®gistered and rescaled to a consistent resolution, fused togeth&rsintyie
datasethen used with a classifielhe input datasets often contain remote sensing imagery from

multiple sensors, as well as ancillary spatial data such as topography andSdib&ate (1996)

11



applied various imagery fusion techniques tmriporate multisource remotely sensed data in
forest classifications. Solberg (1996¢gstered 0.5/ SD multispectral aerial photography with

0.5m GSDrasterized laser altimeter data and a reconstructed forest map to classify seven classes:
shadow, shub, dry grassland, deciduous forest, rock, peat, and conifer. Locaisgpetial
features were added to perform the classification. Using an iterative contextual classification
algorithm, the iterated conditional modes (ICM) (Besag, 1986) were wugetht® a given pixel

based on all available information in which the class with the maximum conditional probability
was labeled. This technique is based on Bayesian probability theory, a detailed description of
which can be found ifso and Mathef2009).From the experiment results, Solberg found that
adding the reconstructed forest map contributed the most improvement of accuracy in their study
area, a coniferous forest in southeast Norway. Solberg also tested adding SAR dateband an 81
airborne speocbmeter dataset collected at a spatial resolution of 5.6m x 5.6m to map six classes of
different tree species with variations in tree height: Oak -20(@3 Oak 2 (130m), Oak 3

(>30m), Beech 1 (<30m), Beech 2 (>30m) and Pine in the Fontaineblean Foeeste Solberg
achieved a 98.7% accuracy by including all the multisource data and using the contextual
classification technique. Another finding 8blberg §1996)study was that choosing a more
advanced statistical model resulted in a better immpenveto classification performance than
adding additional remotely sensed data. For multisource approaches in image classification,
advanced techniques and reviewdata fusion can be found 8olberg(1999) and Abidi and

Gonzalez (1992).

12



Contextual Apgach
The basic philosophy of the contextual approach to image classification is to label the class

of a pixel based on its neighborhood piXal$ in a more generalizable way than texture or ebject
based approacheghe application of contextual appobas to image classification hadween
primarily confined to the pattern recognition and computer vision communitiesis arsate
amongst the remote sensing commur(yohlich, 2013) The increasing availability of
hyperspatial imagery now makes it possbl@apply advanced image processing techniques
developed within the pattern recognition and computer vision communities to remote sensing

applications.

We will first review the conventional pikaked, purely spectral classification approaches
from a stastical perspective to help better understand the idea of contextual approach of
classification: each materi al on the earthos
electromagnetic spectrufassiveemote sensing imagery usually has phlbhands capturing
electromagnetic radiation (EMR) across the visible and infrared regions. In an ideal situation, two
pixels belonging to the same classification class should have the same reflectance signatures
throughout the electromagnetic spectrugatfire space). In realistic situations, there is noise from
the sensor and from the variations within the same class. Thus, the spectral response of pixels in
the same class tends to cluster around the ideal response in the feature space. Thishduster of t
responses usually can be described with a suitable probability distribution. By sampling enough
pixels responses in a class, the responses of pixels through feature space can be learned by
supervised learning algorithms to make predictions on unlghgtdd based on their responses

through feature space. However, not all classes have separable reflectance signatures in the

13



measured parts of the electromagnetic spectrum. In addition, with the increase in pixel resolution
with hyperspatial satellite ingag, the spectral variations of pixels within the same class increase
significantly. Thus, the spectral response of pixels within the same class might not have clustered
distribution around the ideal spectral response of the class thus it is hard &bistgsaktearning

algorithms to predict based sole on spectral information.

Contextual techniques are developed to tackle this problem. One approach is based on
probabilistic relaxation (Dizenzo et 4887;Faugeras and BerthdP81, Peleg. 1980; Riahds et
al., 1982. The probability of the neighborhood pixels of a given pixel is used to update the label of
the given pixel iteratively. The specification of neighborhood pixels used is based on different
statistical measurement and techniques. For m&anfPress (1996) proposed a directional
neighborhoods approach in whiéhresgproposed a set of 21 neighborhood cliques. For example,
in a 5 x 5 window, cliqu&l contains pixel positions 4,5,8,9,10,13 which compasses the pixel
direction of northeast; cue#2 contains pixel positions 9,10,13,14,18,19 which compasses the
pixel direction of east, and etc. The homogeneity was computed for each clique and the clique
with the highest value of homogeneity is chosen as neighborhood pixels to label and eipdate th
center pixel. Another approach can be traced back to Toussaint (1978) based on the theme of
sequential compound decision theofyenerally speaking, this approach attempts to find a path
to search the entire image for the determimatf a given pixelKartikeyan,1994). Markov
Random FieldKindermann 198( is a tool that characterizes contextual information from the
nearest neighborhood pixels (NN) to model prior probability density functions (p.d.f.), in turn,

