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ABSTRACT 
 
Maps of classified surface features are a key output from remote sensing. Conventional methods of 

pixel-based classification label each pixel independently by considering only a pixelôs spectral 

properties. While these purely spectral-based techniques may be applicable to many medium and 

coarse-scale remote sensing analyses, they may become less accurate when applied to high spatial 

resolution imagery in which the pixels are smaller than the objects to be classified. At this scale, 

there is a higher intra-class spectral heterogeneity. Detailed forest and vegetation classification is 

extremely challenging at this scale with both high intra-class spectral heterogeneity and inter-class 

spectral homogeneity. A solution to these issues is to take into account not only a pixelôs spectral 

characteristics but also its spatial characteristics into classification. In this study, we develop a 

generalizable contextualized classification approach for high spatial resolution image classification. 

We apply the proposed approach to map vegetation growth forms such as trees, shrubs, and herbs 

in a forested ecosystem in the Sierra Nevada Mountains.  

 
Keywords: high spatial resolution imagery; contextual classification; forest classification; remote sensing, 
lifeforms 
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Chapter 1 Introduction 

1.1.    Research Background and Motivation 

1.1.1. Research Background  

One of the most important outcomes of remote sensing analyses is to use imagery to 

classify and delineate different objects and land cover types on the earthôs surface. Historically, 

remote sensing has been used to perform land use/land cover (ñLU/LCò) mapping, in which 

complex mixtures of vegetation and non-vegetated surfaces are collapsed into a relatively small 

number of discrete classes labeled according to, typically, their relative fractional cover. For 

instance, the NLCD 2011 Classification System (Jin et al., 2011) defines a ñforestò as an area of 

land with greater than 20% tree cover. While medium and coarse scale remote sensing (e.g. 

Landsat and MODIS imagery) with their relatively high temporal frequency are extremely valuable 

for various long-term research and management objectives such as long term sustainable forest 

management, biodiversity monitoring, carbon accounting, habitat protection, and sustainable 

timber production, these sensors lack the spatial detail to resolve fine landscape features such as 

individuals trees and shrubs, and are thus unable to produce many of the inventory products that 

are necessary for a full understanding of ecosystems processes (Falkowski et al., 2009; Pu, 2002). 

The impact of the focus on LU/LC mapping can be significant; the integration of these discrete 

LU/LC classes into ecosystem modeling versus using continuous fractional covers of plant 

functional types leads to profound differences in modeled energy and water flows (Bonan et al. 

2002). Clearly, there is a need for remote sensing analyses to go beyond producing discrete LU/LC 



   2 

classes, and move towards an inventory-based approach to monitoring ecosystem characteristics, 

analogous to what field inventories can produce. 

 

ñHyperspatialò remote sensing, defined as image data with pixels smaller than an object of 

interest (typically Ò 1 meter ground sample distance, ñGSDò), has been employed in monitoring 

and obtaining forest inventories data at an individual plant scale, including fractional plant 

functional type cover, crown size, species, and above ground biomass (Gougeon, 2003; Greenberg 

et al. 2005; Greenberg et al. 2006; Key, 2001). Historically, aerial imagery comprised the bulk of 

this type of image data, and the analysis techniques relied on significant field assessments and 

manual interpretation of the imagery. With the increasingly availability of hyperspatial satellite 

imagery and the advance of computing infrastructure and computing power, there is a general 

trend of obtaining and updating long-term detailed forest data via semi-automatic or automatic 

processing of high spatial resolution satellite imagery (Gougeon, 2003; Domain, 2005). 

 

Although hyperspatial satellite imagery (e.g. IKONOS, WorldView 1, 2 and 3, and 

Quickbird) outcompetes medium and coarse resolution satellite imagery for the level of details that 

can be observed and extracted from the earthôs surface, new challenges have emerged for detailed 

forest and vegetation classification using high spatial resolution imagery. Some of the challenges 

reported in the literature include how to deal with shadows caused by trees, high intra-class 

spectral variations, and high inter-class spectral homogeneity (Lu and Weng, 2007). Conventional 

classification techniques used with medium and coarse spatial resolution imagery focus on purely 

spectral-based classifications, but these techniques do not appear to work in many circumstances 
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when applied to hyperspatial imagery. One likely explanation for this is that at medium to coarse 

scale resolution (>1m GSD), each discrete LU/LC class tends to have a separable spectral 

reflectance signature through the electromagnetic spectrum that is captured by different bands in 

the imagery. At this scale, the intra-class spectral variations often cluster around the ideal spectral 

reflectance signature distribution, and can be described by a probability distribution to model the 

classification based purely on the spectral characteristics. At high spatial resolution, however, the 

pixel sizes are often smaller than classes of interest, and there exists high spectral variations within 

a given class as well as among classes. The weak separability of spectral characteristics often makes 

it impossible to use solely spectral information to achieve satisfactory classification results. Using 

conventional spectral-based classification techniques on hyperspatial imagery results in pixels with 

identical spectral responses belonging to different classes being misclassified, and classification 

results often have a ñsalt-and-pepperò effect, where pixels falling within a single object (e.g. a tree) 

may be classified into multiple different classes. The limitations and decreasing of classification 

accuracy when applying conventional pixel-based approaches in high spatial resolution image 

classification have been stated in several studies (Woodcock and Strahler, 1987; Marceau et al., 

1990; Greenberg et al., 2006; Yu et al., 2006; Lu and Weng, 2007). 

 

1.1.2. Research Motivation and Objectives 

This study was motivated need to improve the precision and accuracy of use/land cover 

classification applied to hyperspatial satellite imagery. The objective of this study was to overcome 

several challenges of applying conventional classification techniques to hyperspatial imagery 

classification, especially in forestry and vegetation classification. Specifically, we are asking: 
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¶ Is there a way to incorporate spatial information with spectral information together to 

perform classification in hyperspatial multispectral satellite imagery for forest 

classification/applications? 

