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ABSTRACT 

Assessing the historic and future impacts of land-use and land-cover change (LULCC) on 

climate requires spatially and temporally explicit data sets on LULCC spanning several decades 

to centuries, because climate change is a long-term problem. Though remote sensing data 

provides a globally consistent picture of land cover, these data are only available from the past 

four decades. Therefore, existing LULCC reconstructions are modeled estimates that combine 

remote sensing data with relatively coarser-resolution inventory statistics that covers longer 

historical period. The uncertainties in modeling assumptions, and limited availability and 

inconsistencies across inventory datasets among other reasons introduce uncertainties in LULCC 

reconstructions. These uncertainties not only limit our ability to model future LULCC, but also 

translate as uncertainties in both historic and future environmental assessments. 

The objectives of my PhD work are as follows: (1) systematically investigate the causes 

of uncertainties in existing historical LULCC datasets, (2) test the sensitivity of LULCC 

quantification uncertainty in estimating CO2 emissions from LULCC (historic and future) using a 

process-based land-surface model, the Integrated Science Assessment Model (ISAM), (3) 

compare the relative uncertainties from various drivers (e.g. LULCC datasets, model processes 

e.g. nitrogen cycle, environmental factors such as climate) in estimating historic and future 

LULCC emissions, and (4) explore statistical techniques to model future LULCC that takes into 

account the uncertainties in quantifying the spatial and temporal patterns of LULCC, and (5) as a 

case-study, identify a key regional hotspot of historic LULCC quantification uncertainty (here, 

India), and reduce uncertainty through improved understanding of the dynamics and drivers of 

land change in the case-study region. I address the above goals by integrating land-surface 

modeling (ISAM), remote sensing and GIS, data collected through ground transects, and 

geospatial data on socioeconomics.  

ISAM simulations show that the estimated net global emissions from LULCC (mean and 

range) across three different historical LULCC reconstructions are 1.88 (1.7 to 2.21) GtC/yr for 

the 1980ôs, 1.66 (1.48 to 1.83) GtC/yr for the 1990ôs, and 1.44 (1.22 to 1.65) for the 2000ôs. The 

estimates are higher than other published estimates that range from 0.80 to 1.5 GtC/yr for the 
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1990ôs and 1.1 GtC/yr for the 2000ôs. These results are higher than other published estimates 

because they include the effects of nitrogen limitation on regrowth of forests following wood 

harvest and agricultural abandonment. The estimated LULUC emissions for the tropics are 

0.79Ñ0.25 for the 1980ôs, 0.78Ñ0.29 for the 1990ôs and 0.71Ñ0.33 GtC/yr for the 2000ôs, and for 

the non-tropics regions are 1.08±0.52, 0.90±0.19 and 0.69±0.12 GtC/yr for the three decades. 

The model results indicate that failing to account for the nitrogen cycle underestimates LULCC 

emissions by about 40% globally (0.66 GtC/yr), 10% in the tropics (0.07 GtC/yr) and 70% in the 

non-tropics (0.59 GtC/yr). If LULCC emissions are higher than assessed, it means fossil fuel 

emissions would have to be even lower to meet the same mitigation target. 

Extending ISAM simulations to the 21
st
 century resulted in two key insights. First, 

nitrogen limitation of CO2 uptake is substantial and sensitive to nitrogen inputs. In ISAM, 

excluding nitrogen limitation underestimated global total LULUC emissions by 34-52 PgC (~21-

29%) during the 20
th
 century and by 128-187 PgC (90-150%) during the 21

st
 century. The 

difference increases with time because nitrogen limitation will progressively down-regulate the 

magnitude of CO2 fertilization effect on regrowing forests, due to decreasing supply of plant-

usable mineral nitrogen. Second, historically, the indirect effects of anthropogenic activity 

through environmental changes in land experiencing LULCC (indirect emissions) are small 

compared to direct effects of anthropogenic LULCC activity (direct emissions). As a result, 

including or excluding indirect emissions had a minor influence on the estimated total LULUC 

emissions historically. In contrast, the indirect LULCC emissions for the 21
st
 century are a much 

larger source to the atmosphere, in simulations with nitrogen limitation. This is because of the 

gradual weakening of the photosynthetic response to elevated (CO2) caused by nitrogen 

limitation. Therefore, what fluxes are including in LULCC emissions across different models is a 

crucial source of uncertainty in future LULCC emissions estimates.  

A detailed investigation of the sensitivity of different global-scale LULCC modeling 

techniques show that land use allocation approaches based solely on previous land use history 

(but disregarding the impact of driving factor), or those based on mechanistically fitting models 

for the spatial processes of land use change do not reproduce well long-term historical land use 

patterns. With an example application to the terrestrial carbon cycle, I show that such 

inaccuracies in land use allocation can translate into significant implications for global 
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environmental assessments. In contrast to previous approaches, I present a statistical land use 

downscaling model and show that the model can reproduce the broad spatial features of the past 

100 years of evolution of cropland and pastureland patterns. Therefore, the modeling approach 

and its evaluation provide an example that can be useful to the land use, Integrated Assessment, 

and the Earth system modeling communities.  
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CHAPTER 1 

Introduction  

1.1 Overall Objectives and Content 

Human activities have transformed natural ecosystems into managed areas in almost 

every part of the world. At present, nearly 40% of the Earthôs ice-free land surface is used for 

agricultural activities, all of which had previously been covered by natural vegetation. Such 

large-scale changes in land cover affect regional and global climate through biogeophysical and 

biogeochemical pathways. 

