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ABSTRACT 
Lifeline systems such as transportation and utility networks consist of numerous structural 
components which are spatially distributed and mutually interdependent. The damage to a 
particular system caused by natural or man-made hazards is propagated to other systems 
and results in additional losses due to cascading failures. Therefore, understanding the 
influence of hazards on these interdependent systems is critical to mitigate damage and to 
perform effective response and recovery efforts. This report focuses on modeling the 
interdependency between lifeline systems and investigates the effect of such 
interdependency on the seismic performance of these systems. A probabilistic model is 
developed to characterize the interdependencies and integrated into a simulation model for 
estimating the seismic performance of the system. Example analyses show the effect of 
various levels of interdependency on the performance and demonstrate the importance of 
considering such interdependencies.  
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1. INTRODUCTION 

Lifeline systems such as transportation and utility systems (e.g., water delivery, 
power, and oil systems) are critical civil infrastructures. These systems are essential 
elements for the functioning of all economic and social activity of an industrialized nation. 
The functional loss of these systems due to an external perturbation can cause severe 
impact on a community in numerous ways. This loss has the potential to cut water supplies, 
reduce or eliminate electrical system capacity, and sever gas links. Specifically, seismic 
hazards cause significant damage to these systems. The 1994 Northridge earthquake (Mw = 
6.8) caused extensive damage to lifeline systems. Portions of major highways and freeways 
in California were closed due to the extensive damage or failure of bridges, inducing 
widespread disruption after the event [1]. The entire city of Los Angeles suffered a blackout, 
and approximately 15% of the population (about 100,000 customers) served by Los 
Angeles Department of Water and Power (LADWP) lost water services immediately 
following the earthquake [2-4]. Therefore, understanding the influence of hazards on these 
systems is critical to mitigate damage and to perform effective response efforts. 

Recent research has assessed the response of a complex urban lifeline system under 
seismic conditions. Some approaches rely on simulation models to estimate seismic 
performance of a lifeline system [5-7], while others adopt system reliability frameworks to 
estimate the probabilities of complex system events [8-10]. These approaches generally 
incorporate the vulnerability of components represented by fragility curves in a system 
level analysis.  

Although these approaches are important advances in the understanding of the 
seismic response of a lifeline system, consideration of interdependencies (i.e., the influence 
from the failures of other networks) in modeling and analyzing lifeline systems accordingly 
is still a significant challenge. The need of accounting for this interdependency effect is seen 
by looking at the importance of a functioning power grid to the water and gas distribution 
systems. Water and gas distribution systems must have power for proper operation. When a 
power station is damaged by significant seismic forces, the likelihood that water and gas 
systems dependent on that power station can continue to function properly is reduced. 
Therefore, there has been an emerging need of modeling complex and interdependent 
critical infrastructure to better understand their susceptibility against potential hazards. 

A new approach to assess the seismic performance of interdependent lifeline 
systems is presented herein. A probabilistic model is developed to characterize network 
interdependency. This probabilistic model is then incorporated into network flow 
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algorithms to assess the seismic performance of the interdependent lifeline systems. 
Example analyses validate the proposed approach and show the effect of various 
interdependency levels on the performance of these systems under seismic conditions. The 
results provide important information to mitigate seismic damage on lifeline systems.  

This report is divided into 6 sections. Section 2 provides a brief review of previous 
efforts in modeling interdependent critical infrastructures. Section 3 describes the new 
approach to model the interdependent systems. Section 4 presents system performance 
measures and associated network flow algorithms. In Section 5, the new approach is 
compared to an existing model through a series of sample examples. Finally, Section 6 
summarizes this study.  
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2. REVIEW OF PREVIOUS STUDIES 

Efforts to model interdependent civil infrastructure systems and to evaluate the 
effect of external perturbations have included the use of complex-adaptive systems (CASs) 
and economic-input output frameworks. In the CAS-based approaches [11-13], complex 
systems are modeled as a collection of individual intelligent agents which represent their 
components. These agents respond to disturbances acting competitively and cooperatively 
for the good of the entire system. Rinaldi et al. [12] showed the potential application of 
CAS-based approaches to interdependent lifelines including electric, oil, transportation, gas, 
telecommunication, and water systems. Haimes and Jiang [14] applied an economic input-
output model to understand the economic effect of the functional loss of a system on 
interconnected infrastructure. The model was applied to simple power and transportation 
systems for demonstration. While system interdependency was addressed in these 
approaches, the application to the network seismic performance problems was not 
considered.  