¶ Can contextual (neighborhood pixels) information be modeled to label the class of a given 

pixel? 

¶ Can the contextual information be modeled with an advanced non-parametric machine-

learning algorithm? 

¶ Can this contextual classification solve some challenges such as shadow and high intra & 

inter-class spectral variations in hyperspatial imagery classification, especially in vegetation 

classification? 

 

In this study, a general algorithm and approach is developed to overcome some of the 

challenges in hyperspatial imagery classification. The proposed approach takes advantages of fine 

contextual details in hyperspatial imagery and uses the contextual and spectral information 

together to improve classification capability. 

1.1.3. Direction & Usage of the Proposed Approach 

Different from many existing studies and approaches that can only be used to perform a 

certain level of classification (Franklin, 2001), the proposed approach is able to map and perform 

classifications in different scales to suit different classification needs. Individual species 

composition in lifeform class level can be classified first and then an upper level classification (e.g. 

forest cover type) can be generated based on the lifeform level classification. To better use the 
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proposed approach, it is critical to understand the idea and theoretical framework discussed in the 

methods section in chapter 2. Generally, the proposed approach can be tried in high spatial 

resolution classification tasks if 1) oneôs classification classes share similar spectral properties, 2) 

there exists a high spectral variations within class, 3), there is no obvious geometric properties of 

the classification classes, 4) individual or groups of plants composition is desired (e.g. capture open 

canopy crowns as well as shrubs in the open space), 5) similar context of plant species composition 

patterns exist across large landscape (e.g. large area herb land can be found growing together with 

hardwood species, which both tend to live in areas with a relatively high water table ï the valleys), 

6) shadow is a problem (one important and exciting contribution of the proposed approach is that 

shadow is not a problem anymore, on the contrary, shadow can contribute important information 

to aid in classification.) 

1.2.    Related Works 

1.2.1. High Spatial Resolution Classification Techniques in Detailed Vegetation Classification ï 
A Brief Review 

Many techniques have been developed to improve classification performance in 

hyperspatial imagery. The approaches generally fall into four groups: 1) texture analysis, 2) object-

oriented approaches, and 3) multisource approaches, and 4) contextual approaches. Each 

approach has its unique advantages and works well in certain application settings. We discuss 

below each of the four approaches in detail together with referenced literatures and application 

examples.  
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Texture Analysis 

Textural features extract information of local spatial statistics in a grey-scale image using 

fixed-size local windows surrounding a given pixel. Texture features can capture and evaluate 

whether a single layer grey-scale image has characteristics of homogeneity, linear structure (grey-

tone linear dependencies), contrast, edges, complexity, etc. Natural texture features of an object 

surface such as the grain of a wood and the ripple of a wave can be represented by specific 

mathematical transformation and can be calculated by computer in a robust way. Haralick (1973) 

first developed a set of generalizable procedure for extracting texture properties by computing local 

spatial statistical variations of tone values of an image data and attracted numerous attentions from 

the remote sensing community. By setting a searching distance of a moving window, different 

angular nearest-neighbor gray-tone spatial-dependence matrices were computed to represent 

different texture features. These calculated layers are then added as additional bands, and the 

classification is then conducted using conventional pixel-based spectral classification classifier. 

Adding texture features is the mostly widely used approach in pixel-based high spatial resolution 

imagery classification among the remote sensing community (Lu and Weng, 2007).  

 

Different texture features capture different properties of an image. Whether or not the 

computed texture features actually are useful in discriminating different classes in a classification 

system needs to be tested and investigated. This requires time and research efforts to identify 

suitable texture features with well-tuned parameters that work well with oneôs classification needs 

and the landscape of the study area. In addition, texture features are computed using a moving 

window. Determining a proper window size and shape to capture the texture features of the 
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targeting classification classes is critical. Adding additional texture feature layers can increase or 

decrease classification accuracy (Mather and Tso, 2009). 

 

Among the vegetation remote sensing community, feature extraction methods proposed by 

Haralick have been previously applied (Beguet et al., 2014; Kim 2009; Lu and Weng 2007; Pu 

2012; Ruiz, 2004; Wulder 2004; Yu et al., 2006). Since the level of classification, the composition 

of landscape (vegetation) in the study area, and texture features selected and parameters used 

varied widely, below I summarize and cite two works that related to detailed forest cover type and 

species composition classification using texture features with hyperspatial imagery data. 

 

Ruiz et al. (2004) tested four texture feature extractions: 1) statistical methods based on 

grey level co-occurrence matrices, 2) energy filters and edgeness factors, 3) Gabor filters, and 4) 

wavelet transform based methods to classify seven forest landscape types: high-density forest, mid-

density forest, areas combining forest-shrub, shrubs, scattered trees, scattered shrubs and olive 

trees. They explored a Mediterranean forest where there was a wide variety of structural and 

vegetation diversity. A QuickBird panchromatic image resampled to 2.4 m GSD was used to 

compute various texture features. They reported that the texture approach is efficient in separating 

landscape types that have spectral heterogeneity where unique intensity variations can be found in 

grey-scale (black/white) image; while landscape types that have unique spectral response but are 

very homogeneous in grey-scale image are not suitable to use texture features to separate the 

classification objects/classes, such as pasture land and cereal crops or fallow. In addition, they 

reported the main limitation of using texture features was the border effect. Since each texture 
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feature was computed using a local moving window of neighborhood pixels, error values were 

more cumulated at the transition area and they suggested further studies to reduce the border 

effect. Finally, they stated that there was no benchmark for the use of texture extraction method 

for classification, every single classification study has to test and find out the best texture features 

and parameters to suit the classification area and the purpose of the study, and apriori knowledge 

of the study area is required. 