Assessing the historic and future impacts of land-use and land-cover change (LULCC) on 

climate requires spatially and temporally explicit data sets on LULCC spanning several decades 

to centuries, because climate change is a long-term problem. Though remote sensing data 

provides a globally consistent picture of land cover, these data are only available from the past 

four decades. Therefore, existing LULCC reconstructions are modeled estimates that combine 

remote sensing data with relatively coarser-resolution inventory statistics that covers longer 

historical period. The uncertainties in modeling assumptions, and limited availability and 

inconsistencies across inventory datasets among other reasons introduce uncertainties in LULCC 

reconstructions. These uncertainties not only limit our ability to model future LULCC, but also 

translate as uncertainties in both historic and future environmental assessments. For example, 

quantifying CO2 emissions from historical LULCC is the major source of uncertainty in the 

global carbon budget. Therefore, a systematic understanding of the sources of uncertainties in 

existing LULCC datasets is crucial to: (1) better assess the utility of a dataset (or its subset) to 

particular scientific application, (2) draw better-informed conclusions when used as an input for 

environmental assessments, and (3) to further reduce uncertainty in quantifying LULCC through 

iterative process.  

Motivated by the above reasons, the goal of this study is to: (1) systematically investigate 

the causes of uncertainties in existing historical LULCC datasets, (2) test the sensitivity of 

LULCC quantification uncertainty in estimating CO2 emissions from LULCC (historic and 

future) using a process-based land-surface model, the Integrated Science Assessment Model 
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(ISAM), (3) compare the relative uncertainties from various drivers (e.g. LULCC datasets, model 

processes e.g. nitrogen cycle, environmental factors such as climate) in estimating historic and 

future LULCC emissions, and (4) explore statistical techniques to model future LULCC that 

takes into account the uncertainties in quantifying the spatial and temporal patterns of LULCC, 

and (5) as a case-study, identify a key regional hotspot of historic LULCC quantification 

uncertainty (here, India), and reduce uncertainty through improved understanding of the 

dynamics and drivers of land change in the case-study region. I address the above goals by 

integrating land-surface modeling, remote sensing and GIS, data collected through ground 

transects, and geospatial data on socioeconomics.  

Broadly, the contents of this dissertation can be sub-divided into three parts. In the first 

part consisting of Chapters 2ð4, I used existing global land use datasets (historic and future) to 

understand and quantify the sources of uncertainty among them (Chapter 2), and how these 

uncertainties translate as uncertainties in modeling CO2 emissions from land-use and land-cover 

change (Chapters 3, 4). Having developed an understanding of the overall data and model 

uncertainties in these chapters, in the second part (Chapters 5) we (with collaborators) developed 

statistical models to predict the spatial patterns of land-use change. This is the first study to 

demonstrate the ability of a land change model to reproduce the past 100 years of evolution of 

spatial changes in agriculture at global scale. The model is currently being applied for predicting 

the future spatial land use patterns within the Integrated Assessment Modeling (IAM) group at 

NCAR, and in other multi-model comparison projects such as LUC4C. In the third part (Chapter 

6), I take a more spatially detailed, but regional perspective to understand the dynamics and 

drivers of spatial patterns of LULCC in India. I presented each of these chapters as self-

contained units, containing individual abstract, introduction, methods, results, discussion, and 

conclusions. Specific contents and objectives of individual chapters are as follows: 

1. Chapter 2: Comparison of three different historical land use datasets (cropland, 

pastureland, wood harvest, and urban land) and developing algorithms to translate them 

into changes in land cover, consistent with the land surface representation of ISAM.  

2. Chapter 3: Applying the three LULCC reconstruction developed in Chapter 2 within 

ISAM to examine the uncertainties in modeling CO2 emissions due to uncertainties in 
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quantifying historical LULCC. Here, we not only explore LULCC data uncertainty, but 

also uncertainties in modeling key terrestrial processes, including the nitrogen cycle.  

3. Chapter 4: I extend the work of Chapter 2 to estimate LULCC (consistent with land 

surface representation in ISAM) between 2005-2100 under various Representative 

Concentration Pathways (RCPs) of the IPCC CMIP5. Then by extending Chapter 3, I 

drive ISAM with these future LULUC datasets to quantify uncertainties in future CO2 

emissions from LULCC resulting from (1) differences in scenarios, (2) different LULCC 

activities represented in the model, and the sensitivity to the method of representation, (3) 

key structural and parameter uncertainty in model, including the representation of a 

nitrogen cycle, (4) uncertainties in modeling environmental factors (especially climate), 

and (5) different terminologies of what ñLULCC emissionò implies. 

4. Chapter 5: I present the description and historical evaluation of the development of a 

spatial model of agricultural land use change at global scale. This analysis extends the 

work presented in Chapters 2 and 3, by evaluating the sensitivity of different land use 

reconstruction methodologies to estimating CO2 emissions from LULCC.  