Dueňas-Osorio et al. [15, 16] proposed an alternative model for interdependent 
lifeline systems in which the interdependency was determined by geographical immediacy. 
The seismic performance of interdependent infrastructure systems under various 
interconnectedness levels was considered in the study. Although this approach sheds light 
on the issue of modeling interdependent networks in the context of earthquake engineering, 
certain issues require further refinement before this approach can be used to assess the 
seismic performance of the system. These issues are summarized in this section. 

 
a) Probabilistic Model for Interdependency.  

The work in references [15, 16] focuses on the dependence of a water system on the 
power grid. In this work, the dependence of the failure of the jth node in the water network, 
designated Wj, on the failure of the ith node in the power grid, designated Ei, is given by: 

 |( | ) , for all ~
j ij i W EP W E p j i=  (1) 

where |j iW Ep  is the value of the conditional probability of Wj given Ei, which represents 
the strength of dependency; and ~ indicates node adjacency between the Wj node and the Ei 
node. |j iW Ep is considered constant and is bounded as follows: 

|( ) 1
j ij W EP W p≤ ≤          (2) 
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Because the failure of the jth water node due to seismic forces and due to a power 
outage are not considered separately, the challenge in using this model is to understand how 
the event Wj in Eqs. (1) and (2) should be interpreted. 

To clarify this situation, consider the Venn-Diagram shown in Figure 1, where for 
simplicity, attention is restricted to the case where the jth node in the water network draws 
power only from a single node in the power grid (i.e., the ith node).  Here, the sample 
space is conditioned on the occurrence of a particular level of the ground motion. The 
associated events in Fig. 1 are defined as follows:  

 

Sample Space

Q
jW

E
jW

iE

Sample Space

Q
jW

E
jW

iE

 
Figure 1. Venn-Diagram.  

 

iE   = failure of the ith node in the power grid 
Q

jW  = failure of the jth node in the water network due to earthquake 
E

jW  = nonfunctionality of the jth node in the water network due to a 
         power outage.  

The event jW  can then be defined as the union of the events Q
jW  and E

jW , i.e., 

Q E
j j jW W W= ∪      (3) 

With these events, the dependency in Eq. (1) can be defined in more precise terms as 
follows: 

|
( | ) , for all  ~E

j i

E
j i W E

P W E p j i=    (4) 

Eq. (4) allows the parameter |E
j iW E

p  to be interpreted as probability of failure of the 
backup power generation for the jth node in the water network. Additionally, the bound 
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given in Eq. (2) is seen to no longer be valid.  
 

b) Evaluation of Link Failure  
 The vulnerability of a complex network usually considers the failure of the links 
and the nodes separately. In this approach, the failure probability is specified for each link 
and node, and the network is analyzed without further aggregation.   
 An alternative approach to model the water network, lumping the probabilities of 
failure of the links onto the node to which these links are attached, was adopted in [15, 16].  
This approach assumes that all the links that feed into a node must fail before the node 
itself has failed. Therefore, the failure of a specific water distribution node is treated as a 
parallel system event, where the failure of the individual links is considered statistically 
independent (s.i.).  This simplification may result in a more efficient analysis, but it is at 
the expense of the seismic reliability of the network being overestimated. 

 
c) Directivity of Links 

In critical infrastructure, a link can carry bidirectional or unidirectional flow. Most 
links of lifeline systems, however, generally carry unidirectional flow. In [15, 16], the 
lifeline system is modeled as an undirected network, which assumes that all links can carry 
bidirectional flow. This assumption may yield misleading simulation results because power 
generators may send electricity to power substations but not vice versa in normal 
operational condition. Therefore, modeling the utility networks with the mixture of 
bidirectional and unidirectional links are more realistic (refer to 5.2.5 for more detail). In 
addition, the failure of a link can disrupt the flow in both directions when a link is assumed 
to be carry bi-directional flow while, in reality, two directional links must fail to stop flow, 
which is a less probable event. Therefore, results based on the assumption in [15, 16] will 
typically underestimates the seismic reliability of a system.  

 
d) Network Representation 

To represent a network, the topology of a network and its associated data need to 
be stored. The performance of a network flow algorithm depends not only on the algorithm, 
but also the way the network is represented and how it is managed during the associated 
analysis.  