with the available of prior informatipthe classification can be expressed in terms of maximum a
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posterior (MAP) where Bayesian theory can be applied (Tso and Mather, 2009). Even though there
are numerous research and techniques available in contextualized classification in the pattern
recogition, computer vision, and statistics community, there are very few applications in the

remote sensing literature, especially in vegetation remote sensing community.
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Chapter 2 Manuscript

Abstract

Maps of classified surface features &ey output from remote sensing. Conventional methods of
pixelbased classification label each pixel independently by considerirgpnlyx el 6 s spec
properties. While these purely spediesled techniques may be applicable to many medium and
coarsecale remote sensing analyses, they may becorapplegsiatewhen applied to high

spatial resolution imagery in which the pixels are smaller than the objects to be classified. At this
scale, there isften higher intraclass spectral heterogen#ign interclass spectrakterogeneity

leading to difficulties in using purely spedieasled classificatiors.solution to these issues is to
usenotonfa pi xel 6s spectral characteristics but
develop a eneralizable contextualized classification approach for high spatial resolution image
classification. We apply the proposed approach towvegetation growth forms such as trees,

shrubs, and herbs in a forested ecosystem in the Sierra Nevada Mountains

Keywords: high spatial resolution imagery; contextual classification; forest classification; remote

lifeform
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2.1 INTRODUCTION

Remote sensing has long been wg@ssisin the monitoring and managingf forestlands. Since

the 1940s, aerighhotography haselen used for manualigterpretingforest attribute¢Gougeon

2003. Aroundthe 1970s, the availability of coarse and medium spatial resolution satellite imagery
started being used to map and classify forestinidsger scalg€olwell, 1960; Heller, 1975;

Hoffer and Staff, 1975; Lachowski et al.,, 200énsen, 1979 However, initial attempts of
mapping forest land cover types with medium to coarse scale satellite imagery were limited by their
relatively low spatial resolution. Mappinge canopy and individual tredaracteristics within
standswas found to balifficult or impossible using medium to coarseesealellite imagery
(Brockhaus andKhorram, 1992; Carreiras et al., 2006; Congalton et al., 1991; Franklin, 1994;
Katoh, 1988).With the increasing availability of high spatial resolution satellite imagery
Mhyper slipmgtr oahd, s am@Em) indhe late B090gEhlers i al., 2003; Ehlers,
2004) combined withthe progression of more advandethge processing algbms more
detailed forest data can be obtained from thgperspatiaimagery(Falkowski, 2009). Satellite
imagery (such as IKONOS, Quickbird, GeoEye, and WorldViénadid 3 outcompetes aerial
photography in assisting forest monitoring and managewiémttheir relatively large spatial
coverage, relatively high temporal frequeaicgt low withirscene distortianThere is a general

trend of obtaining and updating loteym detailed forest datanoving awayrom manually
interpretatng imagery and mowntowardssemiautomatic or automatic proceisg of the

hyperspatiadatellite imagery (Domai@p05 Gougeon, 2003
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Conventional classification techniques developed back in the 1970s used with medium or coarse
scale resolution satellite imagery contiiaebe applied today. Conventional piaated
classification technigedypicallyu s e a pi x el 0 s valgicedistingussh different | ect a
classification classes. This method works well with coarse and medium resolution as each pixel
covers relately large areas (>10@5D), at which land cover/land usdassesypically have

unique spectral characteristics. At bigspatial resolution(<1m GSD), a pixel may be smaller

than an object of interest (e.g. a tree), potentially resulting imbighblass spectral variance. It is

easy to have two pixels with similar spectral reflectance response in the electromagnetic spectrum
belonging to two different classes in hyperspatial imagery, making purely spedbadepixel
classification a challengireg $ Kk . Depending on the scale of <cl a
cover class, different tree spemeycontributeto a wide range of spectral reflectaren@éance