5. Chapter 6: Here, I take a regional focus to improve our understanding of LULCC in 

India. There are two motivations to focus on India. First, India is a region where the 

average human pressure on land resources much exceeds the global average. The 

pressure is expected to further intensify in the future, thus being a global hotspot of land 

change. Second, from analysis presented in Chapter 2, we find that uncertainties in 

historical (late 20
th
 century) LULCC in India are much greater than other regions in 

South Asia. Therefore, there remains a potential to improve our understanding of 

historical LULCC in India (thereby reducing uncertainties).  

 

In this chapter, I present estimates of various land-cover conversions in India at national 

scale between 1985 and 2005, based on a wall-to-wall analysis of high-resolution Landsat 

imageries. Using high-resolution biophysical and socioeconomic datasets combined with 

statistical models, I also investigated the drivers of key land-cover conversions in India. This 

understanding is essential to model LULCC at higher resolution (typically 1km lat/long) required 

for regional environmental assessments and land use planning. Current global datasets (as 

presented in Chapter 2) typically available at ~10km lat/long or coarser resolution do not 
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adequately capture the heterogeneity and fragmentation of Indiaôs landscapes. Note that drivers 

of LULCC vary with resolution due to scale dependencies.  

Finally, in Chapter 7, I provided an overall summary, and the future direction of research 

presented in this dissertation. 

Chapters 2-5 have already been published in peer-reviewed journals (see table in next 

page). Chapter 6 is currently under review for Regional Environmental Change.  

Note on Supplementary/Appendix: For brevity, no supplementary/appendix material has 

been included with the dissertation. The supplementary text/figure/table numbers cited in each 

chapter corresponds to the online supplementary material (open-access) of the journal 

publication of respective chapters (see next table for chapter-wise journal publication). 
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CHAPTER 2 

Three distinct global estimates of historical land-cover change and land-use 

conversions over a period of 200 years 

 2.1 Abstract 

Earthôs land cover has been extensively transformed over time due to both human 

activities and natural causes. Previous global studies have focused on developing spatial and 

temporal patterns of dominant human land-use activities (e.g. cropland, pastureland, urban land, 

wood harvest). Process-based modeling studies adopt different strategies to estimate the changes 

in land cover by using these land-use data sets in combination with a potential vegetation map, 

and subsequently use this information for impact assessments. However, due to unaccounted 

changes in land cover (resulting from both indirect anthropogenic and natural causes), 

heterogeneity in land-use/cover (LUC) conversions among grid cells, even for the same land-use 

activity, and uncertainty associated with potential vegetation mapping and historical estimates of 

human land-use result in land cover estimates that are substantially different compared to results 

acquired from remote sensing observations. Here we present a method to implicitly account for 

the differences arising from these uncertainties in order to provide historical estimates of land 

cover that are consistent with satellite estimates for recent years. Due to uncertainty in historical 

agricultural land use, we use three widely accepted global estimates of cropland and pastureland 

in combination with common wood harvest and urban land data sets to generate three distinct 

estimates of historical land-cover change and underlying LUC conversions. Hence, these distinct 

historical reconstructions offer a wide range of plausible regional estimates of uncertainty and 

the extent to which different ecosystems have undergone changes. The annual land cover maps 

and LUC conversion maps are reported at 0.5°×0.5° resolution and describe the area of 28 land 

cover types and respective underlying land-use transitions. The reconstructed data sets are 

relevant for studies addressing the impact of land-cover change on biogeophysics, 

biogeochemistry, water cycle, and global climate. 
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2.2 Introduction 

Human activities have transformed natural ecosystems into managed areas in almost 

every part of the world (Foley et al., 2005; 2011). At present, nearly 40% of the Earthôs ice-free 

land surface is being used for agricultural activities, all of which had previously been covered by 

natural vegetation (Ramankutty et al., 2008; Ellis et al., 2010). Such large-scale changes in land 

cover affect regional and global climate through biogeophysical (Bonan et al., 1992; Pielke et al. 

2002; 2011; Feddema et al. 2005; Brovkin et al., 2006; Bala et al. 2007; Pitman et al. 2009, 

2011; Findell et al., 2009) and biogeochemical (Jain and Yang 2005; Canadell et al. 2007; Bonan 

2008; Jain et al. 2009; Pongratz et al., 2009; Shevliakova et al. 2009; Houghton et al., 2012) 

pathways. 

Assessing the historical impacts of land-use/cover change (LUCC) at global scale (e.g. 

biogeophysical, biogeochemical, and climate effects) requires spatially and temporally explicit 

data sets on land cover and land-use/cover (LUC) conversions (replacement of one land cover 

type by another) spanning several hundred years. Though remote sensing data provides a 

globally consistent picture of land cover, these data are only available from the past four decades 

(Houghton et al. 2012). Hence, several studies (e.g. Ramankutty and Foley, 1999; Klein 

Goldewijk, 2001; Klein Goldewijk et al., 2006; Hurtt et al., 2006; 2011; Olofsson and Hickler, 

2008; Pongratz et al., 2008; Klein Goldewijk et al., 2010; Klein Goldewijk et al., 2011;) have 

adopted different approaches in order to reconstruct spatially explicit data sets of dominant land-

use activities (e.g. cropland, pastureland, urban land, wood harvest) covering several centuries. 

