
c⃝ 2015 Hao Wu

EFFICIENT LARGE FLOW DETECTION OVER ARBITRARY
WINDOWS: AN EXACT ALGORITHM OUTSIDE AN AMBIGUITY

REGION

BY

HAO WU

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Adviser:

Associate Professor Yih-Chun Hu

ABSTRACT

Being able to exactly detect large network flows under an arbitrary time win-

dow model is expected in many current and future applications like Denial-

of-Service (DoS) flow detection, bandwidth guarantee, etc. However, to the

best of our knowledge, there is no existing work that can achieve exact large

flow detection without per-flow status. Maintaining per-flow status requires

a large amount of expensive line-speed storage, thus it is not practical in

real systems. Therefore, we proposed a novel model of an arbitrary time

window with exactness outside an ambiguity region, which trades the level

of exactness for scalability. Although some existing work also uses some

techniques like sampling, multistage filters, etc. to make the system scal-

able, most of them do not support the arbitrary time window model and

they usually introduce a lot of false positives for legitimate flows. Inspired

by a frequent item finding algorithm, we proposed Exact-outside-Ambiguity-

Region Detector (EARDet), an arbitrary-window-based, efficient, simple,

and no-per-flow-status large flow detector, which is exact outside an ambi-

guity window defined by a high-bandwidth threshold and a low-bandwidth

threshold. EARDet is able to catch all large flows violating the high-

bandwidth threshold; meanwhile it protects all legitimate flows complying

with the low-bandwidth threshold. Because EARDet focuses on flow clas-

sification but not flow size estimation, it demonstrates amazing scalability

such that we can fit the storage into on-chip Static Random-Access Memory

(SRAM) to achieve line-speed detection. To evaluate EARDet, we not only

theoretically proved properties of EARDet above, but also evaluated them

with real traffic, and the result perfectly supports our analysis.

ii

ACKNOWLEDGMENTS

I would like to express sincere appreciation to my advisor Professor Yih-Chun

Hu for his help and advice in developing the work and writing of this thesis.

Also, I want to give special thanks to Professor Hsu-Chun Hsiao, who has

worked together with me on this project for almost one year. She gave me

many valuable suggestions on how to work like a real researcher. Finally,

many thanks to my family who supported and helped me finish my Master’s

Degree.

iii

TABLE OF CONTENTS

LIST OF ABBREVIATIONS . vi

LIST OF SYMBOLS . vii

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND KNOWLEDGE 4
2.1 System Model . 4
2.2 Large and Small Flows . 4
2.3 Time Window Models . 5

CHAPTER 3 RELATED WORK . 7
3.1 Counter-Based Algorithm . 7
3.2 Sketch-Based Algorithm . 7
3.3 Sampling-Based Algorithm . 8
3.4 Drawbacks of Current Algorithms 8

CHAPTER 4 PROBLEM DEFINITION 10
4.1 Exact-Outside-Ambiguity-Region Large-Flow Problem 10
4.2 Design Goal . 11

CHAPTER 5 ALGORITHM . 13
5.1 EARDet Overview . 13
5.2 Algorithm Description . 14
5.3 Optimization in Data Structure 14

CHAPTER 6 ALGORITHM ANALYSIS 18
6.1 Property 1: No False Negative on Large Flows 18
6.2 Property 2: No False Positive on Small Flows 20
6.3 Property 3: Large Flow Incubation Period 21
6.4 Property 4: Deterministic Performance 22

CHAPTER 7 EVALUATION . 23
7.1 Theoretical Evaluation . 23
7.2 Experimental Evaluation Environment 24
7.3 Experimental Evaluation Results 27

iv

CHAPTER 8 CONCLUSION . 32

APPENDIX A PROOF SKETCH FOR LEMMAS 33
A.1 Lemma 7 and Proof Sketch . 33
A.2 Lemma 8 and Proof Sketch . 35
A.3 Proof Sketch of Lemma 2 . 35
A.4 Proof Sketch of Lemma 4 . 36

REFERENCES . 38

v

LIST OF ABBREVIATIONS

DoS Denial of Service

EARDet Exact-Outside-Ambiguity-Region Detector

MG Misra-Gries

FMF Fixed-window-based Multistage Filter

AMF Arbitrary-window-based Multistage Filter

FN False Negative for large flows

FP False Positive for small flows

No-FNℓ No False Negative for large flows

No-FPs No False Positive for small flows

vi

LIST OF SYMBOLS

f Flow in network link

F A set of flows

t Timestamp

ρ Rate of link capacity

α Maximum size of packet

THℓ Low-bandwidth threshold of ambiguity region

THh High-bandwidth threshold of ambiguity region

γℓ Rate limit for low-bandwidth threshold (THℓ)

βℓ Burst limit for low-bandwidth threshold (THℓ)

γh Rate limit for high-bandwidth threshold (THh)

βh Burst limit for high-bandwidth threshold (THh)

n Number of counters in EARDet

βTH Threshold of counter in EARDet (> βℓ)

β∆ Equals βTH − βℓ

R(t1, t2) Average flow rate over time interval [t1, t2)

tincb Incubation period of large flows

tupincb Upper bound of incubation period (tincb) for all large flows

RNFN Lower bound of large flow rate for no false negative over large flows
(No-FNℓ)

RNFP Upper bound of small flow rate for no false positive over small flows
(No-FPs)

vii

CHAPTER 1

INTRODUCTION

Accurately identifying large flows1 which occupy high bandwidth or con-

sume a large volume of link bandwidth over some short time window is signif-

icantly important for various applications in networking and security, such as

Denial of Service (DoS) defense and bandwidth guarantee. However, no ex-

isting scalable approach both considers large flows over the arbitrary window

model and is exact in classifying flows in one pass. The arbitrary window

model considers large flows over every range of time which begins at each

time point in the past and ends at the current time, so that it can even de-

tect burst flows which could evade the detection by a system over fixed-time

window model.

Hence, we proposed a newly designed model with exactness outside a small

ambiguity region, which is determined by two adjustable bandwidth thresh-

olds. This novel model classifies small flows, median flows, and large flows in a

network link. The small flow is a flow whose size is below the low-bandwidth

threshold, the large flow is a flow whose size exceeds the high-bandwidth

threshold, and the result of flows are defined as median flows. Our model

with exactness outside the ambiguity region is able to guarantee that all

large flows are going to be caught anyway and no small flows are going to

be caught by mistake. This model makes sense in large flow detection, be-

cause we can limit the severe damage resulting from large flows and protect

the user experience of legitimate users (i.e. small flows). Although existing

work [2], [3] discussed some similar ideas, only probabilistic bounds outside

This thesis reuses some parts including text and figures from Wu, H. et al. “Efficient
Large Flow Detection over Arbitrary Windows: An Algorithm Exact Outside An Am-
biguity Region”, IMC ’14 Proceedings of the 2014 Conference on Internet Measurement
Conference, pp. 209-222 [1], c⃝2014 Association for Computing Machinery, Inc. Reprinted
by permission. http://doi.acm.org/10.1145/2663716.2663724.

1This is also called as elephant flows in the literature.

1

a region are discussed. With the model of ambiguity region between two

bandwidth threshold, we are able to trade the level of exactness for scalabil-

ity, and thus we are able to run the large flow detector in on-chip memory

and achieve link-speed flow check. With this ambiguity-region model and

the arbitrary window model, we are able to improve a lot of applications,

like DoS flow detection, bandwidth guarantees, etc.

As far as we known, there is no algorithm that is able to provide an arbi-

trary window check with exactness outside an ambiguity region. Those prior

approaches which only monitor average network throughput are not able to

detect bursty flows. For instance, by deliberately spreading burst across two

neighbor time intervals, a large bursty flow is able to pass the periodic large

flow detector which resets the state periodically. Moreover, our model is de-

terministic. Although adding randomness into large flow detection (e.g. the

time interval is random) can to some extend solve the problem, such ran-

domized algorithms are not able to provide strong deterministic guarantees

and stable performance.

Therefore, we proposed a novel arbitrary-window-based detector, EARDet

(Exact-outside-Ambiguity-Region Detector), which is exact outside an am-

biguity region. Built on the frequent-item-finding algorithm proposed by

Misra and Gries [4], EARDet is an efficient, simple, and no-per-flow-state

one-pass streaming algorithm that only maintains a small array of counters.