 

Franklin et al. (2000) tested texture features at different classification hierarchies at 26 

forest plots in mixed-wood and boreal forests in Canada using airborne hyperspatial multispectral 

imagery (0.3m GSD) for species composition classification (hierarchical level 1: species name with 

percentage coverage; hierarchical level 2: conifer or hardwood with percentage coverage; and 

hierarchical level 3: three classes of mixed-wood, deciduous, and coniferous). They reported that 

adding texture features generally improved classification accuracy by 10-15%, however in some of 

their 26 plots, adding texture features did reduce the accuracy. In some of their plots, species 

composition appeared spectral distinctions for classification purpose, adding texture features in 

contrast confused this distinctiveness and reduced accuracy. They discussed the uncertainty in the 

incorporating the texture features in high spatial resolution imagery classification in forest 

applications and provided a checklist for better choosing texture features in various classification 

needs with tracing references in their discussion session. 
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Object-based approach 

Object-based image classification approach also has been employed to overcome the 

problem of high spectral variability within class in hyperspatial imagery (Hamada, 2011; Kim, 

2009; Lu and Weng, 2007; Myint, 2011; Qian and Gong, 2006; Yu et al., 2006). Object-based 

approaches first use image segmentation techniques to group relatively homogeneous pixels into 

polygon objects, and then performs classification on the segmented objects. By grouping objects in 

grey-scale layer, the confusion of high spectral variation in a certain pixel position through all 

bands is avoided. The quality and accuracy of the segmentation in the first step is critical to the 

final classification results. 

 

Hamada et al. (2011) applied object-based approach with various spectral band 

combination indices as features to classify life-form cover types in California sage scrub 

communities using different spatial resolution remote sensing imagery (SPOT at 10m GSD, 

QuickBird at 0.6m GSD, and infrared aerial photography at 0.15m GSD). True shrub, subshrub, 

herb, and bare ground were their classes. The object-based approach was successfully applied to 

capture individual shrub canopies and patches. They reported true shrub and bare ground were 

relatively easy to obtain reliably classification results, but subshrub and herb remain challenging. 

The object-based approach worked well with QuickBird imagery (0.6m GSD) where compared to 

the 0.15m GSD aerial photography, as the 0.6 m GSD did not have significant spectral variability 

within a class and at the same time maintains spectral separability between classes. The high 

spectral variability within a class at a 0.15m spatial resolution confused the segmentation algorithm 

to segment relatively homogeneous gray tone objects in the first step of the object-based approach, 

which significantly influenced the final classification results. 
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Kim et al. (2009) applied object-based approaches combined with texture features to map 

the three forest types using hyperspatial IKONOS imagery in a close canopy (dense) national forest 

in North Carolina. Their classes were deciduous broad-leaved forest, evergreen needle-leaved 

forest, and mixed evergreen deciduous forest, approximated the upper Level 3 Formation 

Hierarchy level in the Federal Geographic Data Committee (FGDC) National Vegetation 

Classification Standard Version 2 (FGDC, 2007).  One of their research questions was whether 

segmentation quality greatly influences the classification results and they found the answer to be 

yes. In addition, for forest application in their study site and classification level, they found that 

adding texture features did not increase classification accuracy primarily because the texture 

properties among their classes were very similar. 

 

Yu et al.  (2006) applied object-based approaches to perform detailed vegetation mapping 

of 48 classes using hyperspatial airborne remote sensing. Their classification scheme followed the 

California Vegetation Classification System (Vegetation Classification and Mapping Program, 

September 2003 edition), which was more detailed than the Level 3 in the USGS land-use, and 

Land-cover Classification System (Jin et al., 2011). They performed the object-based approach with 

different features such as texture features, ancillary topographic data and geometric features and 

achieved average overall accuracy of 51 percent to 58 percent, where 11 out of 43 of their 

vegetation alliances achieved results of 60 percent and higher (Yu et al., 2006). 
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Among the remote sensing literature, the suitability of using object-based approaches 

appears to be limited to when the grey-level image has relatively clear edges to delineate and 

segment objects that relate to the targeted classification objects/classes. Urban applications in 

these circumstances were likely to achieve better classification results using object-oriented 

approach. For example, Sun et al.  (2005) compared pixel-based and object based approach in 

classifying urban environment and found object-oriented outcompeted pixel-based approach. This 

makes sense that classes with similar spectral responses like roads, path, and parking lots that are 

not distinguishable by the pixel-based approach can be segmented out as different objects in object-

based approach  (Soe 2011; Sun et al., 2005). 

 

In vegetation applications, object-based approaches have been found to be successful in the 

level of land cover type classification using SPOT imagery by Duro (2011). They reported that 

object-based approaches did a better job than pixel-based approaches in classifying some of their 

classes such as wetland, riparian and mixed grassland. However, in general, the object-based 

approach and the pixel-based approach had similar overall classification accuracy in their 

classification scheme and study area. 

 

Multisource approach 

The multisource approach of image classification uses multiple gridded data sources, 

geometrically co-registered and rescaled to a consistent resolution, fused together into a single 

dataset then used with a classifier.  The input datasets often contain remote sensing imagery from 

multiple sensors, as well as ancillary spatial data such as topography and climate.  Solberg (1996) 
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applied various imagery fusion techniques to incorporate multisource remotely sensed data in 

forest classifications. Solberg (1996) co-registered 0.5m GSD multispectral aerial photography with 

0.5m GSD rasterized laser altimeter data and a reconstructed forest map to classify seven classes: 

shadow, shrub, dry grassland, deciduous forest, rock, peat, and conifer. Local spatial-spectral 

features were added to perform the classification. Using an iterative contextual classification 

algorithm, the iterated conditional modes (ICM) (Besag, 1986) were used to update a given pixel 

based on all available information in which the class with the maximum conditional probability 

was labeled. This technique is based on Bayesian probability theory, a detailed description of 

which can be found in Tso and Mather (2009). From the experiment results, Solberg found that 

adding the reconstructed forest map contributed the most improvement of accuracy in their study 

area, a coniferous forest in southeast Norway. Solberg also tested adding SAR data and an 81-band 

airborne spectrometer dataset collected at a spatial resolution of 5.6m x 5.6m to map six classes of 

different tree species with variations in tree height: Oak 1 (13-30m), Oak 2 (13-30m), Oak 3 