(Robertset. al., 2004 In addition, at high spatial resolution, individual treeapies are visible,
containing pixel®oth onthe sunlit side as well as the shaded side of the canopy wiéeds to

high variations of spectral reflectanwéhin a classFor vegetation classification, there is a high

chance that pixels in two difent cover classes share similar or identical spectral reflectance
responses resulting in misclassification when using solely bpsetlalassification The

limitations of applying conventional piXehsedclassificatiorapproacks to hyperspatiahagey

have been stated in many stud@seénberg et al2006;Lu and Weng, 20Q™Marceau et al.,

1990;Woodcock and Strahler, 1987y et al., 2006

Many approaches and techniques have been developed to improve classification accuracy in

hyperspatiaimageryHaralick, 1973L.u and Weng; 200Mather and Tso, 200®Duma et. al,

18



2006; Puissant et. al, 2008)/ulder et al.,, 2004 Haralick (1973) firstleveloped a set of
generalizable procedure for extracting texture properties by computing local tapstiehl s
variations of tone values from single layer grayscaleantag&acted numerous attentions from
the remote sensing communifynmongthe vegetation andofestry remote sensing communijties
methodssuch asbjectbased classification, mdihiage fusion techniqueas well agcorporating
ancillary data intahe classification schesi&ave been applied to improve the classification
performance in high spatial resolution imagkeigmada, 2011; Kin2009; Lu and Weng, 2007;
Myint, 2011; Qian an@ong, 2006Solberg1996;Yu et al., 2006 Perhaps the most widely used
approachin pixeHlbased high spatial resolution imagery classificatimives dding different
localwindowtexture features into a classification scheme (Beguet et al. KROPH09;Lu and

Weng 2007Pu2012;Ruiz, 2004; Wulder 2004; Yu et al., 2006).

However, whether or not the computed texture features actually represent discriminations of

di fferent classes in oneds cl assi fThiscreqlireson Sy ¢
time and research efforts to identify suitable texture featurewelithned parameterforo n e 6 s
classification needs and theoperties of thdandscape of the study area. In addition, texture
featuresare computed using fixedsizemoving window determining a proper window sizeais
criticalstep in using these features in a classifdetingtexture feature layghave been found to

both increasand, at timesjecrease classification accuracy (Franklin et al;,\2a@r and Tso,

2009 Ruiz, 2004
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Incorporating texture features into a classifier has several reported lisserdsacting and
computing local texture features watljluare or rectangularindowshape<reate artifacts at the
spatial edges between different clasbesborder effect probleifMoser, 2009Ruiz, 200% 2)

testing combinations of parameters in each feature extraction and computation is time consuming
and the choice to use what types of features fdgplnds orspecific classe?) objecbriented
approaclesusingtexture features work well in urban environment where buildings and roads are
structurally distinguishablByro, 2011 Soe 2011Sunet al.,2005, whereas might not work well

in forested landscapesere different classes might not hamectiral and spectral homogeneous

units (Ruiz 2004). In summarythere is no single techniqawailable taneetthe challengein
hyperspatialmage classificaticacrossall common target classasd across the wide diversity of

differentlandscaps

In this study, we developed and tested a new method and franiemiodorporatingspectral
andspatiainformation into a classifier applied hyperspatiaimagery. The basiperationof the
proposed contextual classification approach is to label ths cofaa pixel based on its
neighborhood pixelsacrossmultiple electromagnetic spectrum chanribBnds)in a general,

flexible way

The paper is organized as follows. A detailed description of the proposed method is presented in

Section II. A case studof the proposed methods for realiziifgform classificatiompplied to

Worldview? imagery of thelake Tahoe Basin in the Sierra Nevada Mountan
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(California/Nevada)s describedn Section Ill.Results are discussed in Section I¥nclusion

and discagsion are presented in Sectian

2.2 METHOD

General Idea and Framework
Let N be athreedimensionalimagearray with row and column numbérsx0 and n layers

(Figure 1) &y, is a single cdibcationin N with a set of n layer valuéet] be the classified two
dimensional array of N. The number of samd columisin] is the same as the number of sow
and columisin N. The valusof] arechosen from aiser defined classification category. The
conventional method of obtaining ;; is to use values Wy, in other words,  is only

dependent oy, .

