Physical Activity Analysis:
A project in many languages

Katharine Lee
Department of Anthropology, University of Illinois at Urbana-Champaign

Project Goals:
• Use commercially available physical activity monitors (FitBit One) to collect detailed data about physical activity in adult women in rural Poland
• Analyze effects of physical activity in relation to markers of bone turnover and levels of reproductive hormones
• Leverage continuous data for time-use analysis methods and daily summary data for overall activity level
• Avoid spending research funds on very expensive activity monitors and software

Challenges & Solutions:
• FitBit does not provide continuous data from web interface
 - Request developer API from company with special permissions
 - Download physical activity data from FitBit servers using Ruby
• Summarized data includes days the device was delivered to & returned by study participant
 - Remove incomplete days of data collection, then
 - Average data from each individual across days
 - Analyzed in R because it would be tedious & error-prone in Excel
• Continuous data must be categorized
 - Sleep time should not be included in further analyses.
 - Remove first & last day from analysis because of incomplete data
 - Classify time intensity of activity for each remaining time period
 - Used Python (Jupyter notebook) for flexibility with data structures

Outcomes:
• Code is written to allow for quick downloading of physical activity data and fast, consistent parsing of files, which will be useful for the additional data collection I will be performing in Summer 2016 and Summer 2017.
• Results from this analysis have been presented at 2016 Association of Physical Anthropologists annual meeting in Atlanta, GA (April 2016)
• Results from this analysis are accepted for presentation at 2016 International Society for Evolutionary Medicine and Public Health annual meeting in Durham, NC (June 2016)
• I will be applying to present work generated in this class at the Feminist Biology Symposium at the University of Wisconsin (October 2016)

Acknowledgements:
• This work was part of a Focal Point grant funded by the Graduate College at the University of Illinois at Urbana-Champaign
• FitBit One trackers purchased with funding from Beckman Institute Cognitive Science/Artificial Intelligence grant and UIUC Dept of Anthropology Summer Graduate Research Assistance Award
• Data collection was possible with M. Rogers and K. Lee NSF GRFP awards, American Philosophical Society’s Lewis and Clark Fund for Exploration, and NSF Clancy #1317140
• Additional thanks are due to research participants, Polish field assistants, Aaron Lee, and the instructors of this class.