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ABSTRACT

Assessing the historic and future impacts of {asd and lanaover change (LULCC) on
climate requires spatially artdmporally explicit data sets on LULCC spanning several decades
to centuries, because climate change is a-teng problem. Though remote sensing data
provides a globally consistent picture of land cover, these data are only available from the past
four decades. Therefore, existing LULCC reconstructions are modeled estimates that combine
remote sensing data with relatively coanssgolution inventory statistics that covers longer
historical period. The uncertainties in modeling assumptions, and limitetialalty and
inconsistencies across inventory datasets among other reasons introduce uncertainties in LULCC
reconstructions. These uncertainties not only limit our ability to model future LULCC, but also

translate as uncertainties in both historic aridriienvironmental assessments.

The objectives of my PhD work are as follows: (1) systematically investigate the causes
of uncertainties in existing historical LULCC datasets, (2) test the sensitivity of LULCC
guantification uncertainty in estimating @@nissions from LULCC (historic and future) using a
processhased lanéurface model, the Integrated Science Assessment Model (ISAM), (3)
compare the relative uncertainties from various drivers (e.g. LULCC datasets, model processes
e.g. nitrogen cycle, endnmental factors such as climate) in estimating historic and future
LULCC emissions, and (4) explore statistical techniques to model future LULCC that takes into
account the uncertainties in quantifying the spatial and temporal patterns of LULCC, asa (5) a
casestudy, identify a key regional hotspot of historic LULCC quantification uncertainty (here,
India), and reduce uncertainty through improved understanding of the dynamics and drivers of
land change in the castéudy region. | address the above gdaysintegrating lanesurface
modeling (SAM), remote sensing and GIS, data collected through ground transects, and

geospatial data on socioeconomics.

ISAM simulations show that the estimated net global emissions from LULCC (mean and
range) across three different historical LULCC reconstructions are 1.88 (1.7 to 2.21) GtClyr for
the 19806s, 1.66 (1.48 to 1.83p)GtGfrythetor0DND

estimates are higher than other published estimates that range from 0.80 to 1.5 GtC/yr for the



19906s and 1.1 GtC/yr for the 200006s. These

because they include the effects of nitrodjemitation on regrowth of forests following wood
harvest and agricultural abandonment. The estimated LULUC emissions for the tropics are
0.79N0.25 for the 198006s, 0.78N0.29 for the
the nontropics regios are 1.08+£0.52, 0.90+£0.19 and 0.69+0.12 GtC/yr for the three decades.
The model results indicate that failing to account for the nitrogen cycle underestimates LULCC
emissions by about 40% globally (0.66 GtC/yr), 10% in the tropics (0.07 GtC/yr) and 66 in
nonttropics (0.59 GtClyr). If LULCC emissions are higher than assessed, it means fossil fuel

emissions would have to be even lower to meet the same mitigation target.

Extending ISAM simulations to the ZIcentury resulted in two key insight§irst,
nitrogen limitation of CQ@ uptake is substantial and sensitive to nitrogen inputs. In ISAM,
excluding nitrogen limitation underestimated global total LULUC emissions ¥5234gC (~21
29%) during the 20 century and by 12887 PgC (96150%) during the 21 century. The
difference increases with time because nitrogen limitation will progressively-ceyatate the
magnitude of C@fertilization effect on regrowing forests, due to decreasing supply of-plant
usable mineral nitrogen. Second, historically, thdirect effects of anthropogenic activity
through environmental changes in land experiencing LULCC (indirect emissions) are small
compared to direct effects of anthropogenic LULCC activity (direct emissions). As a result,
including or excluding indirectreissions had a minor influence on the estimated total LULUC
emissions historicallyin contrast, the indirect LULCC emissions for thé'2&ntury are a much
larger source to the atmosphere, in simulations with nitrogen limitation. This is because of the
gradual weakening of the photosynthetic response to elevated) (€Dsed by nitrogen
limitation. Therefore, what fluxes are including in LULCC emissions across different models is a

crucial source of uncertainty in future LULCC emissions estimates.

A detailedinvestigaton of the sensitivity of different globacale LULCC modeling

techniques show that land use allocation approaches based solely on previous land use history

(but disregarding the impact of driving factor), or those based on mecbaltysfitting models
for the spatial processes of land use change do not reproduce wekdongistorical land use
patterns. With an example application to the terrestrial carbon cycle, | show that such

inaccuracies in land use allocation can transiate significant implications for global
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environmental assessments. In contrast to previous approaches, | present a statistical land use
downscaling model and show that the model can reproduce the broad spatial features of the past
100 years of evolutionfacropland and pastureland patterns. Therefore, the modeling approach

and its evaluation provide an example that can be useful to the land use, Integrated Assessment,

and the Earth system modeling communities.
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CHAPTER 1

Introduction

1.1Overall Objectivesand Content

Human activities have transformed natural ecosystems into mamagas in almost
every part of the worl d. At -frep ladswaface is usadef@ r | 'y ¢
agricultural activities, all of which had previously been covered by natural vegetation. Such
largescale changes in land cover affect regiara global climate through biogeophysical and

biogeochemical pathways.

Assessing the historic and future impacts of fasd and lanadover change (LULCC) on
climate requires spatially and temporally explicit data sets on LULCC spasewvegaldecades
to centuries, because climate change is a-teng problem. Though remote sensing data
provides a globally consistent picture of land cover, these data are only available from the past
four decades. Therefore, existing LULCC reconstructions are modelethtsstithat combine
remote sensing data with relatively coarnsssolution inventory statistics that covers longer
historical period. The uncertainties in modeling assumptions, and limited availability and
inconsistencieacrossnventory datasetamong otlkr reasonmtroduce uncertainties in LULCC
reconstructions. These uncertainties not only limit our ability to model future LULCC, but also
translate as uncertainties looth historic and futurenvironmental assessments. For example,
guantifying CQ emissons from historical LULCC is the major source of uncertainty in the
global carbon budget. Therefore, a systematic understanding of the sources of uncertainties in
existing LULCC datasets is crucial to: (1) better assess the utility of a dataset (drss) $a
particular scientific application, (2) draw betieformed conclusions when used as an input for
environmental assessments, and (3) to further reduce uncertainty in quantifying LULCC through

iterative process.

Motivated by the above reasomnisegoal of this study is to: (1) systematically investigate
the causes of uncertainties in existing historical LULCC datasets, (2) test the sensitivity of
LULCC quantification uncertainty in estimating CO2 emissions from LULCC (historic and

future) using a pcessbased langurface model, the Integrated Science Assessment Model



(ISAM), (3) compare the relative uncertainties from various drivers (e.g. LULCC datasets, model
processes e.g. nitrogen cycle, environmental factors such as climate) in estimabing dunsl

future LULCC emissionsand (4) explore statistical techniques to model future LULCC that
takes into account the uncertainties in quantifying the spatial and temporal patterns of LULCC
and (5)as a casestudy, identify a key regional hotspot of historic LULCC quantification
uncertainty (here, India), and reducancertainty through improved understanding of the
dynamics and drivers of land change in the «dsdy region. | address the above gdajs
integrating lanesurface modeling, remote sensing and Gd&ta collected through ground

transectsand geospatial data on socioeconomics.

Broadly, thecontents othis dissertdon can be sudivided into threegparts. In the first
part consisting o€Chapters @ 4, | used existing global land use datasets (historic and future) to
understand and quantify the sourcesuatertaintyamong them (Chapter 2), and how these
uncertaintiegranslate asincertaintiesn modeling CQ emissions from landise and lad-cover
change (Chapters 3, 4Maving developedan understanding athe overalldata and model
uncertaintiesn these chapter# the second part (Chaptersvie (with collaboratorsjieveloped
statistical models to predict the spatial patterns of-lz®dchangeThis is the first study to
demonstrate the ability of a land changedelto reproduce the past 100 years of evolution of
spatial changes in agricultuat global scaleThe modeis currently being applied for predicting
the future spatial land use patterns within the Integrated Assessment Modeling (IAM) group at
NCAR, and in other mukimodel comparison projects such as LUCAC. Intlivel part (Chapter
6), | take a more spatiallgtetailed, but regional perspective to understanddireamics and
drivers of spatial patterns dfULCC in India. | presented each of these chapters as self
contained units, containing individuabstract,introduction, methods, results, discussion, and

conclusions Specific contents andbjectives of individual chapters are as follows

1. Chapter 2:Comparison of three different historical land use datasets (cropland,
pastureland, wood harvest, and urban land) and developing algorithms to translate them
into changes in land cover, consistent with the land surface representation of ISAM.

2. Chapter 3:Applying the three LULCC reconstruction developed in Chapter 2 within

ISAM to examine theuncertaintiesn modeling CQ emissions due tancertaintiesn



guantifying historical LULCC. Here, we not only explore LULCC dateertainty but
alsouncertaintiesn modeling key terrestrial processes, including the nitrogen cycle.

3. Chapter 4:1 extend the work of Chapte? to estimate LULCC (consistent with land
surface representation in ISAM) between 2@IBH0 under various Representative
Concentration Pathways (RCPs) of the IPCC CMIPen by extending Chapter B,
drive ISAM with thesefuture LULUC datasets to quantifyncertaintiesn future CQ
emissions fronLULCC resulting from (1) differencan scenarios, (2{lifferent LULCC
activities represented in the model, and the sensitivity to the methmedretentation(3)
key structural and parametencertaintyin model, including the representation af
nitrogen cycle, (4uncertaintiesn modelingenvironmental factorgespecially climate)
and (5) different terminaonplegi es of what AL

4. Chapter 5:1 present thedescription and historical evaluation of the developnuodra
spatial model ofagricultural land use change at global scale. This analysis extends the
work presented in Chapters 2 and 3, by evaluating the sensitivity of differentidand
reconstruction methodologies to estimating@®issions from LULCC.

5. Chapter 6:Here, | take aegional focus to improve our understanding of LULCC in
India. There are two motivations to focus on India. First, India ieggon where the
average human pressure on land resources much exceeds the global aMezage.
pressure is expected to furtherensify in the future, thus being a global hotspot of land
change. Second, from analysis presented in Chapter 2, we findirtbattaintiesin
historical (ate 20" century) LULCC in India are much greater than other regions in
South Asia. Therefore, theremains a potential to improve our understanding of

historicalLULCC in India (therebyeducinguncertaintiek

In this chapter| present estimates of various lacolver conversions in India at national
scale between 1985 and 2005, based on aterathll analysis of higkresolution Landsat
imageries. Using highresolution biophysical and socioeconomidatasetscombined with
statistical modelsl also investigated thdrivers of key lanetover conversions in India. This
understanding is essential to model LULCC at higher resolutypicélly 1km lat/long) required
for regional environmentalassessmentand landuse planning Current global datasets (as

presented in Chapter 2) typically aalable at ~10km lat/long oroarser resolutiondo not



adequately capture the heterogeneity fitagmentatioro f | ndi a0 $otd tllanddessc ap e s .

of LULCC vary with resolubn due to scale dependencies.

Finally, in Chapter 71 provided aroverall summaryand the future direction aésearch

presented ithis dissertation

Chapters 5 have alreadypeenpublished in peereviewed journalgsee table in next
page) Chapter Gs currently under review for Regional Environmental Change.

Note on Supplementary/Appendi&or brevity, nosupplementamappendix material has
been includedvith the dissertationThe sipplementary text/figure/tableumberscited in each
chapter correspondsto the online supplementary material (opaocess)of the journal

publication of respective chaptdeee next table for chaptetise journal publication)
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CHAPTER 2

Three distinct globalcewern mahleasgddd amd s

conversions over a period of 2

2.1 Abstract

Earthdés | and cover has been extensively
activities and natural causes. Previous global studies have focused on developing spatial and
temporal patterns afominant human landse activities (e.g. cropland, pastureland, urban land,
wood harvest). Procesmsed modeling studies adopt different strategies to estimate the changes
in land cover by using these lande data sets in combination with a potentigjetation map,
and subsequently use this information for impact assessments. However, due to unaccounted
changes in land cover (resulting from both indirect anthropogenic and natural causes),
heterogeneity in landse/cover (LUC) conversions among grid gedlven for the same lanude
activity, and uncertainty associated with potential vegetation mapping and historical estimates of
human lanelise result in land cover estimates that are substantially different compared to results
acquired from remote sensiofpservations. Here we present a method to implicitly account for
the differences arising from these uncertainties in order to provide historical estimates of land
cover that are consistent with satellite estimates for recent years. Due to uncertasttyricah
agricultural land use, we use three widely accepted global estimates of cropland and pastureland
in combination with common wood harvest and urban land data sets to generate three distinct
estimates of historical larcbver change and underlyimgC conversions. Hence, these distinct
historical reconstructions offer a wide range of plausible regional estimates of uncertainty and
the extent to which different ecosystems have undergone changes. The annual land cover maps
and LUC conversion maps areported at 0.5°x0.5° resolution and describe the area of 28 land
cover types and respective underlying luse transitions. The reconstructed data sets are
relevant for studies addressing the impact of Jaoeer change on biogeophysics,

biogeochemistryvater cycle, and global climate.