Figurel. Conceptual diagram of contextual classification

In this study we propose to use not orby, but ako its nearby cellanging fromid  to

@ § to determinethe clas®f] . Here we propose a simple way to control the number of
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neighborhood cellthe moving windovapproachLet” be an odchumber The classificatioof
Q, is dependent on a s&f; of pixels where

~

Yo = rh — —h — —1}.

For example, we have an 8 band multispectral image and we want to classify a Ilsusjiegy pixe
contextual informatiorirom a7 by 7window around thapixel. Inthe featureextraction stage, in
this case, n equals”8equals 7, the number of features being extracted would béfrgm to

® § ,whichis 7 x 7 x 8 = 398atures, in other words, the class @fis dependent not only
on Wy (8 valuey but 392values for all bands and all cells in the neighboring 7x7 wigioge
wewill be using atatisticalearning approach fomage classification,amafeaturewill become a

predictor variable that will hesedto build a statistical model classification.

i2,j-2|i-2. 1] -2, [i-2,j+1li2. j+2

i1, 1| i1, fiL 4 i-1,j-2|i-1, j-1| i-1,j i1, j+1i-1, j+2

Lj1 | i,j [iLj+1 L2 |41 | i, |4+ |Lj+2

i+1,§-1) 41§ [i+1. j+ 41, j-2/it1, 1) i+, i+, L 42

42, j2|i+2, 1] 142,  fi+2, 412, 32

p=3 p=5

Figure 2. Conceptual diagram of contextual classification feature extraction
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Random Forest
As” becomes larger and larger, the numbésaifiredeing extractethcreaseexponentially. For

exampleif we considecontextuainformationof 15 by 15 neighborhood, tieature available to

beused to determinthe class of a single pixe} would be 15 x 15 x n layer. Thasgenumber

of input feature likely includesuselessr redundantinformation and also greatly increases the
computational needs to train and implemehe classifier. Therefore, weeedto utilize a
classification algorithm that can dseith overpredictive dasats without overfitting the classes, as

well as potentially allowing the key features to be identified so an optimized model can be
produced. While many machine learning classification algorithms can be leveraged, we chose to

use Random Forediy Breima (20017).

Random Forestis an ensemble decision tree based classifier, where each tree is trained using a
bootstrap sample &f from the original training samplésand each split occurs at a variable
chosen from a random subsef(@fom the originalariablesp (Breiman, 2011 For classification,

the final result is based on a majority \ater allof the treeqthe i &resd Figure 3) By using a

newly sampled random subset of variables for splits in each tree, the correlations between each tree
in the ensemblarereduced and computational time is saved. Since the subset of variables chosen
to be used in each tree is different and variables being sampled to a set can be in a new set next
time, this helps stabilizbe classification accuracy aratjaire genetzableclassification results

where a small change the nature of thetraining sampleill not dramaticallyalter the

classification accura@reiman, 2001)
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While Random Forests generally insensitive to highly overpredictive traiitgsets, two issues

arise when using Random Forests witlicontextual featusedataset.First, balanced training
datasets are needed to properly represent classes that may have different s@dize sized,

2004. If the training dataset is not laaced, far more trees are needed to properly sample from
the minority classe@reiman, 2001)Second, models trained from the full feature set take a
significant amount of computational time to apply to image datasets, so optimizing the features
used totrain the final model by removing useless or redundant features can significant speed up

the prediction.

1st Tree 2nd Tree 3rd Tree n-th Tree

\.\//

aggregate predictions by majority voting”

Figure 3. Conceptudiagram of Random Foreshodel n representa number of binary decision tréeach tree
grows independently and the finagégiction obtained is through aggregation by majority vddiagram is adapted
from Frohlichet al 013)

BalanatTraining Data

Several resampling techniques can be appliddlamcethe training dataset before using the

Random Forestlassifier Downsampling techniquecan be employed to balance the majority
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classes to have the same frequasdhe minority classepsampling techniquecan be used to
sample the minority classes with replacement to make all classes distributed equalj@styhe m
class (Kuhn, 20146MOTE sampling technique can be employed-$amgle the data to a user
defined numbers of samples bysampling the minority class and desampling the majority

classes (Torgo, 2010).

Variable Selection

Within the use of Random Fests, important predictor variables can be calculated and ranked by
the variablesd6 predictiveness. Sever al techni
importance (VIMP) (Breiman, 2001; Di&zarte and Alvares 2006; Ishwaran et al., 2010). We
employed the Maximal Subtree method proposedimptemented by Ishwaran et (@010.