We increase or decrease the counters when a new packet comes into the de-

tector, and once a flow’s counter exceeds the counter threshold, we identify

it as a large flow. It classifies the flows by a high-bandwidth threshold and a

low-bandwidth threshold into large, medium and small flows, and the ambi-

guity region contains flows between these two thresholds (i.e. medium flows).

While keeping no miss detection on large flows, EARDet can project every

small flow from false detection with no assumption on the input traffic and

attack pattern.

Moreover, after optimization, we surprisingly found EARDet is extremely

scalable in that it only requires a very small amount of memory while keeping

the strong guarantee over large flow detection. With the requirement of only

such a small size of memory, we can fit it into some on-chip SRAM (Static

Random-Access Memory) and let it process packets with line speed. Of

course, the reason of such efficiency is that EARDet only classifies flows

into small flow, median flow, and large flow, but does not estimate the size

2

of the flow.

To evaluate and demonstrate those strong properties of EARDet, in the

rest of this thesis, we are going to not only present detailed theoretical anal-

ysis for EARDet, but also test EARDet with real traffic in our simulation

platform.

3

CHAPTER 2

BACKGROUND KNOWLEDGE

2.1 System Model

Flow identifiers In general, the information in the packet header acts as

the flow identifiers (e.g. IP address, port number, etc.) to group packets into

different flows. In this thesis, we are focusing on research on a generic large-

flow detection solution which can be applied in cases without assumption on

flow identifiers. Similarly to prior traffic monitor work, we assume the flow

identifiers (or flow IDs) are unforgeable, which can be achieved by multiple

existing approaches, e.g. source authentication [5] and ingress filtering [6].

Packet streams In the packet space X , we consider that the large-flow

detector processes a packet stream X = ⟨x1, · · · , xk⟩ coming in sequence

through a link with capacity ρ, where xi ∈ X ∀i = 1 · · · k. Due to the high

capacity of the link and the limit of the memory of the detector, the detector

can only process the packets once (i.e. only making one pass over the packet

stream).

For a packet x, we make the following denotation for later discussion. The

time at which the large-flow detector observes the packet x is denoted as

time(x); the flow ID of the packet x is denoted as fid(x); and the size of

packet x is denoted as size(x). Then we denote the traffic volume of a flow

f during time [t1, t2) as vol(f, t1, t2) !
∑

x∈X ,fid(x)=f,t1≤time(x)<t2
size(x).

2.2 Large and Small Flows

The large flow here is the flow which occupies high bandwidth or consumes a

large volume of link bandwidth over some short time window. Therefore, we

defined a threshold function TH(t2 − t1) for the limit of bandwidth. The t2

4

and t1 in the function indicate that the function only depends on the length

of the time window [t2, t1).

For a flow f , if there exists a time window [t1, t2) over which the volume

of flow vol(f, t1, t2) exceeds a threshold function TH(t2− t1), then the flow f

is classified as large flow; otherwise, the flow f is considered as small flow.

Namely, (i) when vol(f, t1, t2) > TH(t2 − t1), f is large flow; conversely, (ii)

when vol(f, t1, t2) ≤ TH(t2 − t1), f is considered as small flow.

Leaky bucket model Ideally, people want to define large flow based

on the leaky bucket model. The leaky bucket model is widely used in the

packet switched computer network for checking the traffic of data packets and

defining the bandwidth limits and burstiness. In the leaky bucket model, the

bucket is actually a counter with as fixed rate to decrease its value when the

counter is larger than zero. When new packets of a flow arrive at the bucket,

it increases the value by the volume of the packets and checks whether the

value exceeds the threshold of the leaky bucket. If the threshold is exceeded,

then the flow exceeds the bandwidth limit, i.e. the decreasing rate of the

bucket.

Then, the threshold function based on the form of the leaky bucket de-

scriptor is: TH(t) = γ t + β, where γ > 0, β > 0. The γ and β here are the

decrease rate and threshold of the leaky bucket. However, utilizing the leaky

bucket algorithm to check large flow is impractical. This is because network

links contain numerous flows and usually run at high speed (e.g. the rate of

backbone line is above gigabytes/s), it is very hard to keep the per-flow state

as the leaky bucket model does. Thus, catching the large flow defined by the

leaky bucket model is challenging.

2.3 Time Window Models

The time window [t1, t2) is a range of time over which the large-flow detector

considers the volume of the flow. For example, in some approaches, if the

volume of the large flow in [t1, t2) exceeds some threshold, then, it is judged as

large flow. To identify the large flows defined by the leaky bucket model, the

algorithm has to use the arbitrary window model [3]. However achieving the

arbitrary window model in practice is challenging, therefore, people usually

use some approximate approaches to roughly identify large flows. Thus we

5

40 Gbps link congested by
50-Byte packets

Landmark windowmodel
(landmark at 0)

Examine flows in [0, t) ==> flow B evades detection

Sliding windowmodel
(window size = 30ns)

Examine flows in [t-30, t) ==> flow B evades detection

Arbitrary windowmodel Examine flows in [s, t) for all t > s >= 0 ==> flow B is a
large flow over [10, 50) and can be detected

0 10 20 30 40 t=50 (ns)

A B C D B

Figure 2.1: In this example, if a flow’s volume in time window w with any
size is larger than 40 Mbps·w + 500 Kb, then it is a large flow. The flow B
exceeds the threshold over time window w = [10, 50), however, only the
arbitrary time window can catch it [1].

have two more typical time window models: the landmark window model [2,

4, 7–12] and the sliding window model [13–15].

Landmark window model The landmark window model takes the clos-

est landmark in the past as the starting time and the current time as the

ending time for each time windows (e.g. the landmark could be placed in

each 10 seconds). In other words, the landmark window model checks every

time window in {[ti, ti +∆i)|∆i < ti+1 − ti}.

Sliding window model The sliding window model considers the recent

traffic as more important than the old traffic, thus the time window starts at

some recent time in the past and ends at the current time. Once a new packet

arrives, the sliding window model will exclude the oldest packet and keep the

newest one. We can state the sliding time window as {[t−∆, t)|t ∈ R}.

Arbitrary window model The arbitrary window model is the stronger

time window model to detect the large flows. It monitors each possible time-

scales that starts at every instant in time and ends at the current time.

Namely, for a flow f , the arbitrary window model monitors it over windows

{[t1, t2)|∀ t1, t2 ∈ R, t1 < t2}. Therefore, it is more difficult for large flows to

evade the detection in front of the arbitrary window model, as demonstrated

in Figure 2.1.1

1Figure 2.1 is taken from the paper written by Wu et al. [1] c⃝2014 Association for
Computing Machinery, Inc. by permission.

6

CHAPTER 3

RELATED WORK

In this chapter, we review prior works by the techniques they use in the

algorithm as presented in the survey by Cormode and Hadjieleftheriou [16]:

counter-based technique, sketch-based technique, and sampling-based tech-

nique. We pick and summarize some typical algorithms in each category and

discuss their drawbacks.

3.1 Counter-Based Algorithm

There are many counter-based algorithms working to find the frequent item,

which is closely related to our large-flow identification problem. In a stream

with m items, the frequent item is the item that presents more than m
n+1

times, where the n is the number of counters. The Misra-Gries (MG) algo-

rithm [4] takes a stream of items as input and find the set of frequent items

exactly. The MG algorithm extends the majority algorithm [17, 18], which

only considers finding the majority vote.

3.2 Sketch-Based Algorithm

The sketch-based algorithm takes a stream as input, applies linear projection

or hashing on the input, and produces a matrix. The matrix usually consists

of a small number of bits.

Fixed-window-based Multistage Filters (FMF) A multistage filter

algorithm is proposed by Estan and Varghese [2] to detect large flows over

the fixed window model1 (called FMF in this paper). The FMF has multiple

1The fixed window model is a special case of the landmark window model with a fixed
measurement interval.

7

stages, and each of the stages contains an array with the same number of

counters. When a packet arrives at the multistage filter, its flow identifier is

hashed to one counter in each stage (each stage has a different hash function).

For each counter, the value increases by the size of the packet assigned to

it. Once all of the corresponding counters of a flow f violate the pre-defined

threshold, the flow f is judged as large flow.