(>30m), Beech 1 (<30m), Beech 2 (>30m) and Pine in the Fontainebleau forest in France. Solberg 

achieved a 98.7% accuracy by including all the multisource data and using the contextual 

classification technique. Another finding of Solbergôs (1996) study was that choosing a more 

advanced statistical model resulted in a better improvement to classification performance than 

adding additional remotely sensed data. For multisource approaches in image classification, 

advanced techniques and reviews on data fusion can be found in Solberg (1999) and Abidi and 

Gonzalez (1992). 
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Contextual Approach 

The basic philosophy of the contextual approach to image classification is to label the class 

of a pixel based on its neighborhood pixels, but in a more generalizable way than texture or object-

based approaches. The application of contextual approaches to image classification have been 

primarily confined to the pattern recognition and computer vision communities, and is rare 

amongst the remote sensing community (Fröhlich, 2013). The increasing availability of 

hyperspatial imagery now makes it possible to apply advanced image processing techniques 

developed within the pattern recognition and computer vision communities to remote sensing 

applications. 

 

We will first review the conventional pixel-based, purely spectral classification approaches 

from a statistical perspective to help better understand the idea of contextual approach of 

classification: each material on the earthôs surface has specific reflectance signatures through the 

electromagnetic spectrum. Passive remote sensing imagery usually has multiple bands capturing 

electromagnetic radiation (EMR) across the visible and infrared regions. In an ideal situation, two 

pixels belonging to the same classification class should have the same reflectance signatures 

throughout the electromagnetic spectrum (feature space). In realistic situations, there is noise from 

the sensor and from the variations within the same class. Thus, the spectral response of pixels in 

the same class tends to cluster around the ideal response in the feature space. This cluster of the 

responses usually can be described with a suitable probability distribution. By sampling enough 

pixels responses in a class, the responses of pixels through feature space can be learned by 

supervised learning algorithms to make predictions on unlabeled pixels based on their responses 

through feature space. However, not all classes have separable reflectance signatures in the 
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measured parts of the electromagnetic spectrum. In addition, with the increase in pixel resolution 

with hyperspatial satellite imagery, the spectral variations of pixels within the same class increase 

significantly. Thus, the spectral response of pixels within the same class might not have clustered 

distribution around the ideal spectral response of the class thus it is hard to use statistical learning 

algorithms to predict based sole on spectral information. 

 

Contextual techniques are developed to tackle this problem. One approach is based on 

probabilistic relaxation (Dizenzo et al., 1987; Faugeras and Berthod, 1981; Peleg. 1980; Richards et 

al., 1982). The probability of the neighborhood pixels of a given pixel is used to update the label of 

the given pixel iteratively. The specification of neighborhood pixels used is based on different 

statistical measurement and techniques. For example, Press (1996) proposed a directional 

neighborhoods approach in which Press proposed a set of 21 neighborhood cliques. For example, 

in a 5 x 5 window, clique #1 contains pixel positions 4,5,8,9,10,13 which compasses the pixel 

direction of northeast; clique #2 contains pixel positions 9,10,13,14,18,19 which compasses the 

pixel direction of east, and etc. The homogeneity was computed for each clique and the clique 

with the highest value of homogeneity is chosen as neighborhood pixels to label and update the 

center pixel. Another approach can be traced back to Toussaint (1978) based on the theme of 

sequential compound decision theory.  Generally speaking, this approach attempts to find a path 

to search the entire image for the determination of a given pixel (Kartikeyan, 1994). Markov 

Random Field (Kindermann, 1980) is a tool that characterizes contextual information from the 

nearest neighborhood pixels (NN) to model prior probability density functions (p.d.f.), in turn, 

with the available of prior information, the classification can be expressed in terms of maximum a 
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posterior (MAP) where Bayesian theory can be applied (Tso and Mather, 2009). Even though there 

are numerous research and techniques available in contextualized classification in the pattern 

recognition, computer vision, and statistics community, there are very few applications in the 

remote sensing literature, especially in vegetation remote sensing community.  
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Chapter 2 Manuscript 

Abstract 
 

Maps of classified surface features are a key output from remote sensing. Conventional methods of 

pixel-based classification label each pixel independently by considering only a pixelôs spectral 

properties. While these purely spectral-based techniques may be applicable to many medium and 

coarse-scale remote sensing analyses, they may become less appropriate when applied to high 

spatial resolution imagery in which the pixels are smaller than the objects to be classified. At this 

scale, there is often higher intra-class spectral heterogeneity than inter-class spectral heterogeneity, 

leading to difficulties in using purely spectral-based classifications. A solution to these issues is to 

use not only a pixelôs spectral characteristics but also its spatial characteristics. In this study, we 

develop a generalizable contextualized classification approach for high spatial resolution image 

classification. We apply the proposed approach to map vegetation growth forms such as trees, 

shrubs, and herbs in a forested ecosystem in the Sierra Nevada Mountains.   