Basically, a Maximal Subtree of a variable is defined as the terminal node where a given variable
encounters its first split. Then the minimal depth is calculated &sure the distance from the

root node to a variablebds maxi mal subtree. Th

greater the impact of that variable has on prediction (Ishwaran et al., 2010).
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2.3. Applicationof Contextual Classificatido Lifeform Classification

Study Area
The study area ithe northeasternside of Lake Tahoe Basin, located in the Siddevada

Mountainsalong the border of California and NevgBaure 4)Elevation ranges from 1,900m to
3,050mabove sea leveldl.). The dimate of the Lake Tahoe Basiollows aMediterranean
patternwith long cool wet wintes and shot, warm drysunmmers. Precipitationusually occurs
betweenOctober and May as snow. Thepograpic complexityleads tohigh variatiors in
temperaturgprecipitation and solar radiation anlkasresuled in a rich diversity ovegetation
types. The area is dominatedabyariety otoniferspeciesncluding White Fir, JkffreyPine, Red
Fir, Lodgepoldne, andincenseCedar. Broadledfee and tall shrubpecieare also present, and
include QuakingAspen,Mountain Alder andseveral speciesWiillows In addition to trees and

tall shrubs, many species of shrubs and leebalso preser{Barbouret al., 2007)
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0 85 170 340 Kilometers

Figure 4Study Area. LaKBahoe is labeled in red. The imagery employed in this study covers the northeast of Lake
Tahoe.

Remote Sensing Imagery
We usedWorldView2 ( i WV ighaggryin this analysisNVorldview? isan 8band, multispectral

imagethat collects data &45 m acrossa wide, panchromatic band, and1la85m for the 8
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visible/neatinfrared spectral bandshat range betweeAOO to 1040nm The acquisitionwas
acquired aan off nadir angle of 8.3%n Septembei0", 201Q The azimuth wak37 and solar
elevation wa54.22. The imagergoves a total area 0422.48 km (Figure4). The imagerywas
atmospherically corrected and orthorectified by W$DA Forest ServiceRegion 5 Remote

Sensing Laboratoryhe multispectral imagery waspharpenetb 0.45 m.

Training Data
We preparedtraining data byphotointempreting eight lifeform classé®m the pansharpened

WV2 imageryMore specificallyraining polygons werdigitizedat the individual plant levefor
treesor & the level of a small, homogengadchfor shruband hebs.Based on the plant species
present in the study area, we gemlipur training data into eight lifeform/growthform classes

(Table 1).

Table 1. Eight lifeform/growthform classéth representing species

Lifeform/Growthform Classes Dominant Speciélaterials

Conifer Tree White Fir, JeffreyPine, RedFir, Lodgepoléline, andincenseCedar

Hardwood Tree QuakingAspen

Tall Shrubs Mountain Alder, Willows

Shrubs Arctostaphylos nevadensis, Ceanothus cordulatus, Ceanothus prostrates
Chrysolepis semperens, Quercus vaciniifolia, Spiraea densiflora ssp. sple

Herb Dry/wet grasses, Meadows

Saoll Barren soil, sand and dune

Barren and Impermeable Barren, cliffs, and bedrock

Water Water
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We constructed stratifiedrandom sampling design basedtioe Tahoe Basin Exiting Vegetation
Map (TBEVM, Greenberg et al. 2006) vegetation subelagsh was based on theGDC

mapping standar@Tlable 2.

Table 2Federal Geographic Data Committee Vegetation Classification Standard Subclass Categories

SUBCLASS

Deciduous closed tree canopy

Evergreen closed tree canopy

Mixed evergreesteciduous closed tree canopy
Evergreen open tree canopy

Deciduous open tree canopy

Mixed evergreesteciduous open tree canopy
Evergreen shrubland

Deciduous shrubland

Mixed evergreedeciduous shrubland
Herbaceous Vegetation

Sparse Vegetation

Polygons representing each subclass were randomly chosen (one spblylges),
photointerpretation wa then conducted on each chosen polygoieantify the target lifeform
classs The photointerpretation vgaguided ¥ field data collected by USDArEstServiceand by
the University of Californiat Davis in 2011, Google EartiistoricalimageryGoogle street view,
and vegetation index layers such as NDVI. We updated thengadaita iteratively by using the
first round of training data to train a model, using the model to predict on rdapdbosen image
subsetstratifiedby FGDC subclass, correcting prediction errors and inclugwgtraining sites
into the training data. he iterative process of updating trainirgadhelps to captureontextual
information into the training and learning process. For exampldidweot include the longdail
of conifertree shadows over a fairfaceof shrubs irthe early training datéowever, we noticed
that the predictiors of those long tailwere classified incorrecity the early rounds aimage