2.2 Introduction

Human activities have transformed natural ecosystems into managed areas in almost
every part of the worldHoleyetal., 2005 201) . At present , neafreey 40%
land surface is beingsed for agricultural activities, all of which had previously been covered by
natural vegetationRamankuttyet al., 2008 Ellis etal., 2010. Such largescale changes in land
cover affect regional and global climate through biogeophydimaignet al., 1992 Pielkeetal.
2002 2011, Feddemeet al. 2005 Brovkin et al.,2006; Bala et al. 2007 Pitmanet al. 2009
201Z% Findelletal., 2009 and biogeochemicalé&inandYang2005 Canadelletal. 2007 Bonan
2008 Jainet al. 2009 Pongratzet al., 2009 Shevliakovaet al. 2009 Houghtonet al., 2012
pathways.

Assessing the historical impacts of lamsk/cover change (LUCC) at global scale (e.g.
biogeophysical, biogeochemical, and climate effects) requires spatially and temporally explicit
data sets on & cover and landse/cover (LUC) conversions (replacement of one land cover
type by another) spanning several hundred years. Though remote sensing data provides a
globally consistent picture of land cover, these data are only available from the pasicades
(Houghton et al. 2012. Hence, several studies (e.Bamankuttyand Foley, 1999 Klein
Goldewijk, 2001; Klein Goldewijk et al., 2006 Hurtt et al., 2006 2011, Olofssonand Hickler,

2008 Pongratzet al., 2008 Klein Goldewijk et al., 201Q Klein Goldewijk et al., 2011) have
adopted different approaches in order to reconstruct spatially explicit data sets of dominrant land
use activities (e.g. cropland, pastureland, urban land, wood harvest) covering several centuries.
Typically, processased modig studies combine one or more of these {agd data sets with

a map of potential vegetation (representing primary land cover in the absence of human
activities) to estimate the changes in land cover. The method adopted to replace potential
vegetation aries from simple proportional clearing (eJgin and Yang, 2005 Pitmanet al.,

2009 to a rulebased approach based on several logical assumptions and prioritizations that best
describe the trends associated with historical LUCC kgt etal., 2006 2011).

Hurtt et al. (2006) developed a Global Langse Model (GLM) to provide historical
estimates of LUCC and LUC conversions duesxtpansion otropland and pastureland, shifting
cultivation and wood harvest at 1° spatial resolution. An updated nesEGLM framework has

recently been used in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment
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Report (AR5) to provide estimates of LUCC and LUC conversions among five simple classes
(cropland, pastureland, urban land, primary Jaamd secondary land) at 0.5°%0.5° resolution
annually from 1500 to 2100 (AD)HQ@rtt et al., 2011). This includes historical input data
covering the period 156@005 and data for the four Representative Concentration Pathways
(RCP) scenariogossetal., 2010 for the future (20052100). The LUCC and LUC conversion
estimates are usually translated to the specific land cover classes suitable for use in a process
based model and subsequently used for impact assessmentagenceetal., 2012. Jainand
Yang(2005)used a much simpler technique of superimposing the historical cropland data (based
on Ramankuttyand Foley 1999 on a 0.5°x0.5° potential vegetation map (with each grid cell
occupied by one potential vegetation) to estimate the changes in land Sioviar but varying
methods for superimposing a common cropland and pastureland were adopted by each of the
seven climate models that participated in an intenparison study aimed at understanding the
historical impact of langdtover changeRitmanet al., 2009. These estimates have been used as
inputs to terrestrial carbon models, dynamic vegetation modats earth system models to
assess the impacts of LUCC (eShevliakovaet al., 2009 Yanget al., 201Q Lawrenceet al.,

2012 on biogeophysics aior biogeochemistry. However, most of these previous studies have
not considered landover change arising due to indirect anthropogenic (e.g. climate driven land
cover change) or natural disturbances like fires, blowdpams insect outbreaks. Severatat

to nationalscale studies have demonstrated their importance and ecological significance (e.g.
Giglio etal., 201Q vanderWerfetal., 201Q also sed.ambinetal., 2003andFoleyetal., 2003.

For example, according to Forest Resources Assesg&at 2006, 104 million hectares of

forest on average were reported to be significantly affected each year by forest fire, pests (insects
and disease), or climatic events such as drought, wind, snow, ice, and floods, with many
countries missing this crwi information. In addition to differences arising from unaccounted
land-cover change (indirect anthropogenic and natural causes), significant uncertainties could
also arise due to heterogeneity associated with LUCC at temporal and spatial scales which
camot be captured using a rdb@sed approach of converting vegetation generalized at a
regional or global scale. As a result, the global land cover estimated by most of the previous
studies does not match estimates based on remote sensing data, a vedlahleletecting
several types of landover changes and lasmdbver modifications (subtle changes in land cover)
that are difficult to map using other methods. For example, a comparison of forest area in 2005



from Hurtt et al. (2011) (estimated by combing information on primary and secondary land

with a basemap which classifies each grid cell as either forest efiorest based on potential
vegetation biomass, as providedHyrtt etal. 2006 and 500 m resolution Moderate Resolution
Imaging Spectroradimeter (MODIS) Collection 5 land cover datiédl etal. 2010 following
International Geospheigiosphere Programme (IGBP) classification scheievéland and
Belward 1997 indicates pronounced differences in magnitude and spatial distrib&igurés

2.1(a) and(b)). Globally, Hurtt et al. (2011)estimated forest area was about 80& km? higher

than the MODIS estimated value of 31.518° km? in 2005. Similarly, other studies also
overestimated the global forest extent for the recent past at simmalginitudes (refer t&ect

2.5). It is essential to reconcile such differences in estimates, especially in the context of studies

addressing the biogeophysical impacts of laoder change.

The objective of this study is to build upon and extend the aplpeseof previous studies
in order to provide estimates of historical laswler change (and underlying LUC conversions)
that are consistent with satellite observations. We use @agked approach to assign priorities
for converting land cover due to vamis human landse activities. Multiple years of satellite
data sets are used to quantify the differences in estimates that may be arising due to unaccounted
land-cover change and heterogeneity associated with LUCC that cannot be captured using simple
rules for clearing vegetation. These differences are used to constrain and accordingly adjust the
priorities for changing land cover, thereby producing land cover maps consistent with satellite
observations for recent years. The work presented here takesoaont lanecover change due
to four major laneuse activities: 1) cropland expansion and abandonment, 2) pastureland
expansion and abandonment, 3) urbanization, and 4) regrowth due to wood harvest. Due to
uncertainties associated with historical agriatdt landuse, we have used three global historical
data sets of cropland and pastureland (rsfiep 1 inSect 2.3) in combination with a common
data set for historical wood harvest and urban land, to produce three distinct estimates. The core
products v generated were annual maps (at 0.5°x0.5° resolution) of land cover and LUC
conversions starting from the piredustrial year of 1765 until 2010 or before (based on the
ending time of the three cropland and pastureland data sets). The annual landtecsetisdae
reported as area fractions of 28 land cover typebl€2.1) for each 0.5°x0.5° grid cell and the
annual LUC conversion maps are reported as the area converted for each of the 92 unique

conversions possible (refer supplementBaple S1) among the 28 land cover types. The results
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are compared with other recently published model results anebdsea studies. Finally, the

sources of uncertainties in the present study are discussed.
2.3Methods

The method used to characterize historiealdicover change can be described in five
steps: ] Historical landuse change data sets are processed to suit this sjudynd@ cover map
for the year 1765 are generated by combining potential vegetation map, cropland, pastureland
and urban land map fahat year; 3 Land-cover change and LUC conversions starting with the
1765 land cover map are estimated using alvaked approach for prioritizing LUC conversion
for each of the four landse activities; ¥Estimates from the previous step are compavitd
satellite dataPriorities are accordingly adjusted to correct for the differencgsGrassland,

pasturelandand cropland estimates are separated iBtG,@hotosynthetic pathways.
Step l:processing ohistorical land-usechangedata sets

The three different data sets on cropland and pastureland are based HYDE 3.1
(Historical Database of the Global Environmenlefn Goldewijk et al.,, 2011), 2) New
pastureland estimates and updated cropland estimates baswaimamkuttyand Foley (1999)

(N. Ramankutty, personal communication, 2011), anBeyjional estimates based Houghton

(2008) These three agricultural lane data sets are henceforth referred to as HYDEaRF

HH data, respectively. The urban land data set is #tgm Goldewijk et al. (2010) Historical

wood harvest data are based on annual wood harvesting ratekidirtinet al. (2011) RF and

HH data are at an annual time scale. The decadal time resolution HYDE data was linearly
interpolated to yield annual maps. All thesstadsets except HH data are gridded data sets at
0.5°x0.5° or finer resolution. Finer resolution data were aggregated to 0.5°x0.5° resolution. The
HH data set provides the annual rate of deforestation/reforestation due to cropland, pastureland,
wood harvesand shifting cultivation for ten regions (definedHoughtonetal., 1983 covering

the entire globe, rather than by geographic details. HH regional data sets for cropland and
pastureland resulting from deforestation were converted to gridded estinsatgsthe LUC
conversion estimates derived based on RF data. Additional details on the method used to
spatialize HH data, details and processing of other data sets are available in supplementary text.

The three langover change and LUC conversion estimmaigenerated from this study
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(henceforth referred to as ISAMYDE, ISAM-RF and ISAMHH) based on three agricultural
data sets (HYDE, RF, and HH) utilized the same wood harvest and urban land data. ISAM
HYDE, ISAM-RF, and ISAMHH estimates extend to the ye&010, 2007 and 2005,

respectively.
Step 2:land covermap of 1765

A land cover map for the year 1765 was generated as a reference map to track/éand
change and LUC conversions. We started with the global map of potential vegetation derived at
5 min gatial resolution byRamankuttyandFoley (1999) Fourteen of the 15 vegetation classes
present in the potential vegetation map directly correspond to the potential land cover types used
in this study Table 2.1). The land cover classification used in thisidy is chosen to be
consistent with the land cover types required for the Integrated Science Assessment Model
(ISAM) (Jainand Yang 2005 Yang et al., 2009 Yang et al., 2010 for which we originally
produced these data sets. Mixed forest (which is not part of our land cover classification) from
the potential vegetation map was reclassified into any one of the seven forest types by searching
for dominant (greater than 70% dfet area considered) forest type within a 4°x4° resolution
window around the grid cell. The window size was increased until the requirements for dominant
forest type were satisfied. Savanna (usually defined as tropical grasslands) present outside
tropical regions was reclassified to other herbaceous types, using the method adopted for
reclassifying mixed foresRamankuttyand Foley (1999)assigned single potential vegetation to
each 5 min grid cell from 1km DISCover satelitased global land cover datiaofelandand
Belward,1997 even in grid cells where anthropogenic land cover was absent. In such grid cells,
we used MODIS date~(iedl etal., 2010 for the year 2005 classified under IGBP classification
scheme to reassign the grid cell area (currenttypied by either 100% forest or néwrest) to
fractional area of forest and ndéorest. The forest and ndorest types were determined using a
combination of MODIS land cover dat&r{edl etal., 2010 and the method adopted to reclassify
mixed forest. his reduced the total area of forest in the potential vegetation map from 5&.2 x
km? to about 48.6 xL0° km® An additional land cover class (watmvered areas) map was
derived at 5 min resolution using MODIS land cover datéedl etal., 2010 for the year 2005,
and was included in the potential vegetation map by proportional adjustment of potential

vegetation areas.
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Next, we aggregate the 5 min resolution potential vegetation map to 0.5°x0.5° resolution
to yield the fractional areas of 15 land eovypes within each grid cell. Hence, each grid cell in
our potential vegetation map can be occupied by more than one type of natural vegetation. We

assume watecovered areas to be constant for every year.

Finally, we derive the land cover map for theay&765 by including the 1765 cropland
and pastureland maps from RF and the urban land Kigmn (Goldewijk et al., 2010; the
0.5°x0.5° resolution potential vegetation map is generated by simple proportional adjustments to
the area of potential vegetatipmesents within each grid cell. The map was used as a starting
point to produce all three estimates of lamer change and LUC conversions. We also assume
all forest in the 1765 land cover map as primary forest. At this stage, we do not distinguish
between G/C, types for grassland, pasturelaadd cropland. Classification taC, pathways is

accomplished in the final step.
Step 3:estimatinghistorical LUCC and LUCconversions

To derive the LUCC and LUC conversion estimates, we define a set of tailes
characterize each of the four lande activities. These rules impose a logical sequence and
priority order in which land cover is modified. Based on these rules, a priority factor is assigned
to each land cover type within each grid cell, correspondingach of the four landse
activities Figure2.2). The priority factor for a land cover type indicates the probability of that
vegetation being altered due to that particular dasel activity. The priority factor for an
individual land cover type with each grid cell varies from 0 to 1.0, and the sum of priority

factors for all land cover types corresponding to eachlesdactivity sums up to 1.0.

The rules that determine the priority factors for a iaed activity depend on the
magnitude of thatanduse activity for that year, the land cover map from the previous year, and
the potential vegetation map. For example, for an increase in cropland area between two
consecutive years in a grid cell, a priority factor is assigned to each land covesxgept (for
water, pastureland and urban land for which priority factor is assumed to be 0), which is
proportional to the total area of natural vegetation in that grid cell. The increase in cropland area
is accounted by converting each land cover type ¢pland based on its designated priority

factor. In the case of cropland abandonment (characterized by decrease in cropland area with
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time), the abandoned land reverts back to the potential vegetation level present in that grid cell.
In such cases, the potel vegetation map was used to determine the priority factors. Usually,
grasses and other herbaceous land cover types are faster colonizers tharAforesaeadBoer,

2009. They invade the abandoned land initially, while woody vegetation grows Hieever,

the rationale here is that a epear time gap is sufficient for woody vegetation to reappear. This
method provides a simple representation of successions. LUCC treatment due to urbanization is
similar to that described for cropland, with the eptton that in case of decrease in urban land
area with time, the decreased area is reverted to grasses (i.e. priority factor for grasses was
assigned as 1.0), irrespective of the potential vegetations present within that grid cell. For wood
harvest, prefence is given to primary forests over secondary forests. Priority factors were
assigned proportional to the area of each of the seven primary forests within that grid cell. In
cases where total primary forest was insufficient to account for wood hartesstng was done

from secondary forests following a similar approach. For an expansion of pastureland, clearing
of grassland is preferretHoughton 1999. In cases where grassland is insufficient, we followed

the method adopted for increase in croplarehaln case of decrease in pastureland area, the
abandoned area was reverted back to grassland.

There are a few exceptions to these rules. In cases where cropland is abandoned and
pastureland/urban land concurrenthcreasewith time, a part of the abanded area was
considered a source for pastureland/urban land. The fraction of abandoned cropland area used as
a source of pastureland/urban land is determined by the likelihood that the other vegetations
present in the grid cell are sources for the grawtpastureland/urban land. For example, a grid
cell dominated by forest is more likely to have a higher fraction of abandoned cropland area to
be used as a source of pastureland than a grid cell dominated by grassland. Similar treatment
exists for decrease pastureland area accompanied by increase in cropland/urban land, in which
a part of cleared pastureland area is considered a source for cropland/urban land. It should be
noted that in case of succession, forest returns as secondary forest (vegetabersri6 to 22
in Table 2.1), whereas we have not differentiated herbaceous land cover types as
primary/secondary. Because the data sets for fouruaadactivities considered in this study
come from more than one source, certain cases exist where tmeddesnversations, as
determined by the assigned prioritization factor, could not be carried out for all foumdand

activities. In such cases, we assign the following order of preference to modify land cover: urban
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land, cropland, wood harvesind pastureland. This order of preference was chosen considering
the uncertainties in magnitude, spatial distributeomd definitions associated with each larse
activity. Hence, the cropland and pastureland areas in IRAMISAM-HYDE, and ISAMHH

will be slightly less compared to the original RF, HY,BBd HH data sets in certain grid cells.

The land cover map of 1765 derived from stegt2 2 inSect 2.3) is used as the initial
condition from which we move forward in time, modifying land covershperimposing the

yearto-year landuse activities following the method described above.
Step 4:Calibration using satellite data

Historically, substantial lanrdover changes have occurred due to climate feedbacks
(Parryetal., 2007 and through naturalisturbances like forest fire§(glio etal., 201Q vander
Werf et al., 2010, blowdowns and insect outbreak$dley et al., 2003 Lambin et al., 2003.
Due to the unavailability of information on the magnitude and spatial extent to which these
effects have altered land cover historically at a radtitennial time scale, their impacts on land
cover have been excluded from the rdesed approach for téwating historical lanetcover
change. Additionally, the rulbased approach is a simplified representation of general trends
associated with historical larmbver change due to human lameke activities, which is subject to
variations at the regional argtid cell levels. Due to the factors discussed above, there exist
differences between satellite observations and estimates from tHeas@d approach (Step 3;
Sect 2.3). For example, the total forest area estimated usingbaged approachFigure2.3(a))
differs from satellite estimate$igure 2.1(a)) for certain grid cells. Our estimated forest area
varies from 36.7 to 39.4 x 1@m? among the three estimates, compared to 3A.0° xm? (after
changing to the land mask used in this study) estimated using MODIS land covétraamtice(
al., 2010 classified under IGBP classification scheme. We implicitly account for these

differences by calibrating with satellite data.

We first classifythe 28 land cover classes into two broad categories: forest and non
forest. Medium resolution satellite data captures forest extent/type with high accuracy compared
to other herbaceous typetu(get al., 2006 Friedl et al., 2010. The basic aim is to cencile
these in a way that will make the magnitude and spatial patterns of pdegeiarest estimates

as close as possible to satellite estimates.
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We compare estimated forest area for the year 2005 with estimates from 500 m resolution
MODIS land cover dta Eriedl et al.,, 2010 for the year 2005 classified under IGBP land
classification scheme, aggregated at 0.5°x0.5° resolution. An overestimation of forest area in a
grid cell indicates that higher priority factor should be assigned to forest land tgpesrfor
clearing than previously assumed. Similarly, an underestimation of forest area in a grid cell
indicates a lesser priority factor should be assigned to forest land cover types for clearing. To
modify the priority factor for each land cover type angrid cell for a particular year, we
determine dicorrection factav using a combination of information from the potential vegetation
map, the land cover map for the year 2005, the land cover map of the historical year for which
the priority factor is tobe adjusted, and the magnitude of underestimation/overestimation of
forest area estimated in comparison to satellite data. The correction factor for each land cover
type is chosen such that the estimated area of forest matches with satellite data when the
correction factor is multiplied by the priority factor estimated in step 3. The value of the
correction factor is > 1 for land cover types with increased priority and < 1 for land cover types
with decreased priority. An additional constraint is imposedhat the sum of the correction
factor multiplied by priority factor for all land cover types, corresponding to eachulsend
activity, add up to 1.0, a basic criteria described in stegied @ inSect 2.3). For the grid cells
where landuse data indidas the absence of anthropogenic land cover types, a simple linear
interpolation is used to adjust the area of natural vegetations between the starting and ending
reference years, in order to make the predemt estimates consistent with satellite data. A
similar approach was applied to grid cells where the magnitude of historicaldandas small
and correction factor alone is insufficient for effecting the changes needed to match satellite
estimates. The changes effected through linear interpolatoorefiected in annual land cover
maps, but are not recorded as LUC conversions. Hence, our estimates of LUC conversions are
only attributable to the four direct human lamse activities. To avoid underestimation of forest
area from satellite data, whichamresult due to the exclusion of regrowing forest, we also use
four additional years of MODIS land cover dakai€dl| et al., 2010 covering the period 2001
2004 to estimate the O6écorrection factorod. Thi
fored distribution Figure2.1(a)) and our estimated forest distributidfigure2.3(b)).
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Step 5:Separation of grassland, pasturelandnd cropland to G/C, types

We only classify grassland, pasturelaadd cropland to €C, types in annual land cover
maps, not annual LUC conversion maps. To separate the grassland and pastureland area fractions
into G; and G types, we followed the modified approachSiill etal. (2003) If there is at least
one month in a year when tempera is above crossover temperature (the temperature at which
the G quantum vyield equals &uantum yield) and rainfall is concurrently above 25 mm, it is
assumed that the,@rass fraction is equal to the number of months whegnehGtosynthesis is
favored relative to the number of growing season months with a temperature greater than 5°C.

Mathematically,

C, fraction = (number of months with,I > crossover temperature and rain > 25mm) /

(number of months with g > 5°C)

We use the monthly air tempersgu(T,) and precipitation data at 0.5°x0.5° resolution
based on CRU TS 3.0 (updated basedMitchell and Jones,2005, covering the period
19021 2006; a 16year moving average was calculated for both variables, to avoid sudden
fluctuations. For the years765 to 1900, average monthly precipitation and temperature values
from 1901 to 1910 were used. For the period 2@0720, the same values were assigned as for
the year 2006. For each year, we calculated the crossover temperature follmNaig, Berry
and Clark (1998) based on global Gxoncentration values from 1765 to 20Mefnshausert
al. 2011). The calculated crossover temperature varies from 18.2°C in 1765 to 24.1°C in 2010.
The G fraction generated for the period 17@910 was combined withhaual pastureland and

grassland estimates from stepstep 4 inSect 2.3), to separate them into;@nd G fractions.

To separate the annual croplands intp add G fractions, we use the estimates of
harvested areas of 175 different crops across th&wabi5 min by 5 min spatial resolution for
the year 2000Monfreda,RamankuttyandFoley2008. C; and G designations were assigned to
each crop type based on known pathway characterizations. A map indicating the fractional
coverage of ¢croplands was generated at 0.5°x0.5° resolution. In grid cells where there were
no crops present, 100% of the grid cell was assigned; trdplands. This map was used to

separate annual historical cropland estimates ig&n@ G types.
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2.4 Results
Comparison ofcropland andpasturelandestimates among 3 data sets

Comparison of global cropland statistics of RF and HYDE data averaged over the period
20012005 shows similar levels of cropland area, varying from 14.3 to 18.@ xm? with
HYDE estimates being 8% higher than RF estimaieble 2.2). However, this global picture
varies regionally. The most pronounced differences are found in Pacific Developed region and
China, where the cropland areas estimated by HYDE data are 70% and 23%HagHeF data,
respectively. The major differences between the two data sets result from the fact that these data
sets adopted different methods (Refer supplementary text) and agricultural inventory data sets.
While HYDE inventory data was based BAO (2008, RF estimates relied more on natienal
level census statistics, along with FAO estimates for recent yBaragnkuttyet al., 2008.
Houghtonds estimates of both gl obal and regi
estimates. This is because he coascnly croplands that were created or abandoned on lands

originally covered by forests.

While global cropland statistics estimated based on RF and HYDE data match reasonably
well with each other, pastureland statistics globally show substantial disamteemith even
more regional disagreement. This is because the global pastureland area estimated by the census
report used in RF itself is significantly lower thBAO (2008) estimates of pastureland used in
HYDE data. Globally, HYDE data estimates of pastand are 26% higher than the RF
estimated value of 26.3 ¥0° km? average over the period 20®D05. Major disagreement is
found over O6North Africa and the Middle East o
higher than RF for 2005. Whilethe pee nt age di fference is highest
Mi ddl e Eastdé, a |l arge difference in pasturel a
China, where the estimated pastureland area averages from 2001 to 2005 for HYDE 4 1.5 x
km? (~53%) and 1.7 xX10° km? (~43%) higher than RF data, respectively. HH data estimates of
pastureland are zero for all regions except Latin America, beebusghton(2008)assumes that
all pastures are derived from grasslands, with the exception of Latin Anetiere significant
clearance of forest area for pastureland has taken place due to extensive cattle ranching (Lambin
and Giest2003).
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Land-coverchangeestimates during 17652005

The 28 land cover classes have been combined into a broader categloeypgorpose of
analysis Table 2.3), and the values are presented in the text as range among three estimates
(ISAM-HYDE, ISAM-RF and ISAMHH). Globally, the total area of forest has decreased from
45.5 x10° km? (~36% of the total land area) to about 39 million km? during this period, a
onethird decrease. Of this, human lanse activities have contributed to a net decrease in forest
area of about 6:B.4 milion km® (Table 2.4), while the rest is attributed to indirect
anthropogenic and natural causes.alateforestation amounts to 141%.7 million km? and
forest regrowth ranges between 6 anthilion km?. Forest area in North America shrunk by
3-3.5 million km® (~35%-40%) and Tropical Africa shrunk by 2.3.6 milion km?

(~43%- 49%) (Table 2.4). Total forest area in Europe decreased b$o482% from its initial

value of 2.5 xL.0° km?. Estimates of forest area in China and South and SeaghAsia (SSEA)
regions show the largest difference among the three estimates. Forest area in China and SSEA
decrease by 4®%6- 52% and 4%- 66%, respectively. Such large differences in these regions are
mainly due to uncertainty in estimates of cropland @amankuttyet al. 2008 Liu and Tian

2010. North America, the former USSR and Tropical Africa show a large amdungt dorest

loss attributed to indirect anthropogenic and natural causes. Total forest regrowth due to human
land-use activities is about-8 million k. During 2005, roughly 24- 28% of the total forests
present are secondary foregksgre 2.4 andTable2.3). North America contains about 26% of
global secondary forest whereas the former USSR contai28%70of global secondary forest
(Figure 25). ISAM-RF estimates show higher secondary forest in all regions due to more

abandonment of croplands presenRF data compared to HYDE data.

Global area of savannas shrunk by-5.4 million km? (i.e. 38%- 50%) and shrublands
decreased by 6.8.9 million km? (i.e. 40%-53%) (Table 2.3). The area of grassland and
pastureland combined increased by about -IBi7million km? (i.e. 83%- 101%). However,
regional comparisons show more disagreement than global estimates of ¢hignge2(5). For
a single time snap during 2005, ISANYDE estimates show 57% less shrubland area in the
Pacific Developed region compared tAAM-RF estimates. Except for North America, ISAM

RF shows more cropland expansion in regions that were originally shrublands, compared to
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ISAM-HYDE. The area of grassland in ISARIF is higher than ISAMAYDE for all regions
because of lower pastureland esties by RF data compared to HYDE data. As we have
considered only deforestation and reforestation statistics due to agricultural activities from HH

data, they have been excluded in the discussion relating to comparison of herbaceous land cover

types.

LUC conversions during 17652005

Globally 6.6 6.8 million km? of forest loss (~45% of humasaused forest loss) has
occurred due to cropland expansion, whereas onk22million km? was due to pastureland
expansion (Supplementafable S1). SSEA contributeso 25%- 30% (1.6 2.1 million km?) of
forest loss occurring due to conversion to cropland, followed by North Americdl (& rhillion
km? 16%- 23%). Although the cropland estimates for Latin America by RF, HYDE, and HH are
in close range of 1:4..6 x 10° km? for the early 2000sT@ble2.2), their pathways of expansion
are very different. ISAMHYDE estimates only 0.65 0° km? of forest loss in Latin America
due to cropland expansion, whereas ISRW shows almost double the forest loss estimated by
ISAM-HYDE (SupplementaryTable S2). Because HH data was spatialized using ISRM
estimates, the trend exhibited by ISANH cannotbe considered independent from ISARF
estimates. Roughly 2%- 58% (~7.4 9.6 million km?) of cropland expansion has occurred due to

conversion of nofforested land (SupplementafableS1).

About 49%6- 62% of forest loss due to human land use in Latin Ameracairred due to
conversion to pastureland, compared t86296% caused due to cropland expansion (from
SupplementaryTable S2 and Table 2.4). Globally, 28.531.8 million km? of nonforested land
was used for pastureland expansion, the majority of which stedsiof grasslands. It is
interesting to note that though the areas of cropland and pastureland estimated by RF are about 1
x 10° km? and 6.7 x10° km? lower than HYDE estimates, respectively, for the period
2001 2005 {Table2.2), ISAM-RF estimates show substially more clearing (and regrowth) of
forested and ncforested land compared to ISAMYDE (Supplementarylable S2 and S4).

This is because HYDE data show a consistently increasing trend in cropland and pastureland
area over time, compared to RF dathiali show substantially more abandonment (and thus

more regrowth of natural vegetation), leading to more gross conversions by-REFANMBAM-
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RF and ISAMHH estimates show ~42% contribution of total secondary forest regrowth due to

cropland abandonment, wieais ISAMHYDE show a contribution of only about 23%.
Implications of partitioning to C3/C, type

A significant amount of land in North America and Europe estimated, gsaSslands in
1765 was classified as ;Cgrasslands for preseday conditions when changes in £€0
concentration were taken into account in the simplified methdstitbfet al., (2003) (Refer to
supplementaryrigure S1). About 10% of the grassland and 22.4% of pastureland from ISAM
HYDE was clasified as Gtype for 2010 Table 2.3). Combining the same grassland and
pastureland estimates for 2010 from ISAMDE with the G fraction map for the year 1765
resulted in 18.4% and 32% classified astype, respectively. Both ISANHYDE and ISAMRF

estimates show about 23% of the total cropland area,dgpe@ throughout the historical period.
2.5 Comparison withother studies

We compared our estimates of forest for the year 1990 with other stlidl#sZ.5). The

year 1990 was chosen for comparid@tause it is the farthest year from present for which many

gridded estimates were available that would facilitate regional comparisons. All the previous

modeling Klein Goldewijk, 2002, Hurtt etal., 2006 Yangetal.,, 201Q Hurttetal., 201]) studies

show good agreement with one another, even regionally. However, global total forest area

estimates from ISAMHYDE, ISAM-RF, and ISAMHH are about 10 X1C° km? less than

previous studies. Major disagreements occur in North America and the former USSR, wvhere o

estimates of forest area are reduced by 3.3 anthilidn km?, respectively. Because our forest
estimates are a reflection of estimates from satdlted land cover data, the differences in
estimates arising in these regions can be attributedaoconnted landover change, assuming
the rulebased approach accurately captures-@meer change occurring due to all major land

use activities.

We compared our estimates with FAO forest statistics for 188@( 2010. Due to
difference between the deition of forest used in FAO (se€AO, 2001, 2006 2010 andthis
study, we performed a Otest casebd6 wherein
vegetation map derived from MODIS land cover data from the year Zo@sll(et al., 2010
classified under the University of Maryland (UMD) classification scherangenet al., 2000.
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Land cover classification in the UMD scheme is favorable for making direct comparisons with
FAO estimates. In this case, the estimates seem to agree reasoekhbijthvFAO statistics,

with ISAM-HYDE estimates being at the high end for Tropical Africa and Pacific Developed
regions. Similar trends were observed when MOB$8mated forest area (UMD classification
scheme) for the year 2005 was directly comparetd WAO forest estimates for the same year
(FAO, 2010.

2.6 Discussion andonclusions

This study focused on characterizing historical fander change and LUC conversions
using annual maps of cropland, pastureland, wood haraedturban land as inputs.ub to
uncertainties associated with estimates of historical-lsedactivities, three different data sets
on agricultural extent were used to derive three different estimates, consistently using the same
rule-based method of prioritizing and convertinggetation. Information from remote sensing
data was used to constrain and modify the-balsed method to implicitly account for landver
changes due to indirect anthropogenic or natural causes. The differences among the three
estimates produced in thigidy can be largely explained by the spatial and temporal differences
in estimates of cropland and pastureland areas among the three data sets. Therefore these data
sets offer a wide range of plausible regional estimates of uncertainty and the exterthto wh

different ecosystems have undergone changes historically.

The data sets produced in this study have several associated limitations. Since the annual
cropland and pastureland maps reveal only the net changes in area, we could not calculate the
effect of shifting cultivation in this studyHurtt et al. (2006) perfaomed a sensitivity test by
assuming a standard land abandonment rate of 6. 7%ugr to shifting cultivation in the tropics,
and showed that excluding shifting cultivation could lead to underestimation of secondary land
created by agriculture. However, wkose not to include shifting cultivation in our study due to
high uncertainty in the magnitude and spatial pattdtust{ et al., 2006 historically associated
with shifting cultivation. In addition, our assumption that all forest on the land coverfanap
1765 (starting year of analysis) was primary forest potentially underestimates the secondary
forest area created due to wood harvest and cropland abandonment before 1765. The validity of
this assumption is well established due to the fact that theofattms study is to characterize

land-cover change after the predustrial era.
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There are three major sources of uncertainty. First, the potential vegetation map produced
from satellite data is assumed to accurately represent the land cover that weukkisted at
present if human activities have been fgxstent. Hence, the usage of potential vegetation map
to represent prendustrial land cover assumes that changes in environmental conditions have not
changed the land cover. The second source ofriantgy arises from the rulbased approach to
prioritize landcover change used in this method; this is a simple representation of historical
trends associated with various lamse activities that are not fully understood, and difficult to
generalize ah global or regional scale. As shown, the Hdesed approach leads to a land cover
map that differs substantially compared to satellite estimates for recent years. However, we
attribute the differences to unaccounted fander change and grickll levelvariations in land
use trends assumed in our Fol@sed approach. This difference is subsequently used to revise the
rules at the grigtell level to produce estimates close to satellite observations. Hence, the
estimates provided here are largely dependerihe simplified representation of converting land
cover assumed in this study. However, we have not performed a systematic sensitivity analysis
of the different assumptions made to modify land cover. The third source of uncertainty arises
due to laneuse data sets used as inputs. Estimates of historical gridded wood harvest data were
based on several assumptions, which are subject to uncertduntydt al., 2006. As shown in
this study and in other previous studig$e{n Goldewijk andRamankutty2004; JainandYang,

2005, spatial and temporal patterns of historical cropland and pastureland have significant
uncertainties. This is reflected in the distribution of fharested land cover types as estimated
using three agricultural data seEgure2.5). As a result, only the total neforested land as a

single broad category matches with satellite estimates. The individual forest area, however, does
seem to agree reasonably well between the three estimates, primarily due to the calibration
carried outin step 4 $ect 2.3). Constraining each land cover type (especially herbaceous types)

to be close to satellite estimates is impossible, as the cropland and pastureland estimates
prescribed based on input data sets need to remain unaltered. In adddiomfooarse
resolution satellite data have less accuracy in classifying herbaceous land cover types than trees
or barren landRriedl etal., 2010.

Several regional and natioAalvel reconstructions using finer resolution census data
have revealed sigicant differences in estimates of cropland and pastureland compared to older
versions of RF and HYDE global data sets. For exanplet al. (2010)found that RF data
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overestimated cropland area in China by a factor of 21 for the year 1700 and 1.80favHEh
compared with the cropland data of Northeast Chfeahd Fang.,2011) reconstructed based

on combining calibrated historical data from multiple sources. Similarly, they found significant
differences in the spatial distribution of cropland in HYD&a for the 18th and 19th century.
Historical reconstructions over Amazonizeite et al., 2011) using municipalevel census data

with higher level of details also show considerable difference in spatial patterns and magnitude
compared to RF data. Thange of uncertainties in regional estimates is expected to have
narrowed in most recent RF and HYDE data used in this study, but significant differences still
exist. Because the three estimates produced in this study are directly dependent on these global
land-use data sets, our global data sets should also be used with caution while drawing inferences
from regionallevel analysis. Since no single agricultural lars# data set used here can be
pointed out adetter as oworse than another, it is recommeddto use all three estimates

alongside one another to gain a better picture of the range of uncertainties.

The biggest source of uncertainty in the global C budget remains emissions due to
LUCC, (Canadell 2002 and these are estimated to be in the oofler 0.5 GtC y* (Houghton
2005 Houghtonetal., 2012. Several multmodel comparison experiments have been performed
to determine the uncertainty of LUCC in the global carbon budget Ni=Guire et al., 2001
Pitmanet al., 2009 Reick et al., 2010. The LUCC uncertainty experiments involve using a
common laneuse data set (e.g. HYDE or RF) in each of the models and comparing thestand
fluxes. However, due to differences in the structure of each model, the method adopted to
implement the commorahduse data differs significantly between each model (e.gP&e&n
etal.,, 2009. As a result, it is impossible to attribute the estimated uncertainty to +redatld
uncertainty and uncertainties arising due to differences in the method of implegnientiuse
data between different models. However, driving the same model with multiple LUCC data sets
derived consistently using same method, as discussed here, opens a new avenue for studying
LUCC datarelated uncertainty by eliminating the modelated uncertainty.

Certainly, indirect anthropogenic and natural effects have been dominant factors in
historical landcover change and have been poorly documented at a global lsmailirf et al.,
2003. Additionally, landcover modifications like agriculturantensification have been thought

to have a widespread impact on climate through altered surface attributes and changes in
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biogeochemical cycles. Recent advances in remote sensing observations have provided a more
accurate and globally consistent pictamfemore subtle changes in land cover (e.g. changes in
tree height, vegetation biomassd vegetation structure), in addition to capturing lemer
changes. Because globally consistent remote sensing observations are available only for the past
four deades, we need to rely on other methods of reconstructing largesdatee changes in

land cover. Monitoring all forms of larcbver change extensively and consistently at a global
scale for the prsatellite era, even at medium/coarse spatial and tempesalution, was
impractical. Hence, several assumptions need to be made to account for its impact on LUCC.
Future research is required on monitoring lbegn changes in all forms of lafmbver change

and landcover modifications at higher spatial and temgb resolutions through remote sensing
observations. Further, tracking LUC conversions rather than net changes in land cover can help
facilitate better understanding of trends and fate of LUCC and its implications.

As pointed out byPitmanet al. (2009) implementing a common LUCC data set among
different models is impossible. As a result, implementing the land cover maps and LUC
conversion estimates presented here in different models may be subject to different
approximations depending on the complexityd gparameters associated with each model.
However, we have chosen land cover classifications such that the data can be implemented in
models without introducing much uncertainty. Preliminary results of regional and global carbon
emissions for the last theedecades, estimated by implementing these three sets of data in the
ISAM, have already been used in the IPCC AR5. A detailed assessment of the range of
biogeophysical and biogeochemical impacts produced by these three estimates is in progress
using a couled ISAM-CESM framework. We believe that the data sets presented here will be
useful to modelers interested in studying the effects of historical LUCC on biogeophysics,
biogeochemistry and hydrological cycle, as well as in general to the global changerigmm
interested in studying the impacts of historical LUCC. Digital versions of these data sets can be
downloaded from the webpage (http://www.atmos.illinois.edu/~meiyapp2/datasets.htm).
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2.7 Tables

Table 21 Landcoverclassifications used in this study

No. Landcovertype Symbol
1* Tropical evergreen broadleaf forest TrpEBF
2* Tropical deciduous broadleaf forest TrpDBF
3* Temperate evergreen broadleaf forest TmpEB
4* Temperate evergreen needleleaf fores TmpEN
5* Temperate deciduous broadleaf forest TmpDB
6* Boreal evergreen needleleaf forest BorENF
7* Boreal deciduous needleleaf forest BorDNF
8* Savanna Savanna
o* C; grassland/steppe Csgrass
10* C,4 grassland/steppe C,grass
11* Dense shrubland Densesh
12* Open shrubland Openshr
13* Tundra Tundra
14* Desert Desert
15* Polar desert/rock/ice PdRI
16 Secondary tropical evergreen broadlea SecTrpE
17 Secondary tropical deciduous broadlea SecTrp
18 Secondary tempera@yergreen broadleaf SecTmp
19 Secondary temperate evergreen needlel SecTmp
20 Secondary temperate deciduous broadle SecTmp
21 Secondary boreal evergreen needlelea SecBorE
22 Secondary boreal deciduonsedleleaf SecBor
23* Water/Rivers Water
24 C; cropland Cscrop
25 C,4 cropland Cycrop
26 C; pastureland Cspast
27 C, pastureland Cypast
28 Urban land Urban

Note:* Natural land cover classes used in this study. Exceptdter/rivers (No23), all
other naturalland cover classes were directly derived from the potential vegetation map of
Ramankuttyand Foley (1999) Note that G and G grasslands (N& 9 and 10) are considered to
be a single land cover class in the potential vegetation map and during the initial stages of
calculation. Partitioning to £and G types is carried out in the last stegiep 5;Sect 2.3).
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Table 22 Regional areas of croplanand pastureland averaged for the period 20005
estimated directly from RF (Updated estimates baseRamankuttyand Foley, 1999, HYDE
(Klein Goldewijk etal., 2011 and HH Houghton,2008 data sets across 9 regions covering the
world. The 9 regionsire based on Houghton et al. (1983). Units are in millioA Kt values
are roundd to one decimal place.

Reqions Cropland Pastureland

g RF HYDE HH Range RF HYDE HH Range
North - 2.1 23 19 19123 24 25 0.0 0.0i25
America

Latin 1.6 15 1.4 1.4i16 48 54 2.8 28i5.4
America

Europe 1.2 1.2 0.1 0.17i1.2 0.6 0.7 0.0 0.071 0.7
North Africa

and Middle 0.8 0.9 0.3 0.3710.9 1.8 3.0 0.0 0.071 3.0
East
Tropical
Africa
Farénseé 20 22 04 04722 33 36 0.0 007136
China 1.3 1.6 0.7 0.771 1.6 3.5 5.2 0.0 0.0715.2
South &

SouthEast 3.0 2.9 1.5 157 3.0 0.3 0.4 0.0 0.0104
Asia

Pacific

Developed 0.4 0.6 0.2 0.21 0.6 2.6 4.1 0.0 0.07141
Region

World 14.3 153 76 7.61 153 26.3 33.0 2.8

2.0 2.0 19 197120 7.0 8.0 0.0 0.018.0

2.81
33.0
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Table 23 Global area of various land cover types for 4 time slices based on-FFAMSAM-HYDE, and ISAMHH estimates.
Tmp EBF, idClodesE N F ,
SecTrpEBF, SecTrpDBF, SecTmpEBF, SecTmpENF, SecTmpDBF, SecBorENF, and SecBorDNF. Shrublands are a combination of

OPrimary forestd incl

Denseshrub and

udes

Openshrub.

Tr pEBF,

Tr pDBF,

60t her so

category i

ncl

udes afeundr a,

slightly lower than the original estimateBaple2.1) dueto a difference in land mask used and other minor adjustments made in step 3

(Sect. 2.3) for consistency purpogesit: million km?)

Landcover 1765 1900 2000 2005
RF/HYDE

Type /HH RF HYDE HH | RF HYDE HH | RF HYDE HH
Primary Forest 45.4 349 348 335|221 225 208|217 222 20.
Secondary Fores 0.0 2.9 2.9 31| 7.9 7.0 75 | 83 7.2 7.8
Cs Cropland 2.9 5.9 6.2 42 | 100 114 55 |100 116 5.6
C,4 Cropland 0.6 1.7 1.8 1.2 | 29 3.4 15| 2.9 34 15
Cs Pastureland 3.0 9.1 9.1 33 (180 244 42 | 180 246 43
C,4 Pastureland 1.2 3.0 3.6 1.7 | 5.9 7.7 26 | 55 73 26
Cs Grasslands 14.6 156 154 20.2| 165 138 26.0|17.2 141 26.
C,4 Grasslands 4.9 4.1 3.7 58 | 2.7 1.8 45 | 2.7 1.7 4.2
Savannas 14.2 13.0 125 142 9.1 72 142 8.8 7.1 14,
Shrublands 16.9 141 146 168|101 80 16.8|10.1 80 16.
Others 26.1 25.7 254 26.1|244 225 26.1|244 225 26.
Urban Land 0.0 <01 <01 <0.1] 04 0.4 04 | 05 05 05
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Table 24 Area of forest cleared and forest regrown during the period-P8% across 9 regions covering the world, based on
ISAM-RF, ISAM-HYDE, and ISAMHH estimates. Total deforested and forest regrowth estimates are based on fawseland
activities only. However, changes in forest area effected due to calibration with satellite data (step 48)$eetréflected in year
2005 forest estimaté&/nit: million km?)

Total deforestedirea Total forestregrowth

: Forestarea ISA Estimated :
Regions in 1765 ISAM- ISAM- M- ISAM- ISAM- ISAM- forestareain
RF  HYDE HH RF HYDE HH 2005

North

America 9.6 3.3 3.5 3.3 2.4 2.0 2.2 5.8 6.2
Latin

America 10.5 3.1 2.4 45 1.0 0.6 1.2 8.4-8.8
Europe 2.5 2.0 1.6 1.3 1.5 1.0 1.1 1.221.4
North Africa

and 0.2 01 01 01 <01 <01 <01 ~0.1

Middle ' ' ' ' ' ' ' '

East
Tropical

Africa 5.3 1.2 1.2 0.9 0.4 0.3 0.5 2.7-3.0
Former

USSR 8.1 1.4 1.8 0.9 0.8 1.1 0.7 5.96.0
China 2.3 1.1 1.1 0.7 0.8 0.3 0.7 1.1-1.4
South &

South 5.8 2.0 2.1 2.4 0.7 0.4 1.2 2.0-3.1

East Asia
Pacific

Develope 1.2 0.4 0.4 0.4 0.3 0.2 0.3 ~1.1

d Region
World 45.5 14.7 14.4 145 8.0 6.0 8.0 28.3 30.0
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Table 25 Comparison of regional forest area estimated in this study with other published studies

for the year 1990. The results from this study are provided as a range of forest area estimated
from ISAM-RF, ISAM-HYDE, and ISAMHH. An
(following UMD land classification scheme) to facilitate direct comparisons with FAO estimates

(Unit: million km?)

additional oomed est

Klein Testcase
Yang et Hurttet [IPCC This
Regions al. Gcl)lldew al. AR5Y  stud This study
(2010) Ik (2006) y FAO” (UMD
scheme)
North America 9.5 8.7 9.3 9.3 5.8 5.1 4.1-4.5
Latin America 9.0 9.2 9.0 8.6 7.4 10.2 9.810.1
Europe 2.1 2.2 1.6 15 1.3 1.7 15
North Africa 0.1 <0.1 <0.1 <0.1 < 0.1 0.4
Tropical Africa 4.3 3.3 4.4 4.0 2.8 6.9 7.09.8
Former USSR 11.0 11.9 9.7 100 5.9 8.1 6.3 6.5
China 1.0 1.3 2.5 2.0 1.2 1.7 1.8 2.0
South & South 3.1
4.1 3.3 3.3 3.4 3.6 3.334
EastAsia 3.2
Pacific 1.2 1.4 1.1 1.1 1.1 2.2 2.4 3.7
World 42.3 41.5 40.9 399 29.0 39.6 37.241.3
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2.8Figures

Figure 2.1 Global distribution of forest area during 2005 based on (anb@@solution MODIS
Land Cover Dat&et Friedletal., 2010 following IGBP land classification scheme aggregated
to 0.5°x0.5° resolution and (b) estimateg-hytt etal. (2011) (Unit: % per grid cell aréa
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Figure 2.2 Schematic showing the process involved in step 3 to estimate LUCC and LUC
conversions. Step 4 involves modification of priority factors estimated from step 3 using forest
area estimated from MODIS land covdata Friedl et al., 2010. i66 denot eish year,
increases from 1765 to 2005/2007/2010 (ISAM/ISAM-RF/ISAM-HYDE) in annual time

steps. The priority factors shown here are just an example, and they vary for each land cover type

from year to year between each grid cell.
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Figure 2.3 Estimated global forest area for the year 2005 based on {BAMa) Without calibration (kgfter calibration using
MODIS landcover dataKriedletal., 2010. (Unit: % per grid cell aréa
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Figure 2.4 Estimated (a) primary and (b) secondfmest area for the year 2005 based on ISRM (Unit: % per grid cell aréa
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Figure 2.5 Regional comparisons of various natural land cover types during 2005 based on
ISAM-RF, ISAM-HYDE, and ISAMR F .
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CHAPTER 3

CO, emissions fromland usechangeaffected more by nitrogen cycle, than by

the choice ofland cover data

3.1 Abstract

The high uncertainty in lanbdased CQfluxes estimates is thought to be mainly due to
uncertainty in quantifying historical changes between forests, croplands and grassland, but also
due to differeh processes included in calculation methods. Inclusion of a nitrogen cycle in
models is fairly recent andrengly affects carbon fluxesn this study, for the first time, we use
a model with C and N dynamics with three distinct historical reconstructibfenduse and
landuse change (LULUC) to quantify LULUC emissions and uncertainty that includes the
integrated effects of not only climate and £But also nitrogen. The modeled global average
emi ssions including N dynG@ono 2085 wkre 1.8+0.2h7+0129 8 0
and 1.4+0.2 GtC/yr respectively (mean and range across LULUC data sets). The tropical
emissions were 0.8+0.2, 0.8+0.2 and 0.7+0.3GtCl/yr, and the¢ropics were 1.1+0.5, 0.9+0.2
and 0.7+0.1 GtCl/yr. Between the 1980s #mel 2000s, the HYDE data set indicated a decrease
in emissions in the tropics (30%) and roopics (50%); RF showed little change in the tropics
and a 34% decline in the ndropics; Houghton showed little change in either region. Compared
to previous stdies that did not include N dynamics, modeled net LULUC emissions were higher,
particularly in the nosiropics. In the model, N limitation reduces regrowth rates of vegetation in
temperate areas resulting in higher net emissions. Our results indicatexthaion of N

dynamics leads to an underestimation of LULUC emissions by around 70% in tteopios,

10% in the tropics and 40% globally in the 19
the N cycle of 0.1 GtClyr in the tropics, 0.6 GtC/grthe nortropics and 0.7 GtC/yr globally
( mean across | and cover data sets) in the 19

cover data in the netopics and globally (0.2 GtCl/yr). While land cover information is
improving with satellite anchventory data, this study indicates the importance of accounting for

different processes, in particular the N cycle.

3.2 Introduction
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Landuse and landise change (LULUC) refers to carbon (C) fluxes from the land due
to human activity: that resulting o the use or management of land within one type of land
cover (e.g., forest management for wood harvest) and changes #tolard type (e.g.
deforestation, afforestation, conversion of grasslands to pastureland). In total, LULUC was
responsible for ~11%fall anthropogenic C®emissions (7.80.4 GtC/yr fossil fuel; 1.80.5
GtC/yr LULUC) in the decade 2000 to 2009 (le Quéreé et al., 2012).

The land and the ocean each take up about 30% of all anthropogenic C emissions
(Denman et al., 2007; Le Quéré et aD11). The land takes up C from the atmosphere due to
natural processes, affected by environmental change such,an@® fertilization effects, and
climate change (e.g. longer growing seasons in northern-tegpiaal forests) (Denman et al.,
2007). The atmospheric measurements of J@O@mbined with @ N ratios suggest that the land
is currently acting as a net kinf CO, despite largescale tropical deforestation (Denman et al.,
2007; Raupach, 2011). Both the IPCC (Denman et al., 2007) and the Global Carbon Project (Le
Quéré et al., 2012) calculate land sink due to the natural response of ecosystems to
environmeral change as the residual from other bettastrained flux terms and LULUC
emissions calculated by models €03 GtCl/yr, le Quéré et al., 2012). Thus this term is often
known as the fAresidual terrestrial fe lintox O . Un
uncertainties in the residual terrestrial uptake calculations, making these two terms the most
uncertain in the C budget (Denman et al., 2007; Le Quéré et al., 2012).

Estimates of the flux of C from LULUC vary widely between different model etisna
(Houghton et al., 2012). According to the most recent IPCC assessment (Denman et al., 2007), C
emi ssions due to LULUC f e27 GitGiye with 8 aedliansvalue afd a r
1.6 GtC/yr based on two results: the Houghton (2003) {#eepng model and FAO (2005)
data, and the tropical satellite study of DeFries et al. (2002) also using the Houghten book
keeping model. With improvements in data on land cover change and biomass, and better
understanding, information and modeling of differamd processes, the mean estimate has been
revised downwards and the range across results is reduced despite the much larger number of
modeled estimates now published. A recent intenparison study of many published estimates
reported a mean, standardvdegion and range across 13 procbased vegetation models and
bookkeeping models of 1.1 £ 0.2 GtC/yr (full range 043 . 50 Gt C/ yr ) for t
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(Houghton et al.,, 2012). The authors of the hu®mparison used the limited amount of
literature assesyy uncertainty in LULUC emission estimates, along with expert judgment to

suggest an uncertainty of £ 0.5 GtCl/yr.

It is widely acknowledged that a key uncertainty in LULUC emissions stems from
uncertainties in estimating historical changes in arealregeebetween forests, croplands and
grassland, though the uncertainties have significantly narrowed with time mainly due to
improved data from satellites and inventories (Houghton, 2010; Hurtt et al., 2011; Klein
Goldewijk and Ramankutty, 2004; Lepers et 2005; Ramankutty et al., 2007; Verburg et al.,
2011). Further uncertainty stems from incomplete understanding of all the processes affecting
the net flux of C from LULUC, different approaches adopted to calculate emissions, and data
related uncertairgis. Several previous inteomparison studies (e.g. Houghton et al., 2012; Ito et
al., 2008; Ramankutty et al., 2007) have evaluated the overall range of uncertainty associated
with estimates of net flux of C resulting from LULUC. However, complex linkagaeen the
various contributing factors have made it difficult to quantify and attribute the resulting

uncertainties to each of its sources.

In an earlier study, Jain and Yang (2005) quantified the uncertainties resulting from
using two different but comonly used landise change data sets (RRamankutty and Foley,
1999; and Houghton and Hackler, 2001) to drive the C cycle component ofsuldace model,
the Integrated Science Assessment Model (ISAMXHe time period 1765 1990.Differences
in the rates of changes in cropland area between the two data sets contributed significantly to
uncertainty in estimated C fluxes, and argued that further refinement of land use data sets using
ground and satellitbased measurements was required. The JainYand (2005) study was
useful in explaining and quantifying the uncertainty due to LULUC on C flux as a part of wider
studies on estimating LULUC related uncertainties (Piao et al., 2008; Ramankutty et al., 2007,
Ricciuto et al., 2008).

In recent years, seral LULUC data sets have been updated. Improvements have
primarily taken place on three aspects: Using historical inventory data with higher level of spatial
detail; integrating multiple and advanced higisolution satellite estimates; an improved
methalology to downscale inventory data to grid cell level. Three of the most commonly used

data sets were harmonized using a globally consistent methodology by Meiyappan and Jain
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(2012): (1) and (3) The HYDE spatially explicit data set (Klein Goldewijk et2@ll0, 2011)

which is the basis of the Hurtt et al. (2011) data set supplied for Earth System Models being used
in the upcoming IPCC Fifth Assessment Report; (2) The spatially explicit RF data set
(Ramankutty and Foley, 1999), updated to include pastungecsions (Ramankutty et al.,
2008); and (3) The Houghton data set (Houghton and Hackler, 2001) updated with FAO (2005)
forest area data (Houghton, 2008, the version that was used by Meiyappan and Jain, 2012) and
more recently with FAO (2010) data whichbstantially revised down deforestation rates for the
19906s

The effects of inclusion of different processes in calculating LULUC fluxes have been
explored with various proce$msed global vegetatianodels.Several studies have shown that
emissions fromLULUC activities are different when considering the fertilization effects of
changing [CQ] on ecosystem C balance (Churkina et al., 2008; Pongratz 2089, Arora and
Boer, 2010)Most process models now include the effects of climate ando@®egedtion, but

few include the effects of nitrogen (N).

N is a limiting nutrient for plant growth in miénd highlatitude regions (Vitousek and
Howarth, 1991). In tropical regions, N is not considered a limiting nutrient, because the warmer
and wetter trojgal climate enhances N mineralization in soils (Vitousek and Howarth, 1991) and
biological N fixatian is high (Yang et al., 2009The N cycle is rapidly changing due to human
activity (Canfield et al., 2010; Galloway et al., 2004, 2008). Enhanced N iatthosphere can
act as a pollutant or have a fertilization effect on plants (Reay et al., 2008). Climatn{Ci®
all interact to alter plant growth (Jain et al., 2009) and decomposition, thus affecting both the C
lost when vegetation is removed, ané tiate of C accumulation in regrowing vegetation and
soils (Mathers et al., 2006).

A recent modeling study by Zaehle et al. (2011) indicates that anthropogenic N inputs
account for about a fifth of the C sequestered by terrestrial ecosystem betweemd Z4®)5.
Churkina et al. (2008) estimated a C uptake of 0.25. 21 Gt C/ yr duritng t hi
growing forest in response to enhanced N deposition. The wide ranges in their study arise from
assumptions made about proportions and age -gfawing forests. However neither study
included the effects of LULUC.
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Yang et al. (2010) modeled for the first time the effect of including a fully coupled N
cycle (in ISAM) on global LULUC. ISAM results indicated that the contribution of N deposition
to C uptake wa about 0.13 GtC/yr in regrowing secondary forests, and 0.31 GtC/yr in all
ecosystem types. Consideration of full N dynamics limited C uptake due to N limitation in
regrowing forests in northern temperate regions in particular. The study was very seasitive
land transitions in tropical regions. While N is not a limiting nutrient in primary tropical forests,
the results suggested strong N limitation in the secondary forests of tropical regions, because
land use change activities (harvesting, burning) rearlaxge amounts of N from the system. N
removal due to LULUC constrained the fertilizing effects of N deposition and atmospheric CO
in some regions, but less in others depending on climatic conditions emphasizing the need to

consider the interactive effescof all three drivers (climate, GON)on net LULUC flux.

In this paper, we build upon our previous studies to provide revised estimates of C
emissions from historical LULUC looking for the first time at the effects of N under different
LULUC scenarios This study presents several crucial updates on multiple fronts, in particular:
(1) We use a fully coupled Carbadtitrogen (GN) cycle component of the ISAM (Yang et al.,
2009), very few of the current generation of global vegetation models include aI& cy
component, and only ISAM has been applied specifically to estimate LULUC emissions (2) The
study incorporates the impact of N limitation and N deposition on the C sink associated with
secondary forest regrowth including the effects of wood harvesttasi(Yang et al., 2010), (3)

The estimates have been extended until the year 2010 where possible, and (4) We use three
historical reconstruction of LULUC (Meiyappan and Jain, 2012; data availabi@a
http://www.atmos.illinois.edu/~meiyapp2/datasetshtoased on new and updated data sets
(Klein Goldewijk et al., 2011; updated estimates based on Ramankutty and Foley (1999) and
Ramankutty et al. (2008); and, Houghton, 2008). In addition, all the three reconstructed data sets
include the effects of urbamnd expansion (Klein Goldewijk et al., 2010) and wood harvest
(Hurtt et al., 2011).

3.3 Materials and methods

Overview of the ISAM &N model
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The GN cycle component of the Integrated Science Assessment Model (ISAM) is used
to assess the C emissions fratdLUC. The structure, parameterization, and performance of
ISAM has been previously discussed in detail (Jain and Yang, 2005; Jain et al., 2009; Yang et
al., 2009). Here, we provide an overview. The model calculates C and N fluxes between
vegetation and he atmosphere, above and below ground litter, and soil organic matter
compartments of the terrestrial biosphere atx0.%° spatial resolutionThe modeled C cycle
accounts for important feedback processes, including impact of increasing atmosphgrieiCO
NPP; impact of temperature and precipitation changes on photosynthesis, autotrophic and
heterotrophic respiration; and the effect of N deposition on C uptake by plants. The modeled N
cycle accounts for major processes as described in Yang et al..(20@@)dition, themodel
accounts foboth symbiotic and norsymbioticbiological N fixation The performance of ISAM
and its N cycle has been extensively calibrated and evaluated using field measurements (Jain et
al., 2005; Yang et al., 2009).

Each 0.8x0.5° grid cell contains at least one of the eighteen-emeer types (Yang et
al., 2010), of which ten are forest landver types and the other three cropland, pastureland and
urban land. ISAM accounts for five climatic types of primary forest (trogieatgreen, tropical
deciduous, temperate evergreen, temperate deciduous and boreal) and their corresponding
Asecondary forestso. The model accounts sepat
abandonment and wood harvest, and this is what werref t o as fAsecondary fo
2010).

The land conversions in the model are carried out based on the method described in
Meiyappan and Jain (2012). We start with a map of potential natural vegetatiofl at0055
resolution, which is indicative of the land cover that would have existed if human activities were
absent. We then advance in time (starting from 1765 to 2010), by superimposing ttteygsar
cropland, pastureland, wood harvest and urban land mape isatme order of preference. We
define rules, specific to each land disturbance activity (cropland, pastureland, wood harvest and
urban land), for replacing natural vegetation. In general, following cropland and pastureland
expansion, the natural vegetaisopresent in a grid cell are removed proportional to its area and
demand for cropland/pastureland. Upon abandonment (reduction in cropland/pastureland area

between two consecutive years), the land recovers back to the dominant potential natural
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vegetationin the grid cell. Wood is preferentially harvested from primary forest, and secondary
(regrowing) forest is used when the extent of primary forest is less than the demand. Urban land
expansion usually occurs at the expense of cropland abandonment atigbrircases from
natural vegetations. The resulting land cover maps for the period-200% are compared with
remote sensing based land cover maps (500m resolution MODIS ¢ratedl et al., 2010)
spanning the same period. Discrepancies in forest agbsebn satellite data and model
estimates are used to accordingly adjust the-thsidirbance activity specific rules to increase

(or decrease) the proportions at which forest was cleared (or regrown) historically following
expansion (or abandonment) ofriagltural activity, such that rerunning the model with adjusted
rules results in land cover maps whose forest distribution closely agrees with remote sensing
observations for recent years. Thus, the three reconstructions start with a common potential
natual vegetation map and end with a map whose forest distribution are consistent with satellite
estimates, but the pathway they follow between the starting and ending point is constrained by

the landuse data sets used.

Emissions of C due to LULUC are calated as described in Jain and Yang (2005). In
brief, upon removal of natural vegetation from a grid cell, a specified fraction of vegetation
biomass is transferred to litter reservoirs, effectively representing plant material left on the
ground followingdeforestation activities (Yang et al., 2009). The remaining vegetation materials
are either burned to clear the land for agriculture, which releases C and N (in gaseous and/or
mineral form) contained in the burned plant material; or is transferred asICtandood and/or
fuel product reservoirs and subsequently released at three different rates depending on the

assigned product categories.
LULUC data

The three historical landover data reconstructions (ISAMYDE, ISAM-RF and
ISAM-HH) were based on cropland and pastureland area change in the three updated historical
land use change data sets: (1) HYDE 3.1 (Historical Database of the Global Envird(iieamt)
Goldewijk et al.,, 2011), (2) RF (Ramankutty and Foley,1999) including new pastureland
estimates and updated cropland estimates based on and Ramakakty(2008), and (3)
Houghtonand Hackler (2001) deforestation estimates updated in Houghio8)(%ith revised
deforestation rates from FAO (2005) respectively. The HYDE and RF data sets are both based on
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FAOSTAT agricultural statistics including data on change in agricultural land area (FAO, 2009)
which is available from 1960, making assumptionghe change in other land cover (e.g. forest)

to meet agricultural demand. The Houghton (2008) data set is based primarily on FAO Forest
Resource Assessment area change and biomass data (FAO, 2005) making assumptions about
change in other land cover (g.groplands, pasture) to account for forest area change, supported
by FAOSTAT data. A variety of other historical information is used to estimate land use
transitions prior to the availability of FAO data in each data set. A common spatially explicit
dataset for wood harvest based on FAO data (Hurtt et al., 2011) and urban land extent (Klein
Goldewijk et al., 2010) was applied to all three reconstructions. MBE, ISAM-RF and
ISAM-HH estimates start from the year 1765 and extend until 2010, 2007 @hdedpectively.

All three reconstructions start with a common koegder map during 1765 and follow different
pathways as determined by the larsk data sets totain forest area distributionslose to

satellite estimates of forests for recent yearse Bum of nofforested lanecover types
(herbaceous vegetation, cropland, pastureland and urban land) matches satellite estimates.
However, there are discrepancies between the-useddata sets and satellite estimates in the
extent of individual herbaceolend-cover types.

Model Simulations Performed

The ISAM was initialized with an atmospheric [eJ@f 278 ppmv, representative of
approximate conditions in the starting year (1765 AD) of the model simulation, to allow
vegetation and soil C pools to reaah iaitial steady state. During the time period of 1765
2010, net C exchanges between atmosphere and terrestrial ecosystems are calculated based on
observed changes in climate (updated estimates based on Mitchell and Jones, 2005), atmospheric
[CO;] (Meinshausen et al., 201 0wet and dry atmospheric N deposition rates (Galloway et al.,
2000), and three distinct historical reconstructions of LULUC as harmonized in Meiyappan and
Jain (2012).

Two separate model runs are carried out to calculateatgibution of LULUC to the
terrestrial C fluxesTable 31). In the first model run (Al), atmospheric [@Cclimate and N
deposition rates are varied with time based on prescribed values and the LULUC is assumed to
be zero over time. In the second modal (A2), atmospheric [CE), climate, N deposition rates

and LULUC are varied with time. The second model run (A2) was performed for each of the
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three historical LULUC reconstruction used in this study. The emissions due to LULUC are
estimated by subtracgnC fluxes calculated in first model run (Al) from the second model run
(A2). With this approach we captured the interactive effects of Clomate and N limitation on
LULUC emissions.

We carried out two additional model runs (B1 and B2) to study tpactrof excluding
the interactive effects of N limitation on LULUC emissiofialfle 31). Both experiments B1
and B2 are similar to A1 and A2 respectively, but they did not include the effects of N limitation.
Land is always assumed to have sufficient N pdeint growth. Subtracting carbon fluxes
calculated in experiment B1 from that of B2 provides an estimate of LULUC emissions that only
includes the interactive effects of g@nd climate. This (BB1) model experiment is analogous
to the majority of other wdel approaches to calculating the LULUC flux in models that include
only climate and C@effects (e.g. McGuire et al, 2001; Pongratz et al., 2009; Piao et al., 2009;
van Minnen et al., 2009, Arora et al. 2010 noteractve runs; Stocker et al. 2011)he
difference between the two sets of experimentsi(A2l) and (B2i B1l) is an indicator of the
effect of additionally considering N cycle effects and its interactions with &@ climate on
LULUC fluxes. We did not look at the effects of N on LULUC alofe excluding climate and
CO, effects) as the paper attempts the best quantification of LULUC including all possible
drivers and processes, and to assess the possible uncertainty in LULUC estimates by failing to

account for N effects.

1) LULUC fluxincludigp N ef fect = ,AN2LUUD)T AL i Mmet e l,iNp®Ot e, C
2) LULUC flux excluding HNLUU)IeBClt (=p By (mptcel,i nCalx
3) Effect of N on LULUC flux = (BR B1)T (A2 Al)

3.4 Results

Global net LULUC emissions based diifferent land cover reconstructions

Large interannual variations in global net C emissions from LULUC are observed in
the model runs based on each of the three data sets, for the period 200D (Figure3.1).
These variations are mainly induced by #féects of interannual variations in climate on

LULUC fluxes. In particular, soil respiration, decomposition of slash and litter, andiiNPP
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growing vegetation araffected by changes in temperature and precipitation in both the runs
subject to LULUC (A2and B2) and those not (Al and B1) (e.g. McGuire et al., 2001; Jain and
Yang, 2005).Since the natural vegetation responds to climate drivers the same way in B1 and
B2, the flux shown here (BB1) here reflects the combined effect of LULUC and climate
variability (in addition to CQand N) on the land affected by LULUC only.

From 1900 to 2005, the global cumulative net emissions from LULUC were 178, 160 and
163 GtC for ISAMHYDE, ISAM-RF and ISAMHH respectively. The ISAMAYDE estimated
global total C emisens for the time period 19002010 were 180 GtQAIl data in this section
are from model runs including the N dynamics unless otherwise stétédhree estimated
emission trajectories show substantially different trends over the period 1900 taltBé0gh
all have a mean value of ~1.5 GtC/yr (Fig@r&). The net emissions based on all three data sets
peaked i n t he -HHréachidgits peakislightly lates thavi the other two data sets.
This result from rapid deforestation due to expamspf agriculture in the tropics around the
early 19506s followed by a rapid reduction
and early 19606s, wi t h |-dH data. &missians estnthiescbiaged n
on ISAM-HH data are verylifferent from those based on ISARF and ISAMHYDE in the

(o)}

196006s. Emi ssions over the | ast three decades

sets; an increase from 1970 to 1990 and a decline since 1990.

The mean decadal net emissions bagedlISAM-HYDE data are higher during the

19806s and | ower during the 19906s and 2000050:
similar emissions duTablen3®). Tthis ¢he debliBednbemisseomsdroml 9 9 0 6

the 19806s t o mole@rouhddidt SANHYDE. mhe celsons can be found
looking at the rate of conversion of land types in the underlying harmonized data sets (Figure
3.2). ISAM-HYDE shows a sharp decrease in the expansion rates of both cropland and

pastureland between 1®&nd 2005 (Figur8&.2ad), and a sharp decrease in deforested area

(Figure3.2e) which is offset to a lesser extent each decade by a declining expansion of the area

of secondary forest regrowth (FiguBe2f) (partly reforestation on abandoned agricultural land
and partly conversion of Anatural 06 forests
contrast, ISAMRF and ISAMHH data show an increase in conversion to cropland (Fi§)2ee

b) and a dcrease in conversion of forests to pastures (Fig2®. Both ISAMRF and ISAM
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HH show an increase in the expansion rate of

200006s partly offsetting B8B2eef) |l oss of primary

Emissions based on ISAMIH data become higher than the other two estimates in 2000
to 2005 (Figure8.1 andTable 32) because the conversion of forests to croplands and pastures
(Figure3.2a, c), and hence the overall area of deforestation (F&y2e¢ are highr.

Regional differences in LULUC emissions

There are substantial differences in regional estimates of LULUC emissions between the
model results based on the different data Sedblé 32). Except for Tropical America, Eurasia
and China, there is no congst trend exhibited among the three estimates. These three regions
show a generally decreasing trend bet we-en the
sets, with the decline being much more pronounced in ISANWDE than in ISAMRF and
ISAM-HH.

Land-use change emissions based on ISAVDE have decreased substantially over the
last three decades for the tropics (30@t6line) and nottropics (50%)In contrast, the estimated
emissions based on ISAMF show very little change in the tropics armshaaller decrease in the
nont ropics (30%) between 2000 to 20®5, cwmpah ewd
very similar.ISAM-HH shows very little change in the tropics, and a small increase from the
19806s to the 199006sn tthoe nt hae s2 On0i Ol 6asr (d2e0cO O nteo

nortropics.

Over the last three decades, net emission estimates based orHBAMta are higher
for tropical regions and lower for ndropical regions compared to net emission estimates based
on other two dta sets Table 32). This is because ISAMIH data shows much higher
deforestation rates for agricultural land in tropical regions (especially in Tropical America)
(Figure3.2a, c, e). In nottropical regions, the ISAMHH data set (based on forest statigtitas
lower conversion of forests to croplands than the other two datasets, and assumes no clearing of
forests for pastureland (forest clearing would have been assumed converted to cropland or
secondary forests).he other two data sets (based on agricaltstatistics), derived based on a
rule-based approach to clear vegetation, have a fraction of pastureland expansion at the expense
of forests (Meiyappan and Jain, 2012) (FigB&x). Houghton (2008) (which forms the basis for
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ISAM-HH) assumes that thexgansion of pasture area in North America, China and Pacific
Devel oped regions occurred in the 19506s, anec
for recent years. On the other hand, ISAMDE and ISAMRF indicate that in the netnopics

forest ara was converted to pastures over the last three decades FiRp)re

In the nontropics, forest regrowth area is generally higher in ISHVDE and ISAM
RF than in ISAMHH across all three periods (Figusef). Forest regrowth would be expected
to haveincreased the C stocks in secondary forest ecosystems (Jain et al., 2009; Reay et al.,
2008; Shevliakova et al., 2009; Yang et al., 2010; Churkina et al., 2008) partially offsetting the
higher emissions from forest to pasture/cropland conversion we £eaM+HYDE and ISAM
RF than in ISAMHH in the nortropics. However, the net ndropical emissions of ISAM
HYDE and ISAMRF remain higher than ISAMIH. Part of the reason for this is that the
regrowth is limited in the model due to N availability, and tfeeethe CQ fertilization effect is

constrained.
Effects of including the N cycle

Including the N cycle in the model resulted in higher net emissions compared to the
model runs without the interactive N cyclBaple 33, numbers in brackets are runs without the
N-cycle). These results indicate that failing to account for the effectsdyhBimics may lead to
an underestimate in LULUC emissions by around 40% globally across all three data sets. The
effects were more pronounced in Awopical regions, where simulations without the N cycle
were lower by 61 to 76% across all three data sdtde in the tropics emissions were lower
only by 7 to 9%.

3.5Discussion
Comparison with Other Studies

Our mean estimate of global net LULUC emission with N dynamics and wood harvest of
1.68 GtC/yr (range across results 1.48 to 1. 38
the other published estimates as showiiable 33 (excluding Denman et aR007 which is a
synthesis based on old estimates). Breaking it down regionally, where other published estimates

were available for comparison, our net emissions are similar in the tropics (mean 0.78 GtCl/yr)
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but much higher in the netnopics (0.90 GtC/yr)While other published results find that tropical
emissions are higher than ntropical emissions, our estimates based on two data sets ((ISAM
RF and ISAMHYDE) with N dynamics show the opposite trend, i.e. higher LULUC net
emissions for noitropics thanropics. Our modeling results indicate that without considering the

N dynamics effect, the estimated Awaopical LULUC emissions for ISAMRF, ISAM-HYDE

and ISAMHH cases are underestimated by 0.66, 0.58 and 0.53 GtC/yr respectively for the
199006 s, ingtheprhpargance of including N dynamics in estimating LULUC emissions.
The range of notropical emission estimates when N dynamics is excluded in our study-(0.17
0.43 GtClyr) are not only well within the range of values of other published studieslsbu

lower than estimates for the tropics.

N is usually not considered as a limiting nutrient in the tropical regions, because warmer
and wetter tropical climate enhance N mineralization in soils, and biological N fixation is high.
Therefore, it is nosurprising that ISAM estimated tropical emission with (0.56.13 GtCl/yr)
and without (0.5 1.04 GtC/yr) N dynamics are approximately the same as each@ae (

3.3), and are well within other model estimated range of values {043 Gt/C).

Itisint eresting to not e -keepiagtmodeloestigndtes (Houylgon,o w n
2010) are the highest for the tropics and the lowest for thetropits as compared to other
model estimatesT@ble 33). This is, unsurprisingly, similar to the results we fowsthg the
ISAM-HH data set compared to the other data sets within our modeling study, as it is driven by
the underlying data assumptions in the Houghton data set based on FAO FRA forest data (FAO,
2005). The FAO data indicate a net loss of total foresa ar the tropics, and vieeersa in the
nonttropics (Houghton, 2010) for the last three decades. In contrast, other data sets (HYDE or
RF) used by other modeling studies indicate a decrease in forest area for both tropics and non
tropics (This cannot beiréctly interpreted from the data in FiguBe€ as some of the area of
primary deforestation goes to secondary forests after harvesting and some does not, likewise only
a portion of secondary forest regrowth happens on deforested land, some happermsiiburalgri
land, so the numbers cannot be directly summed to get net change in forest area). Note that the
latest FAO FRA (FAO, 2010) substantially revised down deforestation rates in the tropics.

The land cover data may not be the full reasons for disocceggm Houghton (2010) is

even higher than our ISAMIH results in the tropics and even lower in the-tropics. Thus, it
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might also be partly due to the differences in the modeling framework used by Houghton (2010)
and other studies shown irable 33. Houditon (2010) estimates are based on bloadping

model that tracks areas of land conversions and calculates subsequent changes in C pools using
standard growth and decay curves derived from actual field inventory data from the literature
that are unchangingver the calculation period (representing either recent or historic climate and
environmental conditions) and averaged over rgelaregion or vegetation typé&lost other
modeling studies, with the exceptions of satellite based tropical region estimBefSriEfs et al.