Typically, process-based modeling studies combine one or more of these land-use data sets with 

a map of potential vegetation (representing primary land cover in the absence of human 

activities) to estimate the changes in land cover. The method adopted to replace potential 

vegetation varies from simple proportional clearing (e.g. Jain and Yang, 2005; Pitman et al., 

2009) to a rule-based approach based on several logical assumptions and prioritizations that best 

describe the trends associated with historical LUCC (e.g. Hurtt et al., 2006; 2011). 

Hurtt et al. (2006) developed a Global Land-use Model (GLM) to provide historical 

estimates of LUCC and LUC conversions due to expansion of cropland and pastureland, shifting 

cultivation and wood harvest at 1° spatial resolution. An updated version of GLM framework has 

recently been used in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment 
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Report (AR5) to provide estimates of LUCC and LUC conversions among five simple classes 

(cropland, pastureland, urban land, primary land, and secondary land) at 0.5°×0.5° resolution 

annually from 1500 to 2100 (AD) (Hurtt et al., 2011). This includes historical input data 

covering the period 1500-2005 and data for the four Representative Concentration Pathways 

(RCP) scenarios (Moss et al., 2010) for the future (2005-2100). The LUCC and LUC conversion 

estimates are usually translated to the specific land cover classes suitable for use in a process-

based model and subsequently used for impact assessments (e.g. Lawrence et al., 2012). Jain and 

Yang (2005) used a much simpler technique of superimposing the historical cropland data (based 

on Ramankutty and Foley 1999) on a 0.5°×0.5° potential vegetation map (with each grid cell 

occupied by one potential vegetation) to estimate the changes in land cover. Similar but varying 

methods for superimposing a common cropland and pastureland were adopted by each of the 

seven climate models that participated in an inter-comparison study aimed at understanding the 

historical impact of land-cover change (Pitman et al., 2009). These estimates have been used as 

inputs to terrestrial carbon models, dynamic vegetation models, and earth system models to 

assess the impacts of LUCC (e.g. Shevliakova et al., 2009; Yang et al., 2010; Lawrence et al., 

2012) on biogeophysics and/or biogeochemistry. However, most of these previous studies have 

not considered land-cover change arising due to indirect anthropogenic (e.g. climate driven land-

cover change) or natural disturbances like fires, blowdowns, and insect outbreaks. Several local- 

to national-scale studies have demonstrated their importance and ecological significance (e.g. 

Giglio et al., 2010; van der Werf et al., 2010; also see Lambin et al., 2003 and Foley et al., 2003). 

For example, according to Forest Resources Assessment (FAO 2006), 104 million hectares of 

forest on average were reported to be significantly affected each year by forest fire, pests (insects 

and disease), or climatic events such as drought, wind, snow, ice, and floods, with many 

countries missing this crucial information. In addition to differences arising from unaccounted 

land-cover change (indirect anthropogenic and natural causes), significant uncertainties could 

also arise due to heterogeneity associated with LUCC at temporal and spatial scales which 

cannot be captured using a rule-based approach of converting vegetation generalized at a 

regional or global scale. As a result, the global land cover estimated by most of the previous 

studies does not match estimates based on remote sensing data, a valuable tool in detecting 

several types of land-cover changes and land-cover modifications (subtle changes in land cover) 

that are difficult to map using other methods. For example, a comparison of forest area in 2005 
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from Hurtt et al. (2011) (estimated by combining information on primary and secondary land 

with a basemap which classifies each grid cell as either forest or non-forest based on potential 

vegetation biomass, as provided by Hurtt et al. 2006) and 500 m resolution Moderate Resolution 

Imaging Spectroradiometer (MODIS) Collection 5 land cover data (Friedl et al. 2010) following 

International Geosphere-Biosphere Programme (IGBP) classification scheme (Loveland and 

Belward 1997) indicates pronounced differences in magnitude and spatial distribution (Figures 

2.1(a) and (b)). Globally, Hurtt et al. (2011) estimated forest area was about 8 × 10
6
 km

2
 higher 

than the MODIS estimated value of 31.5 × 10
6
 km

2
 in 2005. Similarly, other studies also 

overestimated the global forest extent for the recent past at similar magnitudes (refer to Sect. 

2.5). It is essential to reconcile such differences in estimates, especially in the context of studies 

addressing the biogeophysical impacts of land-cover change. 