Arbitrary-window-based Multistage Filters (AMF) One of the ob-

vious drawbacks of FMF is that the fixed window model cannot catch the

bursty flow2 spanning two measurement intervals. To address this, Estan [3]

proposed an improved algorithm of multistage filters based on the arbitrary

window model. The counters in each stage are replaced by leaky buckets

according to the large flow threshold (i.e. TH(t) = γt+β). The same applies

to FMF, a flow is judged as a large flow if its corresponding leaky buckets

are all violated.

3.3 Sampling-Based Algorithm

By sampling the packets in the link, the overhead of algorithm can be reduced

effectively. The Sampled NetFlow [19] is a classic sampling based algorithm

which samples packets with a rate of 1/γ and estimates the frequency of flows

by multiplying the count by γ. To improve the Sampled NetFlow, Estan and

Varghese [2] propose the sample and hold method which examines every

incoming packets: if the flow of the packet is monitored, then increase the

corresponding count; otherwise add the flow of the packet into the monitoring

list with certain probability.

3.4 Drawbacks of Current Algorithms

We mainly discuss the MG algorithm, FMF, AMF, and sample and hold

method. The main drawback among the first three algorithms is that they

cannot avoid false accusation on the small flows (non-frequent items). For

the MG algorithm, it can make sure all the frequent items are stored in

the counter at last, but cannot exclude non-frequent items in the one-pass

2Bursty flow is a kind of large flow which sends very high volume traffic in a short time.

8

process. The FMF and AMF are the multistage filters algorithms, whose

counter could be shared by both large flows and small flows. With some

probability, the hash function could map a large flow and small flow to exactly

the same counter in each stage. This problem is the nature of multistage

filters and cannot be avoided.

Since the sample and hold algorithm just samples the flows to measure, it

may not check some large flows. Therefore the sample and hold algorithm

has a false detection rate on the large flows. That is, a large flow could evade

detection with some probability.

Since the MG algorithm, sample and hold algorithm, and FMF are based

on the landmark window model, they cannot catch bursty flows as Section

2.3 illustrated.

Although AMF can guarantee a rate of catching all the large flows by its

arbitrary window model, it introduces more false detections on the small flows

than FMF. Because the leaky bucket is more sensitive to being violated, there

are more flows that could exceed the threshold of the leaky bucket model than

the fixed window model.

9

CHAPTER 4

PROBLEM DEFINITION

To make progress in large flow detection, we aim to design an efficient

arbitrary-window-based large flow algorithm which is exact outside an am-

biguity window. In this section, we present our novel model and clarify our

goals.

4.1 Exact-Outside-Ambiguity-Region Large-Flow

Problem

Large, medium, and small flows To formulate the large-flow problem

that is exact-outside-ambiguity-region, we re-define the flows as follows. For

a flow f , it is judged as a large flow, if there exists a time window [t1, t2)

over which the volume of f , vol(f, t1, t2) is higher than the high-bandwidth

threshold function THh(t2 − t1); the flow f is judged as a small flow, if flow

f ’s volume vol(f, t1, t2) over all the possible time window [t1, t2) is lower than

a low-bandwidth threshold THℓ(t2 − t1). The rest of flows are considered as

flows in an ambiguity region, which we call medium flows.

Considering the arbitrary window model, we defined the threshold function

based on the leaky bucket model: THh(t) = γht+ βh and THℓ(t) = γℓt+ βℓ,

where γh > γℓ > 0 and βh > βℓ > 0.

Exactness outside an ambiguity region Instead of considering ineffi-

cient exact approaches, we propose a relaxed notion of exactness as follows:

Definition 1 Given a packet stream, the large flow problem of exactness

outside an ambiguity region returns a set of flows F such that (1) F contains

every large flow, and (2) F does not contain any small flow.1

1The Definition 1 is derived from Wu et al’s paper [1].

10

Limited
Memory

Incoming Packet Stream

Detection Algorithm

x
i

x
i+1

x
i+2

Report

Report

Figure 4.1: A general framework for a large-flow-detection algorithm. The
detection algorithm processes incoming flows and keeps limited states in
memory. Results may be reported to a remote server for further analysis [1].

According to the definition above, we also define a positive as a flow that is

inserted into F , a negative is a flow that is not inserted into F . Therefore, we

have: (1) False Positive of small flows (FPs) means the detection algorithm

added small flows into F by mistake; and (2) False Negative of large flows

(FNℓ) means the detection algorithm fails to add large flows into F .

This novel exactness model is reasonable, because the damage caused by

large flows is confined by it, and the medium flows can still be handled by ex-

isting approaches (e.g. sample and hold algorithm [2], Sampled Netflow [19],

etc.).

One thing necessary to mention is that the size of flow set F is increasing

indefinitely over time, thus such a large flow detection algorithm usually

periodically reports results to some report servers with a large amount of

storage to maintain a copy of F , as demonstrated in Figure 4.1.2 Therefore

such large flow detection algorithm have to correctly make response without

knowledge from the flow set F .

4.2 Design Goal

Exactness outside an ambiguity region We want to design a deter-

ministic large flow detector which can accurately identify every large flow

2Figure 4.1 is taken from the paper written by Wu et al. [1] c⃝2014 Association for
Computing Machinery, Inc. by permission.

11

(including the bursty flow) (i.e. no-FNℓ) and never wrongly judges a small

flow as a large flow (i.e. no-FPs) with any input traffic or attack pattern (i.e.

we make no assumption on the input traffic).

Scalability In front of a high rate link, the large flow detector should

maintain low per-packet operation and small router state so that the al-

gorithm can be implemented in some fast but scarce storage devices (e.g.

on-chip cache) regardless of the input traffic and attack pattern.

Fast detection To minimize the collateral damage, we desire that the

large flow detector can catch the large flow as soon as possible once it violates

the high-bandwidth threshold. Thus, for a large flow which violates the high-

bandwidth threshold over [t1, t2), the detector should be able to detect this

flow before an upper bound time t2 + tprocess, where the tprocess is the time

needed in processing a packet.

12

CHAPTER 5

ALGORITHM

According to the design goals described in Section 4.2, we proposesEARDet,

an arbitrary-window-based algorithm, which resolves the large flow problem

with exactness outside an ambiguity window. Inspired by the MG algo-

rithm [4], EARDet takes the no-FNℓ advantage of the MG algorithm and

extends it from the landmark window model to the arbitrary window model.

Moreover, EARDet achieve the no-FPs property with only processing pack-

ets in one pass. Interestingly, despite such amazing properties achieved by

EARDet, it only needs some simple modifications over the original MG

algorithm.

5.1 EARDet Overview

At the high level, EARDet has the following three main differences com-

pared to the MG algorithm:

Virtual traffic Different from frequent-item finding, the large-flow prob-

lem works on each time slot in the link. Hence, we should not only consider

the real packets, but also the idle time gap between two consecutive pack-

ets. In EARDet, we virtually fill these idle time gaps with virtual traffic.

The virtual flows in the virtual traffic are designed as small flows to avoid

unnecessary alarms.

Blacklist We maintain a local blacklist L in EARDet to keep the re-

cently identified large flows. The main reason to use the blacklist is to avoid

increasing a counter of a flow when the counter value has reached a counter

threshold, βTH . Once a counter exceeds βTH , EARDet moves the associated

flow to the blacklist, and the counter will no longer be updated by the flows

in the blacklist. In paper by Wu et al. [1], we have some techniques to bound

the size of the blacklist to avoid spending too many resources on blacklist.

13

Counter threshold As described above, each counter has a threshold

βTH to limit the value. The flows exceeding the threshold will be sent to the

blacklist, which enable us to confine the size of each counter by the upper

bound of βTH + α, where the α is the maximum packet size.

5.2 Algorithm Description

We show how EARDet works in Algorithm 1.1 In the algorithm, we treat a

packet (including virtual packets) of w size as w uni-size items, and apply a

mechanism similar to the one in the MG algorithm to increase and decrease

the n counters which are indexed by flow identifiers. There are at most n

non-zero counters (the set of non-zero counters is denoted as C), and each

counter is at most associated with a flow at the same time. We use S in the

algorithm to denote the state of the counters.