(2002) and Achard et al. (2004), model soil and vegetation processes and how they are affected
by climate, atmospheric GQand, in this study, N drivers that vary spatially and possibly
temporally. A sensitivity analysis based on prodessed model and bodéeeping model
approaches suggests that bd@leping model estimated LULUC emissions were about 40%
higher than the process based modeling approach, due primarily to higher soil carbon emissions
assumed to be 25% soil carbon loss follogviand use change (Reick et al., 2010).

Most process based studies, including this study, use historical transigah@Climate
as an external driving force and run the model with and without land use and derive the LULUC
emissions as the difference ( g . Mc Guire et al ., 2001 ; Pomagr at
Minnen et al., 2009; Piao et al., 2009; Stocker et al., 2011). Shevliakova et al. (2009) ran with
present climate and G@n the both the withand withowtLULUC simulations.

The LULUC pas emi ssions not only affect the 0Ama

LULUC, but al so the #Anatural o or Apri maryo
Afeedback fluxé (Strassman et al ., 2008) or
feedback flux on natur al vegetation is typicall
fluxo as it i's an indirect effect of human 3

emissions. In the case above where LULUC emission are derivee lolyffibrence between the
no-LULUC case and with. ULUC cases, the effects of past LULUC emissions on the natural
vegetation are factored out, only the past LULUC effects on the vegetation thdijést to

LULUC is included.However some coupled climatarbon cycle model studies such as Arora

and Boer (2010) include the effects of LULUC emissions on natural vegetation which is why

their flux of 0.25-0. 84 Gt C/ yr in the 19906s based on di

other estimates, including oomwn. When they apply the same approach as we use here, their
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estimated emissions based on RF data increase from 0.71 GtC/yr (th8iL®ag thin orange
line) to 1.06 GtClyr (their Fi@.10a, thick orange line) (pers. comm. data supplied by Arora for
anapsis). The interactive effects of LULUC on atmospheric [@erit further investigation,
but are beyond the scope of this study.

OQur model ed LULUC emissions -1.0GC/H flable 2000606
3.2), consistent with, but at the high end obshrecent estimated range across a number of
published studies of 0-41.8 GtC/yr (Houghton et al., 2012).

Uncertainty in LULUC Emissions Estimates

Our modeled estimates give an indication of uncertainty in LULUC emissions due to the
choice of data set. Esti mated ranges across
respectively were +0.26 GtC/yr, £0.18 GtC/yr and +0.21 GtQ/ge estimatedincertainty due
to data set variability is much lower than other uncertainty estimates (see paftiwyeflecting
more accurate and revised lamske data sets applied in a globally consistent methodology to
produce historical LULUC estimates (Meiyappamd Jain, 2012) but also aglites not account
for uncertainty in other data, the model approach or implementation.

Our results further indicate a large uncertainty due to the missing process of the N cycle
in other estimates. Failure to account for tiecycle may underestimate net C flux due to
LULUC by 0.1 GtCl/yr in the tropics, 0.6 GtC/yr in the napics and 0.7 GtC/yr globally

(mean across land cover data sets).

A recent metanalysis study by a range of experts for the Global Carbon Project
(Houghton et al., 2012), estimates the total errors resulting from data related uncertainty and
incomplete understanding of all the process to be in the order of about +0.5 GtC/yr based on
expert judgment, drawing on the range across many published modekst@md studies that
specifically looked at uncertainty due to data or modeling approaches. Previous publications for
the Houghton bookeeping model approach gave an uncertaintynese of +0.7 GtClyr
(Houghton 2010), that have since been revised deave0.5 GtC/yr (Houghton pers comm)

The most recent | PCC estimated uncertainty of
now be considered too high. The higher end based on Houghton (2003) was revised downwards

due to the reduction in the defot@son estimates for tropical regions in subsequent FAO FRA
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(FAO 2005, 2010) brought about by integration of satelidsed estimates (e.g. Nepstad et al.,
2009; Hansen et al., 2009). The lower end of the range was based on DeFries et al. (2002) is an
underestimate, as it is based on satellite measurements for three tropical regions, and does not
account for |l egacy emissions deforestation
19906s) (Ramankutty et al ., 2007).

Differences in Land Processes Inalled

In our study, secondary forest regrowth only occurs as a result of wood harvest and
agricultural abandonment on land that was originally covered by forests (i.e. a reduction of
agricultural area in a grid cell will regrow forest). In some countrieeegions, for example
North America Europe, Japan, China and India (Kenji, 2000; Merker et al., 2004; FAO, 2005;
FAO, 2010), there are active programs of afforestation and reforestation. These may not be
captured by the data sets of change in agriculadlpasture areas, particularly if the forests are
established on previously grassland areas, or if they shift agriculture to grassland areas so the
agricultural area does not decline. Hence, our study may be underestimating the forest area in
some regionand hence the C uptake by the afforested land.

This study does not include the effects of fire suppression and woody encroachment,
which are suggested to contribute to regional C sink (e.g. in the USA, see Pacala et al., 2001).
This is because the effeatd these processes have not yet been well defined due to lack of

comprehensive data (Denman et al., 2007).

C emissions due to the common practice of shifting cultivation in the tropics (clearing
forest often by fire for agriculture then abandoning toreegh after a number of years) are
estimated to have a significant impact on historical LULUC emissions (Hurtt et al., 2006, 2011).
This creates a mosaic of cropped fields often with trees and fallows intermixed with secondary
and mature forests and cawss®ene loss of ecosystem C (Houghton and Hackler, 2006). We did
not specifically model the effects of shifting cultivation due to huge uncertainties in magnitude
and spatial distribution, and as some of these effects would be captured in the data sets of

changing forest or agricultural area we already used (Hurtt et al., 2006, 2011).

Natural disturbances such as fire, pests, disease, drought, wind, snow, ice, and floods
affect 104 Mha of forest on average each year (FAO, 2006), with- lozahationalscale
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ecological significance (e.g. Giglio et al., 2010; van der Werf et al., 2010; also see Lambin et al.,
2003 and Foley et al., 2003). Our study has not considered emissions due natural disturbances
because it is not human induced LULUC, and in any caséypisally assumed that disturbance

is followed by regrowth and the net effects are minimal (unless the land is subsequently

converted to agricultural land).

A key missing processes is the decomposition of soil C following drainage of tropical
peatlands Ballhorn et al., 2000 According to Hooijer et al. (2010), draining and burning of

peatlands in Southeast Asia are thought to add another 0.3'Gt6 anduse emissions.
Summary and implications of results for climate modeling and climate policy

Emissions of C@from LULUC constitute a significant portion of global emissions, and
therefore strongly affect global climate. Modeling them correctly has implications for global
climate policy. The estimated cumulative LULUC emissions over the periddl-12@10 based
on ISAM-HYDE data are ~180 GtGyhich are ~33% of total C emissions (345 GtC from
burning fossil fuels- Friedlingsteinet al., 2010).The contribution of LULUC to global
anthropogenic C emissions (lands e pl us fossi |l O0dasel wed2®andl 9800 s
14 - 17% respectively (using fossil fuel emissions as in Le Quéré et al., 2012) for our modeled

results across three underlying data sets and including the N cycle.

Our estimated net global emissions from LULUC (mean and rangedsattiree data sets
are 1.88 (1.7 to 2.21) GtC/yr for the 19806s,
(1.22 to 1. 6%aple320o0urdstmatesar@ Bighér than(other published estimates
that range from 0.80 to 1.5 GtCl/yr foreth 1 9 9dblé 83: Achard et al., 2004; Arora and
Boer, 2010; DeFries et al., 2002; Houghton, 2010; Piao et al., 2009; Pongratz et al., 2009;
Stocker et al., 2011; Strassmann et al., 2008; Shevliakova et al., 2009; Van Minnen et al., 2009;
Yang et al., 200 ; Kat o et al ., 2012) and 1.1 GtC/yr
Friedlingstein et al., 2010). If LULUC emissions are higher than assessed, it means fossil fuel

emissions would have to be even lower to meet the same mitigation target.

Our resuls are higher than other published estimates because they include the effects of
N limitation on regrowth of forests following wood harvest and agricultural abandonment. This

effect is particularly noticeable in the cooler roopics where N removal throbgharvest or
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burning is not compensated by N deposition or N mineralization. The estimated LULUC

emi ssions for the tropics are 0.79N0.25 for t
Gt C/yr for the 2-00pi€sadegions aenld08:5200.90+0.10eand.6910.12

GtClyr for the three decadeBable 32). Not only are our results much higher in the-trapics

than other resultsT@ble 33), but for two of the data sets they are higher in thetrapics than

in the tropics. This is becauslee estimated notropical LULUC emissions with N dynamics
considered are 0.530 . 6 6 Gt C/ yr hi gher than without N d
tropics and 0.62 0.72 GtCl/yr higher globally. Without considering the N cycle, our model

results of 0.8 - 1.2 GtC/yr globally, 0.5% 1.04 GtC/yr in the tropics and 0.10.43 GtC/yr in

thenont ropics in the 19906s across the three de
(Table 33). Our model results indicate that failing to account for the Neaynderestimates by

about 40% globally (0.66 GtC/yr), 10% in the tropics (0.07 GtC/yr) and 70% in theomos

(0.59 GtClyr).

Many inventory studies in both managed and natural forests find higher sinks than in the
past and attribute this to the effeof changing climate and [GX(Luyssaert et al., 2008; Lewis
et al.,, 2009; Phillips et al., 2008; Pan et al., 2011). Our results are not in conflict with this.
Climate and C@still enhance uptake in northern-geowth forests, but the effects are liedt
when N removal due to LULUC is considered. Since the total net flux gfb@@een the land
and atmosphere is known from atmospheric measurements, higher emissions from land under
LULUC in fact imply a greater sink in land not experiencing LULUC and thexefore
consistent with inventories finding greater sinks in unmanaged forests. The total net flux the
at mosphere fiseeso from the | and is the same;
climate impacts. But our results do have implications fmdeling of anthropogenic versus
natural land fluxes (both natural and anthropogenic sources and sinks are underestimated without
the N cycle), and thus for climate policy around estimating hdmdurced emissions and
mitigation potential on the land.

We evaluate the uncertainties in LULUC emissions estimates resulting from uncertainties
in determining lanetover change using three historical LULUC reconstructions based on our
best estaitmes of LULUC that include not only climate and ki also N. Ovethe period 1900
- 1970, our model results for the global LULUC emissions based on three different LULUC
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reconstructions exhibit substantially different trends (Fidlit¢. The global total emissions are
very similar thereafter, with emissions increasingtiluabout 1990 and then declining.
Uncertainty in LULUC emissions due to the underlying data set constitutes about £0.2 GtC/yr
over the period 1980 to 2009.

While the three LULUC estimates show reasonably good agreement at the global scale,
there aresignificant disagreements between them at the regional stabde(32). Regional
discrepancies in location of G@missions are irrelevant to the global climate impacts of &0
it is well mixed gas in the atmosphere. However they indicate a much largertainty still
exists in underlying land cover data than is implied by looking at global deaeei@gesand
this uncertainty may affect the overall amount of global LULUC emissions and thus climate. The
regional differences also have implications fationatlevel greenhouse gas reporting and
accounting under the UNFCCC and Kyoto Protocol, and for assessing future LULUC mitigation
potential. Thereforethe results presented here suggest that the uncertainty in regional LULUC

data need to be reducedarder to improve climate change projections

Regional differences in forest cover will affect regional climate through biophysical
properties such as albedo, surface roughness, heat transfer and water recycling: for example
afforestation in mid to highatitudes reduces albedo and has a warming affect that runs counter
to the cooling effect of CQuptake (e.g. Brovkin et al., 2006; Findell et al., 2007; Kvalevag et
al., 2010; Pitman et al., 200®0ongratz et al., 2010). Howeveassessing the implicatiors

regional data differences on biophysical climate effects is beyond the scope of this study.

Ongoing improvements in satellite data and interpretation for measuring not only changes
in land cover, but also land management (e.g shifting cultivationtiseldogging) and biomass
density will be critical in reducing uncertainties. Reconciling and improving data sets produced
from different sources (e.g. FAO forest assessment and FAO agricultural assessments), to
provide more information about lante trasitions is also expected to further reduce

uncertainties.
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3.6 Tables

Table 31 Design of the Simulation Experiments. Tick makk) (indicates the environmental
factor was varied with time. Cross mat}) (ndicateshe environmental factor was held constant

at initial value. Inclusion of N deposition is irrelevant when N dynamics is inactive in the model.

Experiment | CO» Climate | N LCLUC N
Deposition Dynamics

Al Vv \% \% U Active

A2 \% \ \' V Active

Bl Vv \% - U Inactive

B2 \% \' - \' Inactive
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Table 32Regi on al breakdown of decadal mean net LULUC emi ssi
HYDE, ISAM-RF, and ISAMHH data sets.
19806 s 19906 s 20000 s
Region/Global | ISAM- | ISAM- | ISAM- 'I\Q":r?”e& ISAM- | ISAM- | ISAM- 'I\Q":r?”e& ':@[';"E ISAM- | ISAM- 'I\Q"gr?”