 

 

Keywords: high spatial resolution imagery; contextual classification; forest classification; remote sensing, 

lifeform  
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2.1. INTRODUCTION 

Remote sensing has long been used to assist in the monitoring and managing of forestlands. Since 

the 1940s, aerial photography has been used for manually interpreting forest attributes (Gougeon 

2003). Around the 1970s, the availability of coarse and medium spatial resolution satellite imagery 

started being used to map and classify forestlands at larger scales (Colwell, 1960; Heller, 1975; 

Hoffer and Staff, 1975; Lachowski et al., 2000; Jensen, 1979). However, initial attempts of 

mapping forest land cover types with medium to coarse scale satellite imagery were limited by their 

relatively low spatial resolution. Mapping tree canopy and individual tree characteristics within 

stands was found to be difficult or impossible using medium to coarse scale satellite imagery 

(Brockhaus and Khorram, 1992; Carreiras et al., 2006; Congalton et al., 1991; Franklin, 1994; 

Katoh, 1988). With the increasing availability of high spatial resolution satellite imagery 

(ñhyperspatialò, <1m ground sample distance, ñGSDò) in the late 1990s  (Ehlers et al., 2003; Ehlers, 

2004) combined with the progression of more advanced image processing algorithms, more 

detailed forest data can be obtained from these hyperspatial imagery (Falkowski, 2009). Satellite 

imagery (such as IKONOS, Quickbird, GeoEye, and WorldView 1, 2 and 3) outcompetes aerial 

photography in assisting forest monitoring and management with their relatively large spatial 

coverage, relatively high temporal frequency, and low within-scene distortion. There is a general 

trend of obtaining and updating long-term detailed forest data, moving away from manually 

interpretating imagery and moving towards semi-automatic or automatic processing of the 

hyperspatial satellite imagery (Domain, 2005; Gougeon, 2003). 
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Conventional classification techniques developed back in the 1970s used with medium or coarse 

scale resolution satellite imagery continue to be applied today. Conventional pixel-based 

classification techniques typically use a pixelôs spectral reflectance value to distinguish different 

classification classes. This method works well with coarse and medium resolution as each pixel 

covers relatively large areas (>10m GSD), at which land cover/land use classes typically have 

unique spectral characteristics. At higher spatial resolutions (<1m GSD), a pixel may be smaller 

than an object of interest (e.g. a tree), potentially resulting in high intra-class spectral variance. It is 

easy to have two pixels with similar spectral reflectance response in the electromagnetic spectrum 

belonging to two different classes in hyperspatial imagery, making purely spectral pixel-based 

classification a challenging task. Depending on the scale of classification, for example, for a ñtreeò 

cover class, different tree species may contribute to a wide range of spectral reflectance variance 

(Roberts et. al., 2004). In addition, at high spatial resolution, individual tree canopies are visible, 

containing pixels both on the sunlit side as well as on the shaded side of the canopy which leads to 

high variations of spectral reflectances within a class. For vegetation classification, there is a high 

chance that pixels in two different cover classes share similar or identical spectral reflectance 

responses resulting in misclassification when using solely spectral-based classifications. The 

limitations of applying conventional pixel-based classification approaches to hyperspatial imagery 

have been stated in many studies (Greenberg et al., 2006; Lu and Weng, 2007; Marceau et al., 

1990; Woodcock and Strahler, 1987; Yu et al., 2006). 

 

Many approaches and techniques have been developed to improve classification accuracy in 

hyperspatial imagery (Haralick, 1973; Lu and Weng; 2007; Mather and Tso, 2009; Ouma et. al, 
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2006; Puissant et. al, 2005; Wulder et al., 2004). Haralick (1973) first developed a set of 

generalizable procedure for extracting texture properties by computing local spatial statistical 

variations of tone values from single layer grayscale image and attracted numerous attentions from 

the remote sensing community. Among the vegetation and forestry remote sensing communities, 

methods such as object-based classification, multi-image fusion techniques, as well as incorporating 

ancillary data into the classification schemes have been applied to improve the classification 

performance in high spatial resolution imagery (Hamada, 2011; Kim, 2009; Lu and Weng, 2007; 

Myint, 2011; Qian and Gong, 2006; Solberg, 1996; Yu et al., 2006).  Perhaps the most widely used 

approach in pixel-based high spatial resolution imagery classification involves adding different 

local-window texture features into a classification scheme (Beguet et al., 2014; Kim 2009; Lu and 

Weng 2007; Pu 2012; Ruiz, 2004; Wulder 2004; Yu et al., 2006).  

 

However, whether or not the computed texture features actually represent discriminations of 

different classes in oneôs classification system needs to be tested and investigated. This requires 

time and research efforts to identify suitable texture features with well-tuned parameters for oneôs 

classification needs and the properties of the landscape of the study area. In addition, texture 

features are computed using a fixed-size moving window, determining a proper window size is a 

critical step in using these features in a classifier. Adding texture feature layers have been found to 

both increase and, at times, decrease classification accuracy (Franklin et al., 2000; Mather and Tso, 

2009; Ruiz, 2004).  
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Incorporating texture features into a classifier has several reported issues: 1) extracting and 

computing local texture features with square or rectangular window shapes create artifacts at the 

spatial edges between different classes - the border effect problem (Moser, 2009; Ruiz, 2004); 2) 

testing combinations of parameters in each feature extraction and computation is time consuming 

and the choice to use what types of features highly depends on specific classes; 3) object-oriented 

approaches using texture features work well in urban environment where buildings and roads are 

structurally distinguishable (Duro, 2011; Soe 2011; Sun et al., 2005), whereas might not work well 

in forested landscapes where different classes might not have structural and spectral homogeneous 

units (Ruiz, 2004). In summary, there is no single technique available to meet the challenges in 

hyperspatial image classification across all common target classes and across the wide diversity of 

different landscapes. 

 

In this study, we developed and tested a new method and framework for incorporating spectral 

and spatial information into a classifier applied to hyperspatial imagery. The basic operation of the 

proposed contextual classification approach is to label the class of a pixel based on its 

neighborhood pixels across multiple electromagnetic spectrum channels (bands) in a general, 

flexible way.  

 

The paper is organized as follows. A detailed description of the proposed method is presented in 

Section II.  A case study of the proposed methods for realizing lifeform classification applied to 

Worldview-2 imagery of the Lake Tahoe Basin in the Sierra Nevada Mountains 
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(California/Nevada) is described in Section III. Results are discussed in Section IV. Conclusion 

and discussion are presented in Section V.  