To clearly illustrate Algorithm 1, we introduce an example in Figure 5.12

to show details of how EARDet updates its status (i.e. counters). At the

beginning of the example, there is an empty counter, hence when flow g

with a size of 2 arrives, EARDet assigns the empty counter to flow g and

increases it by 2. Then, when flow b comes to EARDet, its size is added

to the counter associated with flow b, so that the value of flow b’s counter

violates the threshold hold βTH and flow b is added into blacklist L. At this

time, flow b will not be considered for increasing or decreasing the counter

anymore. Then, since no empty counters remain, each counter decreases by

the size of flow e’s packet. At last, EARDet treats the virtual traffic as two

packets with a size of 3 and reaches the final state.

5.3 Optimization in Data Structure

To make EARDet efficient and scalable, we must do some optimization to

reduce the counter access. A naive implementation of EARDet has to ac-

cess each counter once a packet passes through the system, and access each

counter numerous times for processing virtual packets if we use 1 byte as the

1This algorithm is taken from the paper written by Wu et al. [1].
2Figure 5.1 is taken from the paper written by Wu et al. [1] c⃝2014 Association for

Computing Machinery, Inc. by permission.

14

Algorithm 1 EARDet [1]

1: Initialization (S ← Init(n), Line 8-9)
2: for each packet x in the stream do

3: if x’s FID f is not blacklisted (f /∈ L) then
4: Update counters for virtual traffic (Line 18-22)
5: Update counters for x (S ← Update(S, x), Line 10-17)
6: if detect violation (Detect(S, x) == 1, Line 21-22) then
7: Add f to blacklist (L← L ∪ {f})

8: Initialization, Init(n)
9: initialize all counters to zeros, L← ∅, C ← ∅

10: Update counters for packet x, Update(S, x)
11: if x’s FID f is kept (f ∈ C) then
12: Update f ’s counter by the packet size w (cf ← cf + w)
13: else if less than n counters are kept (|C| < n) then
14: Set f ’s counter to w (cf ← w, C ← C ∪ {f})
15: else

16: Decrease all counters by d = min{w,minj∈C cj}
17: Set cf to w − d, and ∀j remove j from C if cj = 0

18: Update counters for virtual traffic between xi and xi−1

19: Compute the virtual traffic size, v (v = ρtidle−size(xi−1), and tidle = time(xi)−
time(xi−1))

20: For each unit u in the virtual traffic, update counters as if u belongs to a new
flow (e.g., unit is 1 byte)

21: Detect violation, Detect(S, x)
22: Return whether x’s flow counter exceeds threshold (cf > βTH)

15

a

5

b

11

Blacklist: b

g
2

a

βTH

5

βTH + α

b

8

g
2

b

3

Blacklist:

a

3

b

9

Blacklist: b

b

Blacklist: b

e

2

virtual
traffic

6

6

a

5

b

8

g

2

Blacklist:

Figure 5.1: Example of updating EARDet status. βTH = 10, α = 3, and
n = 3 [1].

virtual packet size. We are not able to afford such computation consump-

tion in high-speed links, e.g. backbone links. Therefore, we optimize our

algorithm as follows.

Balanced binary search tree To save computation consumption in

EARDet, the first thing we need to do is to have a proper data structure

which can support insertion, deletion, and retrieving the minimum counter

among all counters. A balanced binary search tree is a good choice in this

case, because it can achieve these operations in O(log n) time.

Float ground for decrement operation To avoid retrieving and de-

creasing all counters when one packet arrives, we consider the counter value

relative to floating ground cground instead of recording the absolute counter

values. In this way, once a packet comes in, we do not have to decrease

each counters, but just need to elevate the floating ground. Finally, to judge

whether the counter exceeds the threshold, we only need to check whether

cf − cground > βBF is true. To prevent overflow in counters, we periodically

reset the floating ground to zero and accordingly reduce the value of each

counter.

Efficiently process virtual flows As mentioned, if we set the packet

size too small for flow virtual flows, we are going to update the counters too

many times. We noticed that we actually expect to divide virtual traffic to

multiple virtual flows to make virtual flows comply with the low-bandwidth

threshold (i.e. we will not mistake virtual flows as large flows), meanwhile

we want to minimize the packet processing cost for virtual flows.

Thus, the maximum packets size is the counter threshold βTH bytes. Be-

cause the counter threshold βTH has to be larger than minimum packet size

(i.e. 40 bytes), the overhead is bounded by that of the worst case when the

16

link is congested by minimum-size packets.

Implement counters with integers To make the system more efficient,

we use integers to implement counters rather than using float numbers. In

this way, we not only save storage space but also modify counters faster.

However, we should be careful here, because the size of virtual traffic is not

always an integer. For example, for a link with 800 Mbps capacity and an

idle interval 1 ns, we have 0.1 byte virtual traffic. To handle this issue,

we have a little change in our thresholds: EARDet can catch all large

flows violating THh(t) = γht + (βh + 1) and no false positive for small flows

complying THℓ(t) = γℓt + (βh − 1). We derive the proof sketch from Wu et

al.’s paper [1]:

Proof sketch We bound such biases with a slightly modified algorithm

that adjusts virtual traffic. Let us use {v1, v2, · · · } to denote the sizes of

a sequence of virtual traffic and {v′1, v
′
2, · · · } to denote the adjusted sizes.

We maintain an extra field called “carryover”, co, which keeps the amount

of uncounted virtual traffic. The co is initialized to zero, and we ensure

that −0.5 ≤ co < 0.5 all the time. Virtual flows are adjusted such that

v′i ← [vi + coi] and coi+1 ← coi + vi − v′i where coi is the value of co before

proceeding vi. By construction, v′is are all integers, and for any a, b, |
∑b

a vi−
∑b

a v
′
i| = |cob+1− coa| ≤ 1. In other words, the adjusted virtual traffic differs

from the original one by at most 1 unit for any time interval. Consequently,

the modified algorithm guarantees catching flows that violate THh(t) = γht+

(βh + 1) and guarantees not catching any flow that conforms to THℓ(t) =

γℓt+ (βh − 1). [1] "

Run EARDet in parallel A straightforward way to scale a large flow

detection algorithm is to parallelize it with multiple detectors. We could

randomly distribute the input flows into k EARDet, and each EARDet

detector only has approximately 1/k of overhead. However, this approach

also has some drawbacks: (1) it may not be able to evenly distribute over-

head, because 1/k flows does not mean 1/k packets; and (2) randomness

weakens the deterministic property, so attackers could manipulate the flows

based on the random seed to escape detection.

17

CHAPTER 6

ALGORITHM ANALYSIS

In this chapter, we analyzed the unique properties in EARDet, and the-

oretically proved them. Moreover, we analyzed the trade-off in the tuning

parameters of EARDet. Please refer to the List of Symbols to understand

the notation used in the analysis.

In the analysis, we consider an n-counter EARDet is running over a

network link and its link capacity is ρ. We use βTH to denote the threshold

of the counter, and use α as the maximum packet size. Thus, βTH +α is the

maximum possible value of each counter.

6.1 Property 1: No False Negative on Large Flows

To analyze the false negative issue of this filter, we consider the performance

of our filter under the worst case (namely, the best case for the attacker).

To have the worst case for us, the attackers expect their counter’s value can

decrease as much as possible to make the attacker’s flow have the smallest

possibility to be caught by the filter.

To consider the decrement of the counters, firstly, we describe all the ways

to decrease and increase the value counters:

1. When the incoming flows are virtual flows and there are l empty coun-

ters in the filter, then, in time interval t, the decrement is ρ
l+1t on all

counters, and the increment is 0 (l = 0, 1, 2, 3, ..., n).

2. When the incoming flows are new real flows and there is no empty

counter in the filter, then, in time interval t the decrement is ρt on all

counters and the increment is 0. (This is the same as the first situation

when l = 0.) The new real flows means there is no associated counter

in the filter for this flow.

18

3. When the incoming flows are old real flows, or new real flows and there

are some empty counters, then, in time interval t, the decrement is 0

and the increment is ρ t on one counter. The old real flow means there

is an associated counter in the filter for this flow.

Thus, in the first and second situations, when there are l empty counters

in the filter, the decrement is always ρ
l+1t in the interval of t; and in the third

situation, the increment is always ρ t in the interval of t. The increment and

decrement cannot happen at the same time.

We proved Lemma 2 as follow, and the proof sketch of it is in Appendix A.3.