An adjacency matrix [17] is one of the popular ways to represent the network. This 
matrix has a row and a column that correspond to each node in the network. If a link exists 
between the ith and jth node, the (i, j)th entry of the matrix equals 1. Otherwise, the entry 
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equals 0. This matrix has n2 elements (where n is the number of nodes), while only m (the 
number of links) entries are nonzero. Link data (i.e., length, time, capacity, etc) as well as 
network topology can be stored in additional adjacency matrices. Although the simplicity of 
the adjacency matrix is an advantage (especially for undirected networks), this sparse 
matrix requires a significant amount of memory, especially for nondense networks. 
Furthermore, this sparseness is a bottleneck in identifying all of the outgoing/incoming 
links from/to nodes, which is a key task in network flow algorithms. When dealing with 
large networks that will need to be analyzed in seismic loss assessment programs such as 
MAEviz [18], this problem may be acute. The adjacency matrix representation is used in 
the model developed in [15, 16]. A more efficient way of storing the network topology and 
the associated data is the forward star representation, which will be described in Section 4 
of this report. 
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3. PROBLEM FORMULATION 

 Lifeline systems are modeled as directed networks in this study. The network, 
which consists of nodes and links, represents a system of power generation stations, power 
distribution stations, power lines, pumping stations, water pipelines, pipeline junctions, etc. 
By considering the systems in this way, network flow algorithms can be employed to 
ascertain network behavior that is of interest to end users and emergency responders.  

This section develops a new probabilistic model for interdependent utility networks. 
The issues described in the previous section with regard to the model in [15, 16] are 
addressed by the proposed model. 
 
Problem Description 

Consider an example of power grid and water system shown in Fig. 2, where the 
electrical needs of a node in the water distribution network can be supplied by one or more 
nodes in the power grid.  

PG1

PG2

PD1

PD2

Power Grid

WG1

WG2

WD1

WD2

Water System

1WGα

2WGα

PG1

PG2

PD1

PD2

Power Grid

PG1

PG2

PD1

PD2

Power Grid

WG1

WG2

WD1

WD2

Water System

WG1

WG2

WD1

WD2

Water System

1WGα

2WGα

 
Figure 2. Interdependent Systems. 

 
To account for network interdependency, a relationship must be developed to 

describe how the failure of a node in one network is affected by failures in another network. 
This relationship can be determined as a function of the geospatial location of the network 
components and the associated connections. For example in Fig. 2, water generation node 1 
(WG1) is dependent on power distribution node 1 (PD1) and 2 (PD2), and WG2 is 
dependent on PD2. WG1 and WG2 have backup power generation units for which their 

failure probabilities are 
1WGα and 

2WGα , respectively. 
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The dependent nodes in the water system (e.g., WG1 and WG2 in Fig. 2) must have 
power for proper functionality. Consider the failure of these nodes in the water system due 
to a power outage. Each dependent node has a backup power generation unit; therefore, 
both the nodes on the power grid which it is dependent on and its backup power generator 
must fail so that the dependent node in the water system is rendered nonfunctional. This 
means that we need to consider the reliability of the backup supply unit in determining the 
strength of interdependency and in evaluating interdependency effects.  

The following section describes the proposed model to characterize the dependency 
of a node in the water system on the nodes in the power grid. 
 
Interdependency Model 

Let 
jSE

%
 denote the failure of the set of power nodes ( jS ) on which the water node 

j is dependent. More specifically, the event 
jSE

%
 is defined as  

  

 
{ }

j

j

j

S k
k S

Q N
k k

k S

E E

E E
∈

∈

=

= ∪

%
I

I
 (5) 

where  
Q

kE  =  failure of the kth node in the power grid due to earthquake 
N

kE  =  nonfunctionality of the kth node in the power grid because of failure due to  
         earthquake of the nodes or links that feed electricity to the kth node 

and 

 Q N
k k kE E E= ∪      (6) 

As in the previous section, the failure of a node in the water distribution network due to 
earthquake and due to power failure are considered separately, and the sample space is 
conditioned on the occurrence of an earthquake of a specified magnitude. An updated Venn 
diagram of this problem’s sample space is shown in Fig. 3. 
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Sample Space

Q
jW

E
jW

jSE
%
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Q
jW

E
jW

jSE
%

 

Figure 3. Venn-Diagram for interdependent events. 

 

Assuming that the events Q
kE  and Q

jW  are conditionally s.i. events given the 

magnitude of the ground motion, then the probability of the joint failure is )()( Q
j

Q
k WPEP ⋅  

where ( )Q
kP E  and ( )Q

jP W  are determined respectively by fragility curves [19]. The 

probability of the event N
kE  is difficult to compute analytically because it is associated 

with the probability of failure of other components in a network. Therefore, ( )N
kP E is 

generally determined by system reliability framework [9] for a relatively small size network 

or by Monte-Carlo simulations for a complex network [20].  