 

2.2. METHOD 

General Idea and Framework 

Let N be a three-dimensional image array with row and column numbers ὔ  x ὔ  and n layers 

(Figure 1).  ὢȟ is a single cell location in N with a set of n layer values. Let -be the classified two ‫

dimensional array of N. The number of rows and columns in is the same as the number of rows ‫ 

and columns in N. The values of are chosen from a user defined classification category. The ‫ 

conventional method of obtaining ‫ȟ  is only ,‫ȟ is to use values in ὢȟ, in other words 

dependent on ὢȟ.  

 

 

 

 

 

 

 
 

Figure 1. Conceptual diagram of contextual classification 
 

In this study, we propose to use not only ὢȟ but also its nearby cells ranging from ὢ ȟ  to 

ὢ ȟ  to determine the class of ‫ȟ. Here we propose a simple way to control the number of 
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neighborhood cells: the moving window approach. Let ” be an odd number. The classification of 

ὢȟ is dependent on a set Ὓȟ of pixels, where 

 

Ὓȟ = {ὢȟȟ     ȟ     }. 

 

For example, we have an 8 band multispectral image and we want to classify a single pixel using 

contextual information from a 7 by 7 window around that pixel. In the feature extraction stage, in 

this case, n equals 8, ” equals 7, the number of features being extracted would be from ὢ ȟ  to 

ὢ ȟ , which is 7 x 7 x 8 = 392 features, in other words, the class of ‫ȟ is dependent not only 

on ὢȟ (8 values) but 392 values for all bands and all cells in the neighboring 7x7 window. Since 

we will be using a statistical learning approach for image classification, each feature will become a 

predictor variable that will be used to build a statistical model classification. 

 

 

 

 

 

 

Figure 2. Conceptual diagram of contextual classification feature extraction 
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Random Forests 

As ” becomes larger and larger, the number of features being extracted increases exponentially. For 

example, if we consider contextual information of 15 by 15 neighborhood, the features available to 

be used to determine the class of a single pixel ‫ȟ would be 15 x 15 x n layer. This large number 

of input features likely includes useless or redundant information and also greatly increases the 

computational needs to train and implement the classifier. Therefore, we need to utilize a 

classification algorithm that can used with overpredictive datasets without overfitting the classes, as 

well as potentially allowing the key features to be identified so an optimized model can be 

produced.  While many machine learning classification algorithms can be leveraged, we chose to 

use Random Forests by Breiman (2001). 

 

Random Forests is an ensemble decision tree based classifier, where each tree is trained using a 

bootstrap sample of ά from the original training samples ὓ and each split occurs at a variable 

chosen from a random subset of Ὤ from the original variables ῷ (Breiman, 2011). For classification, 

the final result is based on a majority vote over all of the trees (the ñForestò, Figure 3). By using a 

newly sampled random subset of variables for splits in each tree, the correlations between each tree 

in the ensemble are reduced and computational time is saved. Since the subset of variables chosen 

to be used in each tree is different and variables being sampled to a set can be in a new set next 

time, this helps stabilize the classification accuracy and acquire generalizable classification results 

where a small change in the nature of the training samples will not dramatically alter the 

classification accuracy (Breiman, 2001). 
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While Random Forests is generally insensitive to highly overpredictive training datasets, two issues 

arise when using Random Forests with a contextual features dataset. First, balanced training 

datasets are needed to properly represent classes that may have different sample sizes (Chao et. al, 

2004). If the training dataset is not balanced, far more trees are needed to properly sample from 

the minority classes (Breiman, 2001). Second, models trained from the full feature set take a 

significant amount of computational time to apply to image datasets, so optimizing the features 

used to train the final model by removing useless or redundant features can significant speed up 

the prediction. 

 

 

 

Figure 3. Conceptual diagram of Random Forests modelï n represents n number of binary decision tree. Each tree 
grows independently and the final prediction obtained is through aggregation by majority voting. Diagram is adapted 

from Fröhlich et al (2013) 
 

 

Balanced Training Data 

Several resampling techniques can be applied to balance the training dataset before using the 

Random Forest classifier. Downsampling techniques can be employed to balance the majority 
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classes to have the same frequency as the minority classes. Upsampling techniques can be used to 

sample the minority classes with replacement to make all classes distributed equal as the majority 

class (Kuhn, 2014). SMOTE sampling technique can be employed to re-sample the data to a user-

defined numbers of samples by up-sampling the minority class and down-sampling the majority 

classes (Torgo, 2010).  

 

Variable Selection 

Within the use of Random Forests, important predictor variables can be calculated and ranked by 

the variablesô predictiveness. Several techniques have been developed to calculate the variable 

importance (VIMP) (Breiman, 2001; Diaz-Uriarte and Alvares 2006; Ishwaran et al., 2010). We 

employed the Maximal Subtree method proposed and implemented by Ishwaran et al (2010). 

Basically, a Maximal Subtree of a variable is defined as the terminal node where a given variable 

encounters its first split. Then the minimal depth is calculated to measure the distance from the 

root node to a variableôs maximal subtree. The shorter the minimal depth of a given variable, the 

greater the impact of that variable has on prediction (Ishwaran et al., 2010).  
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2.3. Application of Contextual Classification to Lifeform Classification 

Study Area 

The study area is the northeastern side of Lake Tahoe Basin, located in the Sierra Nevada 

Mountains along the border of California and Nevada (Figure 4). Elevation ranges from 1,900m to 

3,050m above sea level (a.s.l.). The climate of the Lake Tahoe Basin follows a Mediterranean 

pattern with long, cool wet winters and short, warm dry summers. Precipitation usually occurs 

between October and May as snow. The topographic complexity leads to high variations in 

temperature, precipitation, and solar radiation and has resulted in a rich diversity of vegetation 

types. The area is dominated by a variety of conifer species including White Fir, Jeffrey Pine, Red 

Fir, Lodgepole Pine, and Incense Cedar. Broadleaf tree and tall shrub species are also present, and 

include Quaking Aspen, Mountain Alder and several species of Willows.  In addition to trees and 

tall shrubs, many species of shrubs and herbs are also present  (Barbour et al., 2007).   
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Figure 4. Study Area. Lake Tahoe is labeled in red. The imagery employed in this study covers the northeast of Lake 
Tahoe. 

 

Remote Sensing Imagery 

We used WorldView-2 (ñWV2ò) imagery in this analysis. Worldview-2 is an 8-band, multispectral 

image that collects data at 0.45 m across a wide, panchromatic band, and at 1.85m for the 8 
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visible/near-infrared spectral bands that range between 400 to 1040nm. The acquisition was 

acquired at an off nadir angle of 8.39° on September 10th, 2010. The azimuth was 137° and solar 

elevation was 54.22°. The imagery covers a total area of 422.48 km2 (Figure 4). The imagery was 

atmospherically corrected and orthorectified by the USDA Forest Service Region 5 Remote 

Sensing Laboratory. The multispectral imagery was pansharpened to 0.45 m.  

Training Data 

We prepared training data by photointerpreting eight lifeform classes from the pansharpened 

WV2 imagery. More specifically, training polygons were digitized at the individual plant level for 

trees or at the level of a small, homogenous patch for shrub and herbs. Based on the plant species 

present in the study area, we grouped our training data into eight lifeform/growthform classes 

(Table 1).  

 

Table 1. Eight lifeform/growthform classes with representing species 

Lifeform/Growthform Classes Dominant Species/Materials  
Conifer Tree White Fir, Jeffrey Pine, Red Fir, Lodgepole Pine, and Incense Cedar 
Hardwood Tree Quaking Aspen 
Tall Shrubs Mountain Alder, Willows 
Shrubs Arctostaphylos nevadensis, Ceanothus cordulatus, Ceanothus prostrates, 

Chrysolepis sempervirens, Quercus vaciniifolia, Spiraea densiflora ssp. splendens 
Herb Dry/wet grasses, Meadows  
Soil Barren soil, sand and dune 
Barren and Impermeable Barren, cliffs, and bedrock 
Water Water  
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We constructed a stratified random sampling design based on the Tahoe Basin Exiting Vegetation 

Map (TBEVM, Greenberg et al. 2006) vegetation subclass, which was based on the FGDC 

mapping standard (Table 2). 

 

Table 2. Federal Geographic Data Committee Vegetation Classification Standard Subclass Categories 

SUBCLASS 
Deciduous closed tree canopy 
Evergreen closed tree canopy 
Mixed evergreen-deciduous closed tree canopy 
Evergreen open tree canopy 
Deciduous open tree canopy 
Mixed evergreen-deciduous open tree canopy 
Evergreen shrubland  
Deciduous shrubland  
Mixed evergreen-deciduous shrubland 
Herbaceous Vegetation 
Sparse Vegetation 

 

Polygons representing each subclass were randomly chosen (one polygon/subclass), 

photointerpretation was then conducted on each chosen polygon to identify the target lifeform 

classes. The photointerpretation was guided by field data collected by USDA Forest Service and by 

the University of California at Davis in 2011, Google Earth historical imagery, Google street view, 

and vegetation index layers such as NDVI. We updated the training data iteratively by using the 

first round of training data to train a model, using the model to predict on randomly chosen image 

subsets stratified by FGDC subclass, correcting prediction errors and including new training sites 

into the training data. The iterative process of updating training data helps to capture contextual 

information into the training and learning process. For example, we did not include the long tail 

of conifer tree shadows over a flat surface of shrubs in the early training data. However, we noticed 

that the predictions of those long tails were classified incorrectly in the early rounds of image 

subset predictions. We then added new training data of these shadowed shrubs to the training 
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data. For subsequent prediction subsets, this contextual information was learned and predicted 

correctly by the machine-learning algorithm. The iterative process of updating training data is 

illustrated in figure 5 and the final spatial distribution of training data is shown in figure 6.  

 

Validation data was prepared using USDA Forest Service field data as well as additional 

independent photointerpreted data. Table 3 summarized the validation data for each class. 

 

Table 3. Validation Dataset. 

Class # of pixels 
Conifer Tree 55 
Hardwood Tree 19 
Herb 25 
Shrub 27 
Tall Shrub 15 
Soil 20 
Barren and Impermeable 37 
Water 21 
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Figure 5. Flowchart of iterative process of updating training data.  
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 6. Spatial distribution of the final training data. Yellow dots represent the location of training samples. 
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A total of 237,649 training samples were extracted from training polygons using 15 by 15 window 

followed the method in Section II  (Table 4).  

 

Table 4. Training polygons and number of pixels extracted using 15 x 15 window 

Class # of polygons # of pixels 

Conifer Tree 101 9,832 

Hardwood Tree 14 47,438 

Herb 20 41,472 

Shrub 18 3,478 

Tall Shrub 13 13,139 

Soil 21 11,649 

Barren and Impermeable 11 22,562 

Water 6 98,079 

 

Model Construction and Optimization 

We utilized the RandomForestSRC implementation of Random Forest (Ishwaran, 2015) within 

the R Statistical Computing framework (R version 3.1.3, 2015) to train a classification model 

relating the eight (8) lifeform classes to the contextual information extracted from the neighboring 

pixels. To begin, we implemented a statistical downsampling based on the minority class (N = 

4,378) to balance the training samples. 