subsetpredictiors. We thenadded new training data of thesfeadowd shrubsto the training
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data. For subsequenprediction subsets, thisontextualinformation waslearned and predicted
correctlyby the machindearningalgorithm The iterative process of updatimgining data is

illustrated in figure 5 and the final spatial distribution of training data is shown in figure 6

Validation data wasprepared using USDA Forest Serviteld data as well as additional

independenphotointerpreted data. TablesBmmarized the validation data for each class.

Table 3. Validation Dataset.

Class # of pixels
Conifer Tree 55
Hardwood Tree 19
Herb 25
Shrub 27
Tall Shrub 15
Soil 20
Barren and Impermeable 37
Water 21
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Figure 5. Flowchart of iterative process of updating training data.
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Figure 6. Spatial distribution tife final training data. Yellow dotspresent the location tfining samples.
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A total of 237,649training samplesvere extracteflom training polygonasing 15 by 1%indow

followedthe method inSectionll (Tabled).

Table 4 Training polygons and number of pixels extracted usind. 3 svindow

Class # of polygons| # of pixels
Conifer Tree 101 9,832
Hardwood Tree 14 47438
Herb 20 41472
Shrub 18 3,478

Tall Shrub 13 13139
Soil 21 11,649
Barren and Impermeable| 11 22562
Water 6 98,079

Model Construction and Optimization
We utlized theRandomForestSR@nplementation of Random Foressi{waran, 2015)ithin

the R Statistical Computing framewof {ersion 3.1.32015 to train a classification model
relating the eight (8) lifeform classes to the contextual information exfraatetie neighboring
pixds. To begin, we implemented a statistiocavdsamplingpbased on the minority class (N =

4,378)to balancehe trainingsamples.

RandomForestSRC provides a method to choose a reduced set of variables importauattkel the
(Ishwaan et al. 2010)Ve use the Maximal Gbtree methodo calculate thgariable importance
(VIMP) (Ishwaran et al., 20).0This allows us to first determine the correct window size, with the
goal of confirming that the window size used was not too sm#iefanalysis in question. As

such, we ran the RandomForestSRC model on several versions of the training data, in which only
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features from within a given distance from the center pixel were used, ranging from 1 to 15 pixels
in radius. At each window sitlee number of total available variables and selected variables were
recorded, and percentage of important variables chosen from all availablesvaas calculated.

Figure 7shows that by extracting contextual information with window sizes ranging) fooimh

pixels, all the features within this radius were selected as important to construct the model, which
means that these windows are likely too small (there may be additional benefit from searching the
feature space at a greater distance). Beyomd|3, phe percentage of variables chosen decreased

to a minimum of at a 13 x I8indow sizeand thenstabilized al5 x 15 which confirmed that

15x15 was sufficiently large to capture the important contextual information.

60 40 100

1 1 |
=]
a
a
a

percent ofvariables picked

20

window size

Figure 7. Optimal window siist plot.
Once the window size was confirmed, the next step was to optimize the variables needed to run the
model without a loss of accuracy. This step repeated the previous step with the 15x15x8 window
of features (a total of 1800 available feat@resusing the VIMP to seleathich of the 1800

variables were chosen as importanthe model
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As a final optimizationyjereducedhe total number of trees needed to construct the final model
by examining the change in error as additional trees da®d,aand stopping the model when the
error rate improved by less than 0.1% by adding an additiondFitoee.a starting point of 1000

trees, we found that our model required @99 trees

Once the optimizations had been performed, a final modetamasructed which was used with

the validation data and to predict on images. To evaluate the model itself, we summarized the

histograms of the radius, azimuth, and bands chosen for use with this model.
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2.4. Results