The interdependency can be described by the following conditional probability: 

( | )
j

E
j S jP W E α=

%
 for all j    (7) 

where jα  represents the strength of the dependency which is determined by the failure 

probability of the backup supply unit at node j. This physically represents the probability 

that a water node will be nonfunctional given the failure of all the power nodes that supply 

power to the water node. 

 By simulating network flow, the interdependent system response can be evaluated. 

The next section presents the system performance measures for quantifying the functional 

loss of this system and network flow algorithms corresponding to the system performance 

measures employed in this study.  
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4. SIMULATION MODEL 

The proposed probabilistic model presented in Section 3 is integrated into two 
network flow algorithms to evaluate the seismic response of interdependent systems. This 
section describes the system performance measures and network flow algorithms employed 
in this study.  
 
4.1 System Performance Measure 
 To quantify the functional loss of a lifeline system, two system performance 
measures are adopted: Connectivity Loss (CL) and Service Flow Reduction (SFR).  

Connectivity Loss is a measure of the ability of every distribution node to receive 
flow from the generation nodes. Connectivity loss is defined as: 
    

 
1

1
i

N post
i

i pre

nG
CL

nG=
= - å  (8) 

 

where N is the number of distribution nodes, i
prenG  denotes the number of generation 

nodes able to feed flow to the ith distribution node under intact conditions, and i
postnG  

denotes the number of generation nodes able to supply power to the ith distribution node 

under seismic conditions. The performance measure in Eq. (8) is an extension of the one 

proposed in [15, 16] for undirected networks. 
Service Flow Reduction (SFR) determines the amount of flow that the system can 

provide compared to what it provided before the disturbance. Service Flow Reduction is 
defined as: 

 
1

1
iN

i
i

SSFR
D=

= - å  (9) 

where Si denotes the actual flow at the ith distribution node under seismic conditions, and Di 
represents the demand of the ith distribution node. This SFR was proposed in [15]. 
 The SFR provides a better measure of the consequences of a seismic event on 
lifeline systems in that supply/demand at each node, capacity of a link, and actual flow are 
considered, while CL is only concerned with the existence of a path that can deliver flow 
from generation nodes to distribution nodes.  
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4.2 Network Flow Algorithm 
To estimate Connectivity Loss (CL) and Service Flow Reduction (SFR), two 

different network flow algorithms are employed for simulations.  
The forward star representation [17] is used in this study to store the topology of 

the network and its associated data in a single matrix. Each row corresponds to each link 
and has 2 (tail and head node) + k (the number of link properties such as length and 
capacity) elements. The rows are sorted in the ascending order of their tail node and 
numbered sequentially. A pointer for each node i, indicating the smallest numbered link of 
which tail node is node i, is maintained to determine the set of outgoing links of node i 
efficiently. This representation not only saves computing memory, but also enables network 
flow algorithms to identify links emanating from a node faster than when using the 
adjacency matrix [17]. The network flow algorithms used in this study are tailored to accept 
this network representation. A summary of the network flow algorithms are given 
subsequently. 
 
Search Algorithm (For Connectivity Loss): 

Connectivity loss is concerned with whether available paths exist between 
generation and distribution nodes. This connectivity may be evaluated using a search 
algorithm. The search algorithm determines if there exists a path between nodes. Therefore, 
the breadth-first search algorithm is employed to estimate CL. The mathematical 
formulation of breadth-first search is given in Ahuja et al. [17]. 

As in [15, 16], a shortest path algorithm is employed for the problem of the 
connectivity loss analysis. The shortest path algorithm repeatedly compares the cost of the 
paths that connect a (source) node to the other nodes to find the shortest path. Because the 
search algorithm does not include the process of comparing path travel cost, the shortest 
path algorithm is less efficient in terms of simulation speed. This advantage increases as the 
size of a network increases.  
 
Min-Cost/Max-Flow Algorithm (For Service Flow Reduction): 

SFR is evaluated by considering link capacities and supply/demand of nodes. 
Successive Shortest Path (SSP) algorithm [17] was modified to solve the min-cost/max-
flow problem and implemented to simulate flow in this study. If a network is disturbed by 
an earthquake (i.e., failures of generation nodes and links), this algorithm routes the flow 
from generation (supply) nodes to distribution (demand) nodes considering the capacity of 
links in the network.  
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In [15], the SFR is determined by solving min-cost and max-flow problems 
separately and sequentially. Although the algorithm used in the reference [15] can consider 
convex (nonlinear) cost flow, sequentially solving the optimization problem is 
computationally inefficient. 
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5. MODEL COMPARISON 

To illustrate the advantages of the proposed model, several simple examples are 
considered for comparison with the model developed in [15, 16]. Section 5.1 describes the 
fragility information used by the analyses in this report. Section 5.2 shows the sample 
networks and the simulation results. 
  