The objective of this study is to build upon and extend the approaches of previous studies 

in order to provide estimates of historical land-cover change (and underlying LUC conversions) 

that are consistent with satellite observations. We use a rule-based approach to assign priorities 

for converting land cover due to various human land-use activities. Multiple years of satellite 

data sets are used to quantify the differences in estimates that may be arising due to unaccounted 

land-cover change and heterogeneity associated with LUCC that cannot be captured using simple 

rules for clearing vegetation. These differences are used to constrain and accordingly adjust the 

priorities for changing land cover, thereby producing land cover maps consistent with satellite 

observations for recent years. The work presented here takes into account land-cover change due 

to four major land-use activities: 1) cropland expansion and abandonment, 2) pastureland 

expansion and abandonment, 3) urbanization, and 4) regrowth due to wood harvest. Due to 

uncertainties associated with historical agricultural land-use, we have used three global historical 

data sets of cropland and pastureland (refer step 1 in Sect. 2.3) in combination with a common 

data set for historical wood harvest and urban land, to produce three distinct estimates. The core 

products we generated were annual maps (at 0.5°×0.5° resolution) of land cover and LUC 

conversions starting from the pre-industrial year of 1765 until 2010 or before (based on the 

ending time of the three cropland and pastureland data sets). The annual land cover data sets are 

reported as area fractions of 28 land cover types (Table 2.1) for each 0.5°×0.5° grid cell and the 

annual LUC conversion maps are reported as the area converted for each of the 92 unique 

conversions possible (refer supplementary Table S1) among the 28 land cover types. The results 
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are compared with other recently published model results and data-based studies. Finally, the 

sources of uncertainties in the present study are discussed. 

2.3 Methods 

The method used to characterize historical land-cover change can be described in five 

steps: 1) Historical land-use change data sets are processed to suit this study; 2) Land cover map 

for the year 1765 are generated by combining potential vegetation map, cropland, pastureland, 

and urban land map for that year; 3) Land-cover change and LUC conversions starting with the 

1765 land cover map are estimated using a rule-based approach for prioritizing LUC conversion 

for each of the four land-use activities; 4) Estimates from the previous step are compared with 

satellite data. Priorities are accordingly adjusted to correct for the differences; 5) Grassland, 

pastureland, and cropland estimates are separated into C3/C4 photosynthetic pathways. 

Step 1: processing of historical land-use change data sets 

The three different data sets on cropland and pastureland are based on: 1) HYDE 3.1 

(Historical Database of the Global Environment) (Klein Goldewijk et al., 2011), 2) New 

pastureland estimates and updated cropland estimates based on Ramankutty and Foley (1999) 

(N. Ramankutty, personal communication, 2011), and 3) Regional estimates based on Houghton 

(2008). These three agricultural land-use data sets are henceforth referred to as HYDE, RF, and 

HH data, respectively. The urban land data set is from Klein Goldewijk et al. (2010). Historical 

wood harvest data are based on annual wood harvesting rates from Hurtt et al. (2011). RF and 

HH data are at an annual time scale. The decadal time resolution HYDE data was linearly 

interpolated to yield annual maps. All these data sets except HH data are gridded data sets at 

0.5°×0.5° or finer resolution. Finer resolution data were aggregated to 0.5°×0.5° resolution. The 

HH data set provides the annual rate of deforestation/reforestation due to cropland, pastureland, 

wood harvest and shifting cultivation for ten regions (defined in Houghton et al., 1983) covering 

the entire globe, rather than by geographic details. HH regional data sets for cropland and 

pastureland resulting from deforestation were converted to gridded estimates using the LUC 

conversion estimates derived based on RF data. Additional details on the method used to 

spatialize HH data, details and processing of other data sets are available in supplementary text. 

The three land-cover change and LUC conversion estimates generated from this study 
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(henceforth referred to as ISAM-HYDE, ISAM-RF and ISAM-HH) based on three agricultural 

data sets (HYDE, RF, and HH) utilized the same wood harvest and urban land data. ISAM-

HYDE, ISAM-RF, and ISAM-HH estimates extend to the year 2010, 2007 and 2005, 

respectively. 

Step 2: land cover map of 1765 

A land cover map for the year 1765 was generated as a reference map to track land-cover 

change and LUC conversions. We started with the global map of potential vegetation derived at 

5 min spatial resolution by Ramankutty and Foley (1999). Fourteen of the 15 vegetation classes 

present in the potential vegetation map directly correspond to the potential land cover types used 

in this study (Table 2.1). The land cover classification used in this study is chosen to be 

consistent with the land cover types required for the Integrated Science Assessment Model 

(ISAM) (Jain and Yang, 2005; Yang et al., 2009; Yang et al., 2010) for which we originally 

produced these data sets. Mixed forest (which is not part of our land cover classification) from 

the potential vegetation map was reclassified into any one of the seven forest types by searching 

for dominant (greater than 70% of the area considered) forest type within a 4°×4° resolution 

window around the grid cell. The window size was increased until the requirements for dominant 

forest type were satisfied. Savanna (usually defined as tropical grasslands) present outside 

tropical regions was reclassified to other herbaceous types, using the method adopted for 

reclassifying mixed forest. Ramankutty and Foley (1999) assigned single potential vegetation to 

each 5 min grid cell from 1km DISCover satellite-based global land cover data (Loveland and 