Of the 1800 features found thvin a 15x15 window, with 8 spectral bands, 122 variables were
selected for use in the final model. Of these 122 variables, five of the eight WV2 spectral bands
were found to be importankblue (400450nm), red (636 9 0 n m) , Ar g4bnmg, igle 0 (7
both near infrared bands (7895nm, and 862040nm)(Figure § Variables were used across all

radii, although there was a notable decrease in the number of variables clistamas

between 2 and 5 pixelsith the most important radii being close te tbenter, and at the

maximum distance from the center. Figure 9 shows a histogram of variables chosen for a given
range of radii vs. the total possible of variables possible at that radius. Figure 10 shows a histogram
of the variables used as a functibaodmuth.The distribution of the selected important variables

in azimuth showed that most variables were picked up in the northeast and southwest directions.

Figurellvisualizes the spatial and spectral distributidhefelected variables used intinedel.
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Figure 8. Visualizegpatial distribution of the selected variables through different bands in the imagery.
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Figure 9. Percentage of variable selected from all available in a given range of search radius.
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Figure 10Azimuth plot.All the importantvariables selecteddirectionto the center pixel.
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Figure 11Visualizedhe spatial and spectral distributiontlo¢ selected variables used in the model.
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Accuracy Assessment

We used an independent set of validation data to evaluatestiiesiThese data wenbtained by

the USDA Forest Service as well as additional independent photointerpreted data\ fotats.

of 219 val i d

at

on

poi

nts

wer e

used.

A

confus

accuracy were computédable 5 ad 6) Compared to the validation data, the overall

classification accuracy of the contextual classification model was 76% with Kappa of 0.72.

Table5. Confusion Matribof All 8 Classes
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Barren and Impermeable | 28 0 0 0 4 0 0 0 32
Conifer Tree 1 52 2 0 5 3 0 0 63
Herb 1 0 13 1 0 3 0 0 18
Hardwood Tree 0 1 1 15 1 2 1 0 21
Soil 2 0 0 0 16 0 0 0 18
Shrub 5 2 1 2 8 18 0 0 36
Tall Shrub 0 0 8 1 0 1 14 0 24
Water 0 0 0 0 0 0 0 21 21
# of Ground Truth Pixels | 37 55 25 19 34 27 15 21 233
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Table6. User and Producer Accuracy

Produc|User §

Accuracy Accuracy
Barren and Impermeab| 75.7% 87.5%
Conifer Tree 94.5% 82.5%
Herb 520% 72.2%
Hardwood Tree 78.9% 71.4%
Soil 47.1% 88.9%
Shrub 66.7% 50.0%
Tall Shrub 93.3% 58.3%
Water 100% 100%

The class of water achiewb@ highestl00% accuracy because of its distinguishable spectral
signatures as well as unique contextual peighborhoodasa water pixel is much more likely to

be next to another water pixEbr vegetation classes, coniferstsé@od out as the most accurate
class. This could be partially because thatdibénct crownshadow contributhg unique

contextuapatterns for distinguishing conifer tsefeom other vegetation classes

In addition to the standard pixelvel accuracy results, we applied the final model to several

randomly chosen scene subsets to provide additional qualitative visual asseshmettsucicy

of the model (Figure 12, 13, and 14).
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Samples of Classified Image Subsets
Twoimage subsets of relatively open conifer canopy areaassiteedis shown in figure2l The

shrubs and soils in the open canopy areas were chpjutes modednd classifiedroperly.

047505 19 285 38 047595 19 285 38
O —— T —— 5

047595 19 285 38 047595 19 285 38
e — — o5 e — — 7

Figure 12Lifeform classification result @51x25limage subsets.
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Two image subsets Df mixed operoniferand deciduoudrees and 2) operoniferwith shrubs
wereclassifiedas shown in figer 13. The model was able ttistinguishhardwood trees, tall

shrubs, shrubs, ammbnifess especiallghown in the leftlassificatiomesult infigure13.

0510 20 30 40
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Hudwood Tree [ sou Hardwood Tree [ son
B s B 50 nd impermeale B s | RrTe——.
B e shen | R B oshen | R

0510 20 30 40 0510 20 30 40
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Figure 13.Lifeform classification result df®1x40limage subsets.
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The large inagesubset shows the classification result of a mix conifer, deciduous and shrub land

near the lakeshore (Figure 14).

Figure 14 Lifeform classification resaih 1600 x 1600mage subset
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