Lemma 2 In any time interval [t1, t2], the upper bound of decrement of all

the counters is ρ
n+1 · (t2 − t1) + α + βTH .1

With Lemma 2, we proved that EARDet can detect any large flows which

violate the high-bandwidth threshold. We theoretically proved this property

and conclude it in the following theorem.

Theorem 3 No-FNℓ property EARDet detects every flow violating

the high-bandwidth threshold THh(t) = γht+βh over a time window of length

t, when γh ≥ RNFN = ρ
n+1 and βh ≥ α + 2βTH .2

Proof sketch According to Lemma 2, in time interval [t1, t2], the decre-

ment of a counter will not exceed ρ
n+1 · (t2 − t1) + α + βTH . And because

any flow cannot be associated with two or more counters at the same time,

therefore, in any [t1, t2], for any flow f passing the filter the decrement

decf < ρ
n+1 · (t2 − t1) + α + βTH . Thus, if there is a flow f with rate of

R(t), and it violates the high-bandwidth threshold, then:

∫ t2

t1

R(t) dt ≥ THh(t2 − t1) ≥
ρ

n+ 1
(t2 − t1) + α + 2βTH (6.1)

Then, the remaining value of f ’s counter is:

Remains =

∫ t2

t1

R(t) dt− decf > βTH (6.2)

1Lemma 2 is taken from Wu et al.’s paper [1].
2Theorem 3 is taken from Wu et al.’s paper [1].

19

Because βTH is the threshold of the filter, the flow f will be caught before

time t2. Therefore, for any flow which violates the high-bandwidth threshold,

it will be caught by the filter. Namely, there is no false negative in the filter

on detecting the flows violating the high-bandwidth threshold. Thus, this

theorem is proved now. "

Another way to prove Theorem 3 is presented in Wu et al.’s paper [1].

From Theorem 3, EARDet can be applied to enforce that all flows vi-

olating the high-bandwidth threshold, THh(t) = γht + βh, where γh = ρ
n+1

and βh = α + 2βTH , will be caught by the filter and cut off. In this way, we

can largely protect a network link from the large flow attack and the burst

attack, especially when the number of attackers (or attack flows) is fewer

than n. That means, if the attackers want to attack this link successfully,

they should have more than n machines to send floods. Therefore, this filter

effectively limits the DoS attacks.

6.2 Property 2: No False Positive on Small Flows

EARDet will not wrongly catch any small flow complying the low-bandwidth

threshold. To demonstrate this point, we first proposed Lemma 4 [1] as fol-

lows. The proof of this lemma is in Appendix A.4.

Lemma 4 For any small flow f that complies with the low-bandwidth thresh-

old (i.e., THℓ(t) = γℓ t+βℓ), once the flow f is associated to a counter at t1,

this counter will always be lower than βTH after time t1 + tβℓ
, if the counter

is occupied by the same flow as the flow f , where tβℓ
= (n−1)α+(n+1)βℓ

[1−(n+1)γℓ/ρ]ρ
.3

Then, we proposed Theorem 5 [1] which illustrates the property of no false

positives on small flows.

Theorem 5 No-FPs property EARDet will not catch any flow com-

plying with the low-bandwidth threshold THℓ(t) = γℓt+βℓ for all time windows

of length t, when 0 < βℓ < βTH , γℓ < RNFP , where RNFP = β∆

(n−1)α+(n+1)βℓ+(n+1)β∆
·

ρ.4

3Lemma 4 is taken from Wu et al.’s paper [1].
4Theorem 5 is taken from Wu et al.’s paper [1].

20

Proof sketch According to Lemma 4, to avoid catching a small flow f ,

the counter should be smaller than βTH before tβℓ
. Hence, we choose a γℓ to

achieve γℓ tβℓ
+ βℓ < βTH . Then,

(n−1)α+(n+1)βℓ

[1−(n+1)γℓ/ρ]ρ
< βTH−βℓ

γℓ
,

⇔ γℓ <
β∆

(n− 1)α+ (n+ 1)βℓ + (n+ 1)β∆
· ρ (6.3)

The theorem is proved. "

6.3 Property 3: Large Flow Incubation Period

Considering a large flow f violates a high-bandwidth threshold over time

window [t1, t2), we assume the detection is triggered by the packet at ta.

Then, we define the incubation period as ta − t1, where ta ≤ t2 is due to the

no-FNℓ property of EARDet. According to theoretical analysis, we proved

there is an upper bound of the incubation period for the large flow. The

upper bound depends on the rate of the large flow over [t1, t2).

Theorem 6 For the flow f which violates THh(t) over some time window

[t1, t2), if its average rate R(t1, ta) is larger than Ratk in the time interval of

[t1, ta) (Ratk is a constant rate larger than RNFN = ρ
n+1), then f ’s incubation

period is bounded by tincb <
α+2βTH

Ratk−
ρ

n+1

.5

Proof sketch6 Because R(t1, ta) > Ratk, intuitively the tincb of flow with

an average rate of R(t1, ta) must be shorter than the t′incb of flow with a rate

of Ratk. That is, tincb < t′incb.

Assume a flow f ′ with rate Ratk will violate THh(t) over time window

[t′1, t
′
2), then

Ratk(t
′
2 − t′1) =

ρ

n+ 1
(t′2 − t′1) + α+ 2βTH

⇒ tincb < t′incb = t′a − t′1 ≤ t′2 − t′1 =
α+ 2βTH

Ratk −
ρ

n+1

(6.4)

Thus, the theorem is proved. "

5Theorem 6 is taken from Wu et al.’s paper [1].
6The proof sketch is taken from Wu et al.’s paper [1].

21

6.4 Property 4: Deterministic Performance

The proofs of the three properties above do not make any assumptions on the

input traffic, which means EARDet will keep these properties regardless of

the type of the input traffic or attack pattern. The attackers are not able to

escape the detection through manipulating the flows and playing with timing.

Thus, we say EARDet provides deterministic performance over large flow

detection.

22

CHAPTER 7

EVALUATION

In this chapter, we present the theoretical analysis and real-traffic simulation

results of EARDet and another two related large flow detection algorithms,

Fixed-window-based Multistage Filters (FMF) [2] and Arbitrary-window-

based Multistage Filters (AMF) [3], to evaluate performance of EARDet.

In terms of the exactness outside the ambiguity region, the evaluation shows

that EARDet outperforms the prior work in both large rate flow detection

and burst flow detection.

7.1 Theoretical Evaluation

As introduced in Section 3.2, multistage filter maintains an array of counters

to record the size of flows. For an incoming flow, the filter will hash map the

flow identifier to a counter in the array, and whenever a packet of this flow

arrives in the filter, we increase the counter by the size of the packet. Once

the value of the counter exceeds the threshold of a large flow, multistage filter

catches all flows associated to this counter as a large flow. The difference

between AMF and FMF is that AMF uses leaky buckets instead of regular

counters.

We can easily observe that FMF and AMF have no false negative over

large flows, because if a flow is a large flow, its counter must exceed the large

flow threshold. However, there are some false positives resulting from these

two algorithms. For example, if a large flow and a small flow are mapped to

the same counter, the small flow will be detected as a large flow too. To lower

the false positive rate, FMF and AMF must increase the number of counters.

But this introduces more overhead in storage space. To understand the

performance of three large flow detector algorithms, we present a concrete

example here. Considering the case with γh = 1%ρ, γl = 0.1%ρ, where ρ

23

is the link capacity. The performance of three detectors are described in

Table 7.1.

Table 7.1: Numerical Example for FMF, AMF, and EARDet.

Detector Number of Counters (n) Rate of FPs Rate of FNℓ

EARDet 101 0 0
FMF 101 no guarantee 0∗

FMF 1000 ≤ 0.04∗ 0∗

AMF 101 no guarantee 0
AMF 2000 ≤ 0.04 0

∗The result for FMF is not applicable for large burst flows. Because FMF is
based on the landmark window model, it provides no guarantee for

detecting large burst flows.

Table 7.1 shows that with the same amount of memory space thatEARDet

uses (i.e. 101 counters), FMF and AMF cannot guarantee there will be no

false positives for small flows at all; on the contrary, EARDet can guar-

antee both no false positives for small flows and no false negatives for large

flows. Even using 10x (20x) memory, FMF (AMF) can only guarantee a 0.04

false positive rate for small flows. Moreover, as we mentioned, FMF has no

guarantee for large burst flows, however, EARDet and AMF are able to

guarantee this. To make the result clearer, we summarize the comparison

result in Table 7.2. We say FMF and AMF are not deterministic, because

they are dependent on input traffic that can be manipulated by an attacker

to result in false positives.

Table 7.2: Comparison Summary for FMF, AMF, and EARDet.

Detector Storage Cost No-FPs No-FNℓ Deterministic
EARDet low guarantee no guarantee yes

FMF high no guarantee no guarantee no
AMF high no guarantee guarantee no

7.2 Experimental Evaluation Environment

Traffic datasets To make the experiment more convincing, we use real

network traffic datasets Federico II [20–22] and CAIDA [23], and we use the

24

first 30 seconds of traffic to run FMF, AMF, and EARDet. Under the flow

ID defined by the pair of source IP and destination IP, we summarize each

dataset as follows:

• Federico II dataset contains 2911 flows which are collected from a 200

Mbps link. The average link rate is 1.85 MB/s and the average flow

size is around 19.9 KB.

• CAIDA dataset contains around 2.5 million flows from a 10 Gbps link.

The average link rate is about 280 MB/s and the average flow size is

about 3.3 KB.

Attack flows To comprehensively evaluate performance of EARDet

compared to FMF and AMF, we artificially generated two kinds of attack

flows: flooding attack flows and shrew DoS attack flows [24,25], and mix the

generated attack flows with the real traffic as the experiment input traffic.

Then we test (1) how many attack flows escape the detection, and (2) how

many legitimate flows are falsely caught as large flows.

Flooding attack flows are the flows with a high rate, thus we generate such

flows second by second. For each second interval, we randomly distribute

γlarge/packetSize packets in this one second, where γlarge is the flooding flow

rate. Then we do the same work for all 30 seconds.

Shrew DoS attack flows consist of some periodic bursts, and attackers use

such bursty traffic to block TCP traffic by exploiting the TCP congestion

control mechanism. To generate shrew DoS attack flows, we randomly pick

up an initial timestamp (from 0 to 29 seconds) for each flow, and then gener-

ate a burst with size γburst · lburst every T seconds, where γburst is the rate of

the burst traffic, the lburst is the duration of each burst, and T is the period

of the burst.

Configure EARDet We configure EARDet’s parameters as shown in

Table 7.3. With this configuration, EARDet is able to catch all large flows

which violates the high-bandwidth threshold THh(t) = 0.01ρt + 15.5 KB,

while not hurting any legitimate flows which comply with the low-bandwidth

threshold THℓ(t) = 0.001ρt+6072 B for flows in dataset Federico II. For the

dataset CAIDA, there is only a slight difference in βh, n, and tupincb. The

congested link status means the link is fully congested by flows; the non-

congested link status means the link still contains many idle time intervals.

25

For a detailed description about how to come up such parameters, please

refer the technical report by Wu et al. [26].

Table 7.3: Parameters of EARDet.

Parameters Federico II CAIDA
ρ 25MB/s 1.25GB/s
γh 250KB/s 12.5MB/s
βh 15.5KB 15.4KB
γℓ 25KB/s 1.25MB/s
βℓ 6072B 6072B
α 1518B 1518B

βTH 6991B 6991B
n 107 100

tupincb 0.8370sec 0.1242sec
link status non-congested/congested non-congested

Table 7.4: Parameters of FMF.

Parameters Federico II CAIDA
b 55/250 55/250
d 2 2
n 110/500 110/500
T 250 KB 12.5 MB

Table 7.5: Parameters of AMF.

Parameters Federico II CAIDA
b 55/250 55/250
d 2 2
n 110/500 110/500
u 15.5 KB 15.4 KB
r 250 KB/s 12.5 MB/s

Configure FMF and AMF We set the number of stages for FMF and

AMF as d = 2, and the number of counters in each stage as b = 250.

For FMF, we set the window size as 1 second, namely, it checks whether

the counter exceeds the threshold every second. Therefore, the threshold of

FMF is T = γh. For AMF, we set the leaky bucket threshold as u = βh and

the leaky bucket rate as r = γh. We are also interested in investigating how

26

these two large flow detectors perform with the same amount of storage cost

used by EARDet, thus, we also consider the case that b = 55 and d = 2.

The configuration is summarized in Table 7.4 and Table 7.5.

7.3 Experimental Evaluation Results

We found that the experiment result of the experiments using CAIDA dataset

shows a similar result to the one of the experiments using Federico II, thus, we

just present the result of the experiments running with Federico II dataset.

To measure the performance of FMF, AMF, and EARDet, we mainly fo-

cus on three metrics: false positive probability for small flows, and detection

probability and incubation period for large flows. The false positive proba-

bility measures the probability for the detector to wrongly detect a small flow

as a large flow. The detection probability is the probability that a detector

can successfully catch large flows. The large flow incubation period shows

the time needed to catch a large flow since the flow appears in the link.

To illustrate the experiment result, Figure 7.1, Figure 7.2, Figure 7.3(a)

to 7.3(h), and Figure 7.4 are taken from paper written by Wu et al. [1] c⃝2014

Association for Computing Machinery, Inc. by permission.

Figure 7.1 shows the detection probability of three detectors in front of

flooding DoS attack. We can see all of three flows can perfectly catch all

large flows which violate the large flow threshold. However, FMF and AMF

cannot guarantee that there are no false positives all the time. Especially,

when the link is congested, FMF and AMF falsely caught a lot of flows below

the low-bandwidth threshold.

Figure 7.2 represents the detection probability of three detectors when

shrew DoS attack happens. As we expected, EARDet and AMF can catch

all bursty attack flows, however, FMF missed a lot of such attack flows

because it is only based on the fixed window model.

For false positive probability over small flows, we take a look at Fig-

ures 7.3(a) to 7.3(h). The result shows no false positives in the result

from EARDet. However FMF and AMF cannot avoid the false positives.

When FMF and AMF are using the same number of counters as used by

EARDet, we can find many false positives, especially in the congested link.

Figure 7.3(a) and Figure 7.3(b) indicate that in the congested link, FMF

27

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Detection Probability Under Large Rate Flow Attack

Attack Flow Rate (Byte/s)

P
ro

b
a
b
ili

ty

EARDet in congested link

FMF in congested link

AMF in congested link

EARDet in non−congested link

FMF in non−congested link

AMF in non−congested link
γ
atk

γ

Figure 7.1: Detection probability under flooding DoS. FMF and AMF use
55*2 counters [1].

100 200 300 400 500 600 700 800 900 1000
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Detection Probability Under Shrew Attack

Duration of Burst (ms)

P
ro

b
a
b
ili

ty

EARDet in congested link

FMF in congested link

AMF in congested link

EARDet in non−congested link

FMF in non−congested link

AMF in non−congested link
TH

h

Figure 7.2: Detection probability under shrew DoS. FMF and AMF use
55*2 counters [1].

suffers more 1% and 4% false positives under shrew DoS attack and flooding

DoS attack respectively. Increasing the number of counters can reduce the

28

false positives for FMF and AMF, but it is impossible to guarantee no false

positive.

The results also reflect that EARDet is deterministic regardless of what

input traffic is used. It is even more interesting that in the ambiguity region,

the curves of detection probability of EARDet are exactly the same. Maybe

we could discover more in the ambiguity region in the future.

Figure 7.4 perfectly supports Theorem 6. The figure shows that the maxi-

mum incubation period of attack flows is always below the theoretical upper

bound no matter what the attack flow rate is. Moreover, we observed that

usually the maximum incubation period is much smaller than the theoretical

upper bound and the average incubation period is even much smaller.

29

1 2 3 4

x 10
5

 0

0.01

0.02

0.03

0.04

0.05

0.06
False Positive Of Legitimate Flow Under Large Rate Flow Attack

Attack Flow Rate (Byte/s)

P
ro

b
a
b
ili

ty

EARDet

FMF

AMF
γ
atk

γ

(a) 55*2 counters - Congested Link

200 400 600 800 1000
 0

0.1

0.2
False Positive Of Legitimate Flow Under Shrew Attack

Duration of Burst (ms)

P
ro

b
a
b
ili

ty

EARDet
FMF
AMF
TH

h

(b) 55*2 counters - Congested Link

1 2 3 4

x 10
5

 0

0.001

0.002

0.003

0.004

False Positive Of Legitimate Flow Under Large Rate Flow Attack

Attack Flow Rate (Byte/s)

P
ro

b
a
b
ili

ty

EARDet

FMF

AMF
γ
atk

γ

(c) 55*2 counters - Non-congested
Link

200 400 600 800 1000
 0

0.001

0.002

0.003

0.004

0.005

False Positive Of Legitimate Flow Under Shrew Attack

Duration of Burst (ms)

P
ro

b
a

b
ili

ty

EARDet

FMF

AMF
TH

h

(d) 55*2 counters - Non-congested
Link

1 2 3 4

x 10
5

 0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

 0.001

0.0011

0.0012

False Positive Of Legitimate Flow Under Large Rate Flow Attack

Attack Flow Rate (Byte/s)

P
ro

b
a

b
ili

ty

EARDet

FMF

AMF
γ
atk

γ

(e) 250*2 counters - Congested Link

200 400 600 800 1000
 0

0.001

0.002

False Positive Of Legitimate Flow Under Shrew Attack

Duration of Burst (ms)

P
ro

b
a

b
ili

ty

EARDet
FMF
AMF
TH

h

(f) 250*2 counters - Congested Link

1 2 3 4

x 10
5

 0

0.0001

0.0002

0.0003

0.0004

False Positive Of Legitimate Flow Under Large Rate Flow Attack

Attack Flow Rate (Byte/s)

P
ro

b
a

b
ili

ty

EARDet

FMF

AMF
γ
atk

γ

(g) 250*2 counters - Non-congested
Link

200 400 600 800 1000
 0

0.0001

0.0002

False Positive Of Legitimate Flow Under Shrew Attack

Duration of Burst (ms)

P
ro

b
a

b
ili

ty

EARDet

FMF

AMF
TH

h

(h) 250*2 counters - Non-congested
Link

Figure 7.3: False positive for small flows [1].

30

2 2.5 3 3.5 4 4.5

x 10
5

0

0.2

0.4

0.6

0.8

1

Incubation Period

Attack Flow Rate (Byte/s)

In
cu

b
a

tio
n

 P
e

ri
o

d
 (

se
c)

Ave t

incb

Max t
incb

t
upincb

γ
h

Figure 7.4: Incubation period for large flows [1].

31

CHAPTER 8

CONCLUSION

This thesis reviews some basic knowledge and typical existing approaches

in the large flow detection problem, and identifies the shortcomings of cur-

rent work. Then, we proposed a novel arbitrary-window-based algorithm,

EARDet, which is exact outside an ambiguity window. Inspired by the

MG algorithm, EARDet not only keeps the property of no false detection

over large flows exceeding a high-bandwidth threshold, but also achieves the

no false accusation on small flows complying a low-bandwidth threshold with

no assumption on the input traffic or attack pattern. We demonstrate this

both in theoretical analysis and experimental evaluation.

There is some future work for EARDet. (1) EARDet is quite simple and

easy to apply in industry, therefore, we want to build a real system with the

EARDet algorithm and test it in the real network to see the performance

in practice. (2) In the experiment, EARDet’s detection probability curves

under different input traffic (congested and non-congested traffic) are highly

matched, even in the ambiguity region. Thus, it should be interesting to

research the performance in the ambiguity region in future research.

32

APPENDIX A

PROOF SKETCH FOR LEMMAS

Note that Appendices A.1 and A.4 are presented in the technical report by

Wu et, al. [26].

A.1 Lemma 7 and Proof Sketch

Lemma 7 In any time interval [t1, t2], we assume there are k attack flows

occupy k counters from the beginning time t1 to the ending time t2. If all

the normal counters (counters except the ones occupied by attack flows) are

empty at beginning time t1 and ending time t2, then, the decrement of all the

counters is (t2−t1)−tlrg
n+1−k ρ, where tlrg is the sum of time that k attack flows are

sending packets.

Proof sketch In [t1, t2], because the attack flows occupied the link for tlrg,

the time length of t2 − t1 − tlrg is occupied by some real flows F or virtual

flows (there is no assumption for the flows in F , but such flows should fulfill

that normal counters are empty at beginning time t1 and ending time t2). In

the time of t2 − t1 − tlrg, sometimes the counters are increased by flows in

F , and sometimes the counters are decreased by flows in F or virtual flows.

Therefore, we can assume that the sum of all the decrement dec consists of

many small decrements deci, which happen in time interval ti,dec, and the

number of counters occupied by flows in F is xi during ti,dec. Because the

normal counters are empty at the beginning and the ending, when there is a

decrement deci for each counter, then there must be xi increment inci that

happened on xi non-empty normal counters. Therefore all the decrements

deci in these normal counters have a counterpart of xi increment inci, which

takes ti,inc time length. Maybe deci and xi values of inci are not neighbors in

time domain, but for a decrement deci there must be xi values of inci, such

33

that

inci = deci (A.1)

In ti,dec, according to the three ways of decreasing and increasing the counter,

when the number of empty counters is l = n− k − xi, the deci and inci are

as follows

deci =
ρ

n+ 1− k − xi
· ti,dec (A.2)

inci = ρ · ti,inc (A.3)

Then, according to (A.1), (A.2), and (A.3)

⇒

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ti,dec =
(n+ 1− k − xi) · deci

ρ

ti,inc =
inci
ρ

=
deci
ρ

(A.4)

At any time point in t2− t1− tlrg, counters either increase or decrease, thus

t2 − t1 − tlrg =
∑

i

(xi · ti,inc + ti,dec) (A.5)

Then, according to (A.4) and (A.5), we can get

t2 − t1 − tlrg =
∑

i

(xi ·
deci
ρ

+
(n+ 1− k − xi) · deci

ρ
) (A.6)

=
∑

i

(n+ 1− k) · deci
ρ

(A.7)

=
dec(n+ 1− k)

ρ
(A.8)

Then,

⇒ dec =
(t2 − t1)− tlrg
n+ 1− k

ρ (A.9)

Therefore, during [t1, t2] the decrement of all the counters is (t2−t1)−tlrg
n+1−k ρ, and

this lemma is proved. "

34

A.2 Lemma 8 and Proof Sketch

Lemma 8 In any time interval [t1, t2], if all the counters are empty at the

beginning time t1 and the ending time t2, then, the decrement of all the

counters is ρ
n+1 · (t2 − t1).

Proof sketch Considering the scenario of Lemma 7 , when all the coun-

ters are normal counters (namely k = 0), there is no assumption on all the

incoming flows except the condition that all the counters are empty at the

beginning time t1 and the ending time t2. This scenario is exactly the same

to what is described in Lemma 8. Therefore, to prove Lemma 8, we just need

to consider the scenario of k = 0 in Lemma 7. According to Lemma 7, when

k = 0, the tlrg must be 0, and therefore the decrement is

dec =
(t2 − t1)− tlrg
n+ 1− k

ρ =
(t2 − t1)

n+ 1
ρ (A.10)

Thus, the decrement of the scenario described in Lemma 8 is ρ
n+1 · (t2 − t1),

and this lemma is proved. "

A.3 Proof Sketch of Lemma 2

Proof sketch To get the upper bound of decrement of all the counters,

we just need consider the maximum decrement for a counter in time interval

[t1, t2]. According to Lemma 8, we can know the decrement of each counter

is ρ
n+1 · (t2 − t1) when all the counters are empty at the beginning time

t1 and the ending time t2. However, intuitively, the greater the values of

counters are at the beginning, the greater the decrement is, because each

counter saves some time to increase these counters and they have more time

to decrease; also, the less the values of counters are at the ending, the more

the total decrement of all counters is, because if there are remaining values

in the counters, the counters must waste some time to increase the counters

instead of decrease them. Because the maximum value of a counter is α+βTH

and the minimum value of a counter is 0, the scenario of maximum decrement

is: (1) all the counters’ value are α+βTH at the beginning time t1 and (2) all

the counters are empty at the ending time t2. Denote the scenario described

35

in Lemma 8 and Lemma 2 as CASE1 and CASE2. The difference between

CASE1 and CASE2 is that counters in CASE2 have a value of α+βTH at the

beginning, therefore there is an extra decrement of α + βTH in CASE2. To

have the extra decrement in CASE2, counters need to take some extra ti,dec

to decrease the extra decrement, and then the decrement of CASE2 except

the extra decrement α + βTH is lower than the ρ
n+1 · (t2 − t1), which is the

decrement of CASE1. Therefore, the total decrement of CASE2 is lower than
ρ

n+1 · (t2 − t1) + α + βTH , namely:

dec <
ρ

n+ 1
· (t2 − t1) + α + βTH (A.11)

Therefore, this lemma is proved. "

A.4 Proof Sketch of Lemma 4

Proof sketch WLOG, we assume flow f is associated with a counter at

t1 = 0, and in [0, tocp], flow f always occupies this counter. Then, intuitively,

in [0, tocp], the case to have minimum decrement decmin on this counter is

that: (1) at time 0 all the counters are empty; and (2) at time tocp, except

the counter of flow f , all other counters have the maximum value α + βTH .