Belward, 1997) even in grid cells where anthropogenic land cover was absent. In such grid cells, 

we used MODIS data (Friedl et al., 2010) for the year 2005 classified under IGBP classification 

scheme to reassign the grid cell area (currently occupied by either 100% forest or non-forest) to 

fractional area of forest and non-forest. The forest and non-forest types were determined using a 

combination of MODIS land cover data (Friedl et al., 2010) and the method adopted to reclassify 

mixed forest. This reduced the total area of forest in the potential vegetation map from 55.2 × 10
6
 

km
2
 to about 48.6 × 10

6
 km

2
. An additional land cover class (water-covered areas) map was 

derived at 5 min resolution using MODIS land cover data (Friedl et al., 2010) for the year 2005, 

and was included in the potential vegetation map by proportional adjustment of potential 

vegetation areas. 
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Next, we aggregate the 5 min resolution potential vegetation map to 0.5°×0.5° resolution 

to yield the fractional areas of 15 land cover types within each grid cell. Hence, each grid cell in 

our potential vegetation map can be occupied by more than one type of natural vegetation. We 

assume water-covered areas to be constant for every year. 

Finally, we derive the land cover map for the year 1765 by including the 1765 cropland 

and pastureland maps from RF and the urban land map (Klein Goldewijk et al., 2010); the 

0.5°×0.5° resolution potential vegetation map is generated by simple proportional adjustments to 

the area of potential vegetation presents within each grid cell. The map was used as a starting 

point to produce all three estimates of land-cover change and LUC conversions. We also assume 

all forest in the 1765 land cover map as primary forest. At this stage, we do not distinguish 

between C3/C4 types for grassland, pastureland, and cropland. Classification to C3/C4 pathways is 

accomplished in the final step. 

Step 3: estimating historical LUCC and LUC conversions 

To derive the LUCC and LUC conversion estimates, we define a set of rules to 

characterize each of the four land-use activities. These rules impose a logical sequence and 

priority order in which land cover is modified. Based on these rules, a priority factor is assigned 

to each land cover type within each grid cell, corresponding to each of the four land-use 

activities (Figure 2.2). The priority factor for a land cover type indicates the probability of that 

vegetation being altered due to that particular land-use activity. The priority factor for an 

individual land cover type within each grid cell varies from 0 to 1.0, and the sum of priority 

factors for all land cover types corresponding to each land-use activity sums up to 1.0. 

The rules that determine the priority factors for a land-use activity depend on the 

magnitude of that land-use activity for that year, the land cover map from the previous year, and 

the potential vegetation map. For example, for an increase in cropland area between two 

consecutive years in a grid cell, a priority factor is assigned to each land cover type (except for 

water, pastureland and urban land for which priority factor is assumed to be 0), which is 

proportional to the total area of natural vegetation in that grid cell. The increase in cropland area 

is accounted by converting each land cover type to cropland based on its designated priority 

factor. In the case of cropland abandonment (characterized by decrease in cropland area with 
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time), the abandoned land reverts back to the potential vegetation level present in that grid cell. 

In such cases, the potential vegetation map was used to determine the priority factors. Usually, 

grasses and other herbaceous land cover types are faster colonizers than forests (Arora and Boer, 

2006). They invade the abandoned land initially, while woody vegetation grows later. However, 

the rationale here is that a one-year time gap is sufficient for woody vegetation to reappear. This 

method provides a simple representation of successions. LUCC treatment due to urbanization is 

similar to that described for cropland, with the exception that in case of decrease in urban land 

area with time, the decreased area is reverted to grasses (i.e. priority factor for grasses was 

assigned as 1.0), irrespective of the potential vegetations present within that grid cell. For wood 

harvest, preference is given to primary forests over secondary forests. Priority factors were 

assigned proportional to the area of each of the seven primary forests within that grid cell. In 

cases where total primary forest was insufficient to account for wood harvest, clearing was done 

from secondary forests following a similar approach. For an expansion of pastureland, clearing 

of grassland is preferred (Houghton, 1999). In cases where grassland is insufficient, we followed 

the method adopted for increase in cropland area. In case of decrease in pastureland area, the 

abandoned area was reverted back to grassland. 

There are a few exceptions to these rules. In cases where cropland is abandoned and 

pastureland/urban land concurrently increase with time, a part of the abandoned area was 

considered a source for pastureland/urban land. The fraction of abandoned cropland area used as 

a source of pastureland/urban land is determined by the likelihood that the other vegetations 

present in the grid cell are sources for the growth in pastureland/urban land. For example, a grid 

cell dominated by forest is more likely to have a higher fraction of abandoned cropland area to 

be used as a source of pastureland than a grid cell dominated by grassland. Similar treatment 

exists for decrease in pastureland area accompanied by increase in cropland/urban land, in which 

a part of cleared pastureland area is considered a source for cropland/urban land. It should be 

noted that in case of succession, forest returns as secondary forest (vegetation numbers 16 to 22 

in Table 2.1), whereas we have not differentiated herbaceous land cover types as 

primary/secondary. Because the data sets for four land-use activities considered in this study 

come from more than one source, certain cases exist where the desired conversations, as 

determined by the assigned prioritization factor, could not be carried out for all four land-use 

activities. In such cases, we assign the following order of preference to modify land cover: urban 
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land, cropland, wood harvest, and pastureland. This order of preference was chosen considering 

the uncertainties in magnitude, spatial distribution, and definitions associated with each land-use 

activity. Hence, the cropland and pastureland areas in ISAM-RF, ISAM-HYDE, and ISAM-HH 

wil l be slightly less compared to the original RF, HYDE, and HH data sets in certain grid cells. 