5.1 Fragility Information for Network Components 
 Lifeline systems comprise numerous structural components which are spatially 
distributed. Typically, the vulnerability of these components is represented by fragility 
curves which show the conditional probability of being in a specific damage state given the 
ground motion intensity. These fragility curves are used for power system components such 
as electric substations, gate stations, and power generation plants, as well as for water 
system components which include pumping stations, storage tanks, and pipelines.  

The fragility information used in this report was obtained from the open literature. 
The fragility data for power generation, power distribution, and water generation 
components are obtained from the HAZUS 99 manual [19]. For buried pipelines, a study 
conducted by O’Rouke and Ayala [21] was used to estimate the vulnerability of pipelines. 
This data was also used by the analyses in [15, 16]. 

For power generation, power distribution, and water generation components, it is 
assumed that a component that experiences at least “extensive” damage is not able to 
function. The fragility parameters used for the evaluation of component functionality are 
shown in Table 1, and the probability of reaching or exceeding extensive damage can be 
calculated using Eq. (10).  

 
Table 1. Fragility information for network components [19]. 

Classification Damage State Median β 
Power Generation component 

High-Voltage ESS5 Extensive 0.2 0.35 
Power Distribution component 

Low-Voltage ESS1 Extensive 0.45 0.45 
Water Generation component 
Plants with Unanchored  
Subcomponents-PPP4 

Extensive 0.77 0.65 
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 ln(a) ln(median)P[Extensive Damage|PGA a] Φ
β

⎛ ⎞−
= = ⎜ ⎟

⎝ ⎠
  (10) 

A break in a pipe is assumed to result in the failure of buried pipelines. To ascertain if a 
pipe has a break, the repair rate is calculated using the following equation [21]: 
 

2.25Repair Rate (repairs/km) 0.0001 PGV@ ´    (11) 
 

where PGV is Peak Ground Velocity in cm/s. A repair rate of 20% is assumed to be the rate 
of breaks in the pipeline. Using the break rate and assuming that the breaks constitute a 
Poisson process, the probability that a segment of pipe experiences at least one break can be 
determined. In the proposed approach, as well as the model by Dueňas-Osorio et al. [15, 
16], the occurrence of at least one break is assumed to impair the functionality of a pipeline 
segment. Therefore, the probability of pipeline break occurrence is calculated as: 
 

( 0) 1 ( 0) 1 Break Rate Length
r rP B P B e- ´> = - = = -    (12) 

 
where rB  is the number of breaks. 
  
5.2 Example Analyses 

Five example networks, including a simplified Memphis network, were selected to 
demonstrate the differences between the proposed approach and the one in references [15, 
16]. The Matlab code developed by Dueňas-Osorio et al. [15, 16] was provided and used 
for these comparisons and the proposed model is also coded in MATLAB.  

The first example shows the difference between the node-based and link-based 
approaches in considering failure of links. The second example is for a power network with 
transmission nodes. The third and fourth examples demonstrate the discrepancy in results 
for cases in which a water node depends on multiple power nodes and multiple water nodes 
that depend on a single power node. The last example is for a simplified Memphis water 
and power network.  

A water generation node is assumed to be dependent on power distribution nodes, 
and a water distribution node is modeled as a junction of pipes which is not dependent on 
the power nodes. Hence, a water generation node may be rendered nonfunctional from 
seismic effects and the nonfunctionality of all power distribution nodes that supply power 
to the water generation node. Failure of two directional links that carry bi-directional flow 
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between two components is assumed to be perfectly correlated events. 
For both the proposed approach and the approach in [15, 16], Monte-Carlo 

simulation (MCS) is implemented to simulate the response of the sample networks under 
seismic conditions. The peak ground acceleration (PGA) level at each node is increased 
monotonically, and the PGV at each pipeline is calculated accordingly using the conversion 
formulation developed in [15]. Note that the references [15, 16] dealt with CL, while SFR 
analyses were conducted only in the reference [15].  
 
5.2.1 Example 1: Water-Only Network 

In analyzing water networks, one of the major differences between the proposed 
approach and that presented in [15, 16] is that individual pipelines are removed (i.e., a link-
based approach) in the proposed approach, whereas in the model in [15, 16], the fragilities 
of pipelines that are adjacent to a water distribution node were combined into the water 
distribution node (i.e., a node-based approach). As a result, the model in [15, 16] requires 
that all pipelines connected to a node fail for connectivity loss to occur. The example in this 
section illustrates that this assumption results in underestimation of CL and SFR.  

Consider the example network in Fig. 4. To allow for direct comparison of link and 
node removal, the network flow algorithms employed in [15, 16] for estimating CL and 
SFR are used in this example.  
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Figure 4. Water-only network for validation. 

 
The results for this network are shown in Figs. 5-8. MCS with 500 samples was 

used to assess the seismic performance (i.e., CL and SFR) of this network. The results in 
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Figs. 5 and 6 illustrate that the proposed model yields a higher measure of system loss as a 
function of PGA. In this specific example, the failure of link 1, 3 and 5 disrupt the flow 
between generation and distribution nodes. The link-based model is able to capture this 
situation while the node-based model cannot. This difference resulted in the 
underestimation of CL and SFR when the network is analyzed using the model in [15, 16]. 
As shown in Figs. 7 and 8, the computational efficiency is approximately the same for both 
the node-based and link-based models.  
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Figure 5. Mean CL for the water-only network. 
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Figure 6. Mean SFR for the water-only network. 
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Figure 7. Average CL algorithm runtime for the water-only network. 
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Figure 8. Average SFR algorithm runtime for the water-only network. 

 
  
5.2.2 Example 2: Network with Transmission Nodes  
 If a power generation node fails, power distribution nodes that are supplied with 
electricity only from the power generation node are not functional even though the power 
distribution nodes survived under earthquakes. This nonfunctionality of the power 
distribution nodes may result in nonfunctionality of water nodes that are dependent on these 
power distribution nodes. For a power system that has transmission nodes, simulations (e.g., 
breadth first search) are required to determine if power distribution nodes are able to carry 
electricity from the power generators after a seismic event. To investigate whether both 
approaches can appropriately handle this case, the network shown in Fig. 9 was selected 
and analyzed. Note that “T” in Fig. 9 represents a transmission node. 
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Figure 9. Example network for transmission node case. 

 
Like the previous example, Monte-Carlo simulation (MCS) with 500 samples was 

used to assess the seismic performance. The reliability of backup power generator at each 
water generation node was decreased monotonically, in other words, interconnectedness 
level (i.e., the strength of dependency) increased for this example. The results for this 
system are shown in Figs. 10 and 11.  

As shown in Figs. 10 and 11, the results from both models show that the CL and 
SFR increase as the interconnectedness level increases. However, the model in [15, 16] has 
higher network performance loss for this example network because it cannot account for 
cases where the generation nodes fail and transmission nodes exist between other 
generation nodes and the distribution nodes. To illustrate this issue in more detail, consider 
the network shown in Fig. 12. In the model in [15, 16], if a generation node fails from 
seismic forces, then this model looks to see if the neighbors of the generation node have  
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Figure 10. Mean CL of water network for transmission node case. 
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Figure 11. Mean SFR of water network for transmission node case. 
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links to other generation nodes. If there are none, then the model in [15, 16] assumes that 
water nodes which are dependent upon the neighbors of the power generation nodes fail. 
However, suppose that power generation node G2 fails after an earthquake, but power 
generation node G1 and water generation node G survive. In this case, the model in [15, 16] 
assumes that D cannot receive the electricity because the other neighbor of D is not a 
generation node. This will result in the possible removal of water generation node G while 
D still has flow from the power supply, G1. The analysis in this fashion overestimates the 
network performance loss although this approach is more computationally convenient. In 
contrast, the proposed model uses breadth first search algorithm to ensure the connectivity 
between generation and distribution nodes. 

 

G1 GT

WaterPower

D

G2

G1 GT

WaterPower

D

G2  
Figure 12. Example network for transmission node analytical comparison. 

 
Note that CL at low PGA level from the model in [15, 16] is highly overestimated 

while the difference of SFR between both models are slight. The overestimation of CL from 
the model in [15, 16] is because this model assumes that every distribution node receives 
flows from all generation nodes under intact conditions. In this specific example, this 
assumption is not appropriate. 

 

5.2.3 Example 3: Multiple Power Nodes per Water Node (MPPW)  
 This example focuses on the case when a node in the water network is dependent 
on multiple nodes in the power grid. To compare the results between the proposed approach 
and the model in [15, 16], the network shown in Fig. 13 was developed and analyzed.  
 Because the model in [15, 16] considers a water node to be subjected to 
interdependent effects if any of the power nodes that are able to feed flow into the water 
node is nonfunctional, this model is expected to underestimate water network performance. 
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Figure 13. Example network for MPPW case. 

 
For the analyses of this example, Monte-Carlo simulation (MCS) with 500 samples 

was performed with the interconnectedness level (i.e., the strength of dependency) 
increased monotonically. The results for this system are shown in Figs. 14 and 15 and the 
runtime of both models are compared in Figs. 16 and 17. 
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Figure 14. Mean CL of water network for MPPW case.  
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Figure 15. Mean SFR of water network for MPPW case comparison. 
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Figure 16. Runtime comparison of CL for MPPW case. 
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Figure 17. Runtime comparison of SFR for MPPW case. 

 
As illustrated here, the model in [15, 16] overestimates CL and SFR at higher 

interconnectedness level because of the way that it determines dependency effect. This 
finding suggests that the results for this case would improve with the use of the proposed 
model. Runtime of both approaches are compared in Figs. 16 and 17. The computational 
efficiency of the proposed model is excellent, particularly for SFR due to the use of more 
efficient algorithms. 
 
5.2.4 Example 4: Multiple Water Nodes per Power Node (MWPP) 
 In this example (Fig. 18), one power node feeds multiple water nodes. In the model 
[15, 16], if many water nodes are connected to one failed power node, all water nodes are 
assumed to be under the same dependency effect, which means that if one water node is 
considered to have failed, then the others also are considered to have failed. However, the 
proposed approach evaluates the interdependency effect considering the reliability of the 
backup power unit at each water node independently. Therefore, the proposed approach 
does not assume that all water nodes are under the same dependency effect.  
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Figure 18. Example network for MWPP case. 

 
Like previous examples, Monte-Carlo simulation (MCS) with 500 samples was 

used with the interconnectedness level (i.e., the strength of dependency) increased 
monotonically. The results for this system are shown in Figs. 19 and 20.  
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Figure19. Mean CL of water network for MWPP case. 
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Figure 20. Mean SFR of water network for MWPP case.  

  
These results show that the proposed approach produces higher performance loss 

estimates at zero interconnectedness level and the model in [15, 16] overestimates the 
performance loss at higher interconnectedness levels. The former is due to the link-based 
approach of the proposed model and the latter is due to the fashion that the model in [15, 
16] evaluates the interdependency effects.  

 
5.2.5 Example 5: Memphis Network 
 Both approaches are applied to a simplified Memphis water and power systems to 
estimate system performance. The networks have 49 water and 59 power nodes as shown in 
Figs. 21 and 22. For the water system, storage tanks and large pumps are modeled as the 
water generation nodes, and pipe intersections are modeled as the water distribution nodes. 
Gate stations are modeled as power generation nodes, and substations are modeled as 
power distribution nodes for the power grid. Each water generation node is dependent on at 
least one power distribution node.  
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Figure 21. Memphis water network [16]. 

 
Figure 22. Memphis power network [16]. 

 
For the Memphis water and power networks, determination of which approach 

would yield higher system performance loss is difficult before carrying out the simulation 
due to their complexity. However, a few key characteristics can be investigated to estimate 
the difference of the system performance from both approaches: 
 

1) The Memphis water network has many interconnected water distribution 
nodes. This characteristic implies that failure of pipelines would reduce 
network performance before the failure of every distribution node (see 
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Section 5.2.1). As a result, the model in [15, 16] is expected to underestimate 
the network performance loss. 

2) The Memphis power network has many transmission nodes and only one 
case of a power node connected to multiple water nodes (and no cases of 
water nodes connected to multiple power nodes). These characteristics imply 
that the interdependency effects will be largely influenced by the 
transmission nodes. Therefore, the model in [15, 16] will overestimate the 
system performance loss. 

 
 These characteristics imply that the Memphis analyses will show a higher 
performance loss for the proposed model than the model in [15, 16] at the zero 
interdependency level, and that the performance from the model in [15, 16] will increase 
with respect to the proposed model as the interdependency level increases.  

As previously mentioned, the references in [15, 16] modeled utility systems as 
undirected networks. However, an actual system is a heterogeneous mix of bidirectional 
and unidirectional links. Based on a series of discussions with an official1 in MLGW, 
generation nodes (e.g., pumping stations and water tanks in water networks and gate 
stations in power grids) only allow power and water to flow from them under normal 
operating conditions although these nodes has an ability to change the direction of flow for 
re-routing. Unlike water pumping stations, water tanks can allow flow in both directions 
under normal conditions so that they can provide water to distribution nodes or water from 
distribution nodes can fill the tanks. Although these tanks allow bidirectional flow 
physically, we can assume that they can allow flow in one direction for network analyses 
because water from distribution nodes fills the tanks first and the tanks provide water to 
other distribution nodes. Therefore, the proposed model looks at utility systems as directed 
networks such that unidirectional links are modeled to send flow only from generation 
nodes to distribution or transmission nodes while two unidirectional links are modeled to 
carry bidirectional flow between distribution nodes or generation nodes. Note that if a 
generation node fails, water/power from other generation nodes can pass through the failed 
node to provide water/power to the affected area after emergency operations are performed.  

To compare both the proposed model and the model in the references [15, 16] 
directly, Memphis water and power systems are modeled as undirected and directed ones 
and analyzed.  

                                                 
1 Richard Bowker, Manager of Information Service: Memphis Light, Gas & Water 
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 Monte-Carlo simulation (MCS) with 1000 samples was selected after convergence 
tests and used for the analyses with the interconnectedness level (i.e., the strength of 
dependency) increased monotonically. Note that while both models can consider spatial 
variation in the ground motion, this effect was not taken into account for simplification.  

The comparison of the system performance and computational efficiency for 
undirected Memphis network are conducted and shown in Figs. 23-26. The CL and SFR 
analyses for the Memphis water and power networks illustrate both the phenomenon from 
the water network-only analyses that compared the proposed link removal to the node 
removal in the model in [15, 16], and the transmission node case for which the model in [15, 
16] overestimates interdependent effects.  

As shown in Figs. 23 and 24, the proposed model has higher network performance 
loss at lower interdependency levels, and at higher interdependency levels, the model in [15, 
16] either catches up to the proposed model or increases at a faster rate as a function of 
interdependency. The results from the proposed approach indicate that the system 
performance loss increases as the strength of dependency (interconnectedness level) 
increases. These results clearly show that the neglect of dependency (or interdependency) 
effect will mislead the evaluation of seismic performance for lifeline systems which are 
interdependent with one another.  

The  runtime comparisons in Figs. 25 and 26 show that the algorithms used in the 
proposed model run fairly fast compared to the algorithms in the model in [15, 16].  
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Figure 23. Mean CL for undirected Memphis water network. 
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Figure 24. Mean SFR for undirected Memphis water network. 
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Figure 25. Runtime comparison of the CL for undirected Memphis networks. 
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Figure 26. Runtime comparison of the SFR for undirected Memphis networks. 

 

For the analyses of directed Memphis network, the assumption made in [15, 16], 
that all distribution nodes are able to get fed by all generation nodes, is not obviously 
appropriate. Therefore, the model in [15, 16] was modified to evaluate CL using Eq. (8). 
The comparison of the system performance for directed Memphis network are shown in 
Figs. 27-28. These results show the same trends as the results for undirected Memphis 
network.  
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Figure 27. Mean CL for directed Memphis water network. 
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Figure 28. Mean SFR for directed Memphis water network. 
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6. CONCLUSION 

 This report presented a new approach to account for the interdependency effects in 
evaluating the seismic performance of lifeline systems. A probabilistic formulation was 
developed to accurately characterize interdependency between power and water grids. This 
probabilistic formulation and efficient network flow algorithms were implemented to assess 
the seismic performance of interdependent lifeline systems. The strength of 
interdependency (interconnectedness level) was given by the failure probability of the 
backup supply unit at a node that is dependent on nodes in other systems.  

Example networks were developed and analyzed to demonstrate the difference 
between the proposed approach and that in a recently published work [15, 16]. Through a 
series of example analyses, the robustness and efficiency of the proposed approach were 
successfully demonstrated. The analysis for a simplified Memphis water and power grid 
demonstrated the importance of considering the interdependency effects in the seismic 
performance assessment of utility lifeline networks.  

Key improvements in the proposed model include the consideration of improved 
interdependent failure mechanism and the use of efficient algorithms. Although both the 
proposed model and the model in [15, 16] capture the effects of interdependencies in 
analyzing network, the proposed model offers enhanced interdependent network response 
estimates. The discussions of flow direction in utility networks provided better 
understanding of the behavior of network systems under normal and emergency conditions. 
Utility systems are modeled as directed networks based on the discussions, which helped to 
estimate the seismic performance of the systems more accurately.  

 The resulting output of the proposed model provides useful insight in the 
preparedness of potential hazard and the establishment of effective mitigation actions. The 
proposed model will be implemented in MAEviz, the seismic loss estimation tool 
developed by Mid-America Earthquake (MAE) Center, for assessing a comprehensive 
seismic risk to critical infrastructures.  
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