 

RandomForestSRC provides a method to choose a reduced set of variables important to the model 

(Ishwaran et al. 2010). We used the Maximal Subtree method to calculate the variable importance 

(VIMP) (Ishwaran et al., 2010). This allows us to first determine the correct window size, with the 

goal of confirming that the window size used was not too small for the analysis in question. As 

such, we ran the RandomForestSRC model on several versions of the training data, in which only 
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features from within a given distance from the center pixel were used, ranging from 1 to 15 pixels 

in radius.  At each window size, the number of total available variables and selected variables were 

recorded, and percentage of important variables chosen from all available variables was calculated. 

Figure 7 shows that by extracting contextual information with window sizes ranging from 1 to 7 

pixels, all the features within this radius were selected as important to construct the model, which 

means that these windows are likely too small (there may be additional benefit from searching the 

feature space at a greater distance).  Beyond 7 pixels, the percentage of variables chosen decreased 

to a minimum of at a 13 x 13 window size and then stabilized at 15 x 15, which confirmed that 

15x15 was sufficiently large to capture the important contextual information.  

Figure 7.  Optimal window size test plot. 
 
Once the window size was confirmed, the next step was to optimize the variables needed to run the 

model without a loss of accuracy.  This step repeated the previous step with the 15x15x8 window 

of features (a total of 1800 available features) and using the VIMP to select which of the 1800 

variables were chosen as important for the model.   
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As a final optimization, we reduced the total number of trees needed to construct the final model 

by examining the change in error as additional trees were added, and stopping the model when the 

error rate improved by less than 0.1% by adding an additional tree. From a starting point of 1000 

trees, we found that our model required only 899 trees.   

 

Once the optimizations had been performed, a final model was constructed which was used with 

the validation data and to predict on images. To evaluate the model itself, we summarized the 

histograms of the radius, azimuth, and bands chosen for use with this model. 
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2.4. Results 

Of the 1800 features found within a 15x15 window, with 8 spectral bands, 122 variables were 

selected for use in the final model.  Of these 122 variables, five of the eight WV2 spectral bands 

were found to be important: blue (400-450nm), red (630-690nm), ñred edgeò (705-745nm), and 

both near infrared bands (770-895nm, and 860-1040nm) (Figure 8). Variables were used across all 

radii, although there was a notable decrease in the number of variables chosen at distances 

between 2 and 5 pixels, with the most important radii being close to the center, and at the 

maximum distance from the center.  Figure 9 shows a histogram of variables chosen for a given 

range of radii vs. the total possible of variables possible at that radius. Figure 10 shows a histogram 

of the variables used as a function of azimuth. The distribution of the selected important variables 

in azimuth showed that most variables were picked up in the northeast and southwest directions. 

Figure 11 visualizes the spatial and spectral distribution of the selected variables used in the model. 

 

 

 

 

 

 

 

 
 

Figure 8. Visualized spatial distribution of the selected variables through different bands in the imagery. 
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Figure 9. Percentage of variable selected from all available in a given range of search radius. 
 

Figure 10. Azimuth plot. All the important variables selected in direction to the center pixel. 
 

Figure 11. Visualized the spatial and spectral distribution of the selected variables used in the model. 
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Accuracy Assessment 

We used an independent set of validation data to evaluate the results. These data were obtained by 

the USDA Forest Service as well as additional independent photointerpreted data points. A total 

of 219 validation points were used. A confusion matrix was produced, producerôs and userôs 

accuracy were computed (Table 5 and 6). Compared to the validation data, the overall 

classification accuracy of the contextual classification model was 76% with Kappa of 0.72.  

 

Table 5.  Confusion Matrix of All 8 Classes 
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Barren and Impermeable 28 0 0 0 4 0 0 0 32 

Conifer Tree 1 52 2 0 5 3 0 0 63 

Herb 1 0 13 1 0 3 0 0 18 

Hardwood Tree 0 1 1 15 1 2 1 0 21 

Soil 2 0 0 0 16 0 0 0 18 

Shrub 5 2 1 2 8 18 0 0 36 

Tall Shrub 0 0 8 1 0 1 14 0 24 

Water 0 0 0 0 0 0 0 21 21 

# of Ground Truth Pixels 37 55 25 19 34 27 15 21 233 
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Table 6.  User and Producer Accuracy 

 
Producerôs  
Accuracy 

Userôs 
Accuracy 

Barren and Impermeable 75.7% 87.5% 
Conifer Tree 94.5% 82.5% 
Herb 52.0% 72.2% 
Hardwood Tree 78.9% 71.4% 
Soil 47.1% 88.9% 
Shrub 66.7% 50.0% 
Tall Shrub 93.3% 58.3% 
Water 100% 100% 

 

The class of water achieved the highest 100% accuracy because of its distinguishable spectral 

signatures as well as unique contextual pixel neighborhood, as a water pixel is much more likely to 

be next to another water pixel. For vegetation classes, conifer trees stood out as the most accurate 

class. This could be partially because that the distinct crown shadow contributing unique 

contextual patterns for distinguishing conifer trees from other vegetation classes.  

 

In addition to the standard pixel-level accuracy results, we applied the final model to several 

randomly chosen scene subsets to provide additional qualitative visual assessments of the accuracy 

of the model (Figure 12, 13, and 14). 
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Samples of Classified Image Subsets 

Two image subsets of relatively open conifer canopy area were classified as shown in figure 12. The 

shrubs and soils in the open canopy areas were captured by the model and classified properly.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 12. Lifeform classification result on 251x251 image subsets. 
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Two image subsets of 1) mixed open conifer and deciduous trees and 2) open conifer with shrubs 

were classified as shown in figure 13. The model was able to distinguish hardwood trees, tall 

shrubs, shrubs, and conifers especially shown in the left classification result in figure 13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.  Lifeform classification result on 401x401 image subsets. 
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The large image subset shows the classification result of a mix conifer, deciduous and shrub land 

near the lakeshore (Figure 14).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14. Lifeform classification result on 1600 x 1600 image subset. 

 