The land cover map of 1765 derived from step 2 (step 2 in Sect. 2.3) is used as the initial 

condition from which we move forward in time, modifying land cover by superimposing the 

year-to-year land-use activities following the method described above. 

Step 4: Calibration using satellite data 

Historically, substantial land-cover changes have occurred due to climate feedbacks 

(Parry et al., 2007) and through natural disturbances like forest fires (Giglio et al., 2010; van der 

Werf et al., 2010), blowdowns, and insect outbreaks (Foley et al., 2003; Lambin et al., 2003). 

Due to the unavailability of information on the magnitude and spatial extent to which these 

effects have altered land cover historically at a multi-centennial time scale, their impacts on land 

cover have been excluded from the rule-based approach for estimating historical land-cover 

change. Additionally, the rule-based approach is a simplified representation of general trends 

associated with historical land-cover change due to human land-use activities, which is subject to 

variations at the regional and grid cell levels. Due to the factors discussed above, there exist 

differences between satellite observations and estimates from the rule-based approach (Step 3; 

Sect. 2.3). For example, the total forest area estimated using rule-based approach (Figure 2.3(a)) 

differs from satellite estimates (Figure 2.1(a)) for certain grid cells. Our estimated forest area 

varies from 36.7 to 39.4 × 10
6
 km

2
 among the three estimates, compared to 30.7 × 10

6
 km

2
 (after 

changing to the land mask used in this study) estimated using MODIS land cover data (Friedl et 

al., 2010) classified under IGBP classification scheme. We implicitly account for these 

differences by calibrating with satellite data. 

We first classify the 28 land cover classes into two broad categories: forest and non-

forest. Medium resolution satellite data captures forest extent/type with high accuracy compared 

to other herbaceous types (Jung et al., 2006; Friedl et al., 2010). The basic aim is to reconcile 

these in a way that will make the magnitude and spatial patterns of present-day forest estimates 

as close as possible to satellite estimates. 
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We compare estimated forest area for the year 2005 with estimates from 500 m resolution 

MODIS land cover data (Friedl et al., 2010) for the year 2005 classified under IGBP land 

classification scheme, aggregated at 0.5°x0.5° resolution. An overestimation of forest area in a 

grid cell indicates that higher priority factor should be assigned to forest land cover types for 

clearing than previously assumed. Similarly, an underestimation of forest area in a grid cell 

indicates a lesser priority factor should be assigned to forest land cover types for clearing. To 

modify the priority factor for each land cover type in a grid cell for a particular year, we 

determine a ñcorrection factorò using a combination of information from the potential vegetation 

map, the land cover map for the year 2005, the land cover map of the historical year for which 

the priority factor is to be adjusted, and the magnitude of underestimation/overestimation of 

forest area estimated in comparison to satellite data. The correction factor for each land cover 

type is chosen such that the estimated area of forest matches with satellite data when the 

correction factor is multiplied by the priority factor estimated in step 3. The value of the 

correction factor is > 1 for land cover types with increased priority and < 1 for land cover types 

with decreased priority. An additional constraint is imposed so that the sum of the correction 

factor multiplied by priority factor for all land cover types, corresponding to each land-use 

activity, add up to 1.0, a basic criteria described in step 3 (step 3 in Sect. 2.3). For the grid cells 

where land-use data indicates the absence of anthropogenic land cover types, a simple linear 

interpolation is used to adjust the area of natural vegetations between the starting and ending 

reference years, in order to make the present-day estimates consistent with satellite data. A 

similar approach was applied to grid cells where the magnitude of historical land-use was small 

and correction factor alone is insufficient for effecting the changes needed to match satellite 

estimates. The changes effected through linear interpolation are reflected in annual land cover 

maps, but are not recorded as LUC conversions. Hence, our estimates of LUC conversions are 

only attributable to the four direct human land-use activities. To avoid underestimation of forest 

area from satellite data, which may result due to the exclusion of regrowing forest, we also use 

four additional years of MODIS land cover data (Friedl et al., 2010) covering the period 2001-

2004 to estimate the ócorrection factorô. This method results in a close match between MODIS 

forest distribution (Figure 2.1(a)) and our estimated forest distribution (Figure 2.3(b)). 
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Step 5: Separation of grassland, pastureland, and cropland to C3/C4 types 

We only classify grassland, pastureland, and cropland to C3/C4 types in annual land cover 

maps, not annual LUC conversion maps. To separate the grassland and pastureland area fractions 

into C3 and C4 types, we followed the modified approach of Still et al. (2003). If there is at least 

one month in a year when temperature is above crossover temperature (the temperature at which 

the C3 quantum yield equals C4 quantum yield) and rainfall is concurrently above 25 mm, it is 

assumed that the C4 grass fraction is equal to the number of months where C4 photosynthesis is 

favored relative to the number of growing season months with a temperature greater than 5°C. 