Because the remaining values in the counter will cost extra time tinc for

increasing these counters, then according to Lemma 7, the t2−t1 in Lemma 7

is smaller and the decrement is smaller. Therefore, in the case mentioned

above, the decrement is minimized. According to Lemma 7, in this case

t2 − t1 = tocp − tinc, k = 1, then the minimum decrement is:

decmin =
tocp − tinc − tlrg

n
ρ (A.12)

where tinc =
(n−1)(βTH+α)

ρ .

Since f complies with THℓ(t), tlrg < γℓ/ρ · tocp +
βℓ

ρ .

⇒ decmin >
tocp(1− γℓ/ρ)

n
ρ−

(βTH + α)(n− 1) + βℓ
n

(A.13)

⇔ decmin > γℓ tocp +
tocp(1− (n+ 1)γℓρ)

n
ρ−

(βTH + α)(n− 1) + βℓ
n

(A.14)

When tocp > tβℓ
= (n−1)α+(n+1)βℓ

[1−(n+1)γℓ/ρ]ρ
,

36

⇒ decmin > γℓ tocp +
(n− 1)α+ (n+ 1)βℓ

n
ρ−

(βTH + α)(n− 1) + βℓ
n

(A.15)

⇒ γℓ tocp + βℓ − decmin < βTH (A.16)

Because flow f complies with THℓ(t), its counter value is smaller than

tocp + βℓ − decmin. Therefore, the counter is smaller than βTH after tβℓ
. "

37

REFERENCES

[1] H. Wu, H.-C. Hsiao, and Y.-C. Hu, “Efficient large flow detection over
arbitrary windows: An algorithm exact outside an ambiguity region,” in
IMC ’14 Proceedings of the 2014 Conference on Internet Measurement
Conference. New York, NY, USA: ACM, 2014, pp. 209–222.

[2] C. Estan and G. Varghese, “New directions in traffic measurement
and accounting: Focusing on the elephants, ignoring the mice,” ACM
Transactions on Computer Systems (TOCS), vol. 21, no. 3, pp. 270–313,
2003. [Online]. Available: http://dl.acm.org/citation.cfm?id=859719

[3] C. Estan, “Internet traffic measurement: What’s going on in my net-
work?” Ph.D. dissertation, University of California, San Diego, 2003.

[4] J. Misra and D. Gries, “Finding repeated elements,” Science of Com-
puter Programming, vol. 2, no. 2, pp. 143–152, 1982.

[5] X. Liu, A. Li, X. Yang, and D. Wetherall, “Passport: Secure and
adoptable source authentication,” in Proceedings of USENIX/ACM
NSDI, 2008. [Online]. Available: http://www.usenix.org/event/nsdi08/
tech/full papers/liu xin/liu xin html/

[6] P. Ferguson and D. Senie, “Network ingress filtering: Defeating denial
of service attacks which employ IP source address spoofing,” RFC 2827
(Best Current Practice), May 2000, updated by RFC 3704. [Online].
Available: http://www.ietf.org/rfc/rfc2827.txt

[7] E. D. Demaine, A. López-Ortiz, and J. I. Munro, “Frequency estimation
of internet packet streams with limited space,” in Proceedings of
ESA, 2002. [Online]. Available: http://www.springerlink.com/index/
0MJ1EXMY9L9MCQAD.pdf

[8] R. M. Karp, S. Shenker, and C. H. Papadimitriou, “A simple algorithm
for finding frequent elements in streams and bags,” ACM Transactions
on Database Systems, vol. 28, no. 1, pp. 51–55, 2003. [Online].
Available: http://portal.acm.org/citation.cfm?doid=762471.762473

38

[9] G. Manku and R. Motwani, “Approximate frequency counts over
data streams,” in Proceedings of VLDB, 2002. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1287400

[10] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation
of frequent and top-k elements in data streams,” in Proceedings of
ICDT, 2005. [Online]. Available: http://www.springerlink.com/index/
TP581QC7AX7EQGT3.pdf

[11] M. Fang and N. Shivakumar, “Computing iceberg queries efficiently,”
in Proceedings of VLDB, 1999. [Online]. Available: http://ilpubs.
stanford.edu:8090/423/

[12] G. Cormode and S. Muthukrishnan, “An improved data stream
summary: The count-min sketch and its applications,” Journal of
Algorithms, vol. 55, no. 1, pp. 58–75, 2005. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0196677403001913

[13] L. Golab, D. DeHaan, E. D. Demaine, A. López-Ortiz, and J. I.
Munro, “Identifying frequent items in sliding windows over on-line
packet streams,” in Proceedings of ACM IMC, 2003. [Online]. Available:
http://dl.acm.org/citation.cfm?id=948227

[14] A. Arasu and G. S. Manku, “Approximate counts and quantiles
over sliding windows,” in Proceedings of ACM PODS, 2004. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1055558.1055598

[15] L. Lee and H. Ting, “A simpler and more efficient deterministic
scheme for finding frequent items over sliding windows,” in
Proceedings of ACM PODS, 2006. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1142393

[16] G. Cormode and M. Hadjieleftheriou, “Finding frequent items in
data streams,” Proc. VLDB Endow., vol. 1, no. 2, pp. 1530–
1541, 2008. [Online]. Available: http://www.springerlink.com/index/
T17NHD9HWWRY909P.pdf

[17] B. Boyer and J. Moore, “A fast majority vote algorithm,” ICSCA-CMP-
32, Institute for Computer Science, University of Texas, Tech. Rep.,
1981.

[18] M. Fischer and S. Salzberg, “Finding a majority among n votes: Solution
to problem 81-5,” Journal of Algorithms - JAL, vol. 3, no. 4, pp. 362–
380, 1982.

[19] “Random sampled NetFlow.” [Online]. Available: http://www.cisco.
com/en/US/docs/ios/12 0s/feature/guide/nfstatsa.html

39

[20] A. Dainotti, A. Pescapè, P. Salvo Rossi, F. Palmieri, and G. Ventre, “In-
ternet traffic modeling by means of hidden Markov models,” Computer
Networks (Elsevier), vol. 52, pp. 2645–2662, 2008.

[21] A. Dainotti, A. Pescapè, and G. Ventre, “A cascade architecture for DoS
attacks detection based on the wavelet transform,” Journal of Computer
Security, vol. 17, no. 6, pp. 945–968, 2009.

[22] “Traces 1 of TCP port 80 traffic traces from Federico II.” [Online].
Available: http://traffic.comics.unina.it/Traces/ttraces.php

[23] “The CAIDA UCSD anonymized internet traces 2012 - 1220.” [Online].
Available: http://www.caida.org/data/passive/passive 2012 dataset.
xml

[24] A. Kuzmanovic and E. Knightly, “Low-rate TCP-targeted denial of
service attacks and counter strategies,” IEEE/ACM Transactions on
Networking, vol. 14, no. 4, pp. 683–696, 2006. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1677591

[25] M. Guirguis, A. Bestavros, and I. Matta, “Exploiting the transients
of adaptation for RoQ attacks on internet resources,” in Proceedings
of IEEE ICNP, 2004. [Online]. Available: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=1348109

[26] H. Wu, H.-C. Hsiao, and Y.-C. Yu, “Efficient large flow detection over
arbitrary windows: An algorithm exact outside an ambiguity region,”
CMU-CyLab-14-006, CyLab, Carnegie Mellon University, Tech. Rep.,
2014.

40