Mathematically, 

C4 fraction = (number of months with Tair > crossover temperature and rain > 25mm) / 

(number of months with Tair > 5°C) 

We use the monthly air temperature (Tair) and precipitation data at 0.5°×0.5° resolution 

based on CRU TS 3.0 (updated based on Mitchell and Jones, 2005), covering the period 

1901-2006; a 10-year moving average was calculated for both variables, to avoid sudden 

fluctuations. For the years 1765 to 1900, average monthly precipitation and temperature values 

from 1901 to 1910 were used. For the period 2007-2010, the same values were assigned as for 

the year 2006. For each year, we calculated the crossover temperature following Collatz, Berry 

and Clark (1998), based on global CO2 concentration values from 1765 to 2010 (Meinshausen et 

al. 2011). The calculated crossover temperature varies from 18.2°C in 1765 to 24.1°C in 2010. 

The C4 fraction generated for the period 1765-2010 was combined with annual pastureland and 

grassland estimates from step 4 (step 4 in Sect. 2.3), to separate them into C3 and C4 fractions. 

To separate the annual croplands into C3 and C4 fractions, we use the estimates of 

harvested areas of 175 different crops across the world at 5 min by 5 min spatial resolution for 

the year 2000 (Monfreda, Ramankutty and Foley 2008). C3 and C4 designations were assigned to 

each crop type based on known pathway characterizations. A map indicating the fractional 

coverage of C4 croplands was generated at 0.5°×0.5° resolution. In grid cells where there were 

no crops present, 100% of the grid cell was assigned to C3 croplands. This map was used to 

separate annual historical cropland estimates into C3 and C4 types. 
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2.4 Results 

Comparison of cropland and pastureland estimates among 3 data sets 

Comparison of global cropland statistics of RF and HYDE data averaged over the period 

2001-2005 shows similar levels of cropland area, varying from 14.3 to 15.3 × 10
6
 km

2
, with 

HYDE estimates being 8% higher than RF estimates (Table 2.2). However, this global picture 

varies regionally. The most pronounced differences are found in Pacific Developed region and 

China, where the cropland areas estimated by HYDE data are 70% and 23% higher than RF data, 

respectively. The major differences between the two data sets result from the fact that these data 

sets adopted different methods (Refer supplementary text) and agricultural inventory data sets. 

While HYDE inventory data was based on FAO (2008), RF estimates relied more on national-

level census statistics, along with FAO estimates for recent years (Ramankutty et al., 2008). 

Houghtonôs estimates of both global and regional croplands are lower than RF and HYDE 

estimates. This is because he considers only croplands that were created or abandoned on lands 

originally covered by forests. 

While global cropland statistics estimated based on RF and HYDE data match reasonably 

well with each other, pastureland statistics globally show substantial disagreement, with even 

more regional disagreement. This is because the global pastureland area estimated by the census 

report used in RF itself is significantly lower than FAO (2008) estimates of pastureland used in 

HYDE data. Globally, HYDE data estimates of pastureland are 26% higher than the RF 

estimated value of 26.3 × 10
6
 km

2
 average over the period 2001-2005. Major disagreement is 

found over óNorth Africa and the Middle Eastô where pasture area estimates for HYDE are 83% 

higher than RF for 2005. While the percentage difference is highest for óNorth Africa and the 

Middle Eastô, a large difference in pastureland area is found in the Pacific Developed region and 

China, where the estimated pastureland area averages from 2001 to 2005 for HYDE are 1.5 × 10
6
 

km
2
 (~53%) and 1.7 × 10

6
 km

2
 (~43%) higher than RF data, respectively. HH data estimates of 

pastureland are zero for all regions except Latin America, because Houghton (2008) assumes that 

all pastures are derived from grasslands, with the exception of Latin America, where significant 

clearance of forest area for pastureland has taken place due to extensive cattle ranching (Lambin 

and Giest, 2003). 



19 
 

Land-cover change estimates during 1765-2005 

The 28 land cover classes have been combined into a broader category for the purpose of 

analysis (Table 2.3), and the values are presented in the text as range among three estimates 

(ISAM-HYDE, ISAM-RF and ISAM-HH). Globally, the total area of forest has decreased from 

45.5 × 10
6
 km

2
 (~36% of the total land area) to about 29-30 million km

2
 during this period, a 

one-third decrease. Of this, human land-use activities have contributed to a net decrease in forest 

area of about 6.5-8.4 million km
2
 (Table 2.4), while the rest is attributed to indirect 

anthropogenic and natural causes. Total deforestation amounts to 14.5-14.7 million km
2
, and 

forest regrowth ranges between 6 and 8 million km
2
. Forest area in North America shrunk by 

3-3.5 million km
2
 (~35%-40%) and Tropical Africa shrunk by 2.3-2.6 million km

2
 

(~43%-49%) (Table 2.4). Total forest area in Europe decreased by 44%-52% from its initial 

value of 2.5 × 10
6
 km

2
. Estimates of forest area in China and South and South-East Asia (SSEA) 

regions show the largest difference among the three estimates. Forest area in China and SSEA 

decreased by 40%-52% and 47%-66%, respectively. Such large differences in these regions are 

mainly due to uncertainty in estimates of cropland (see Ramankutty et al. 2008; Liu and Tian 

2010). North America, the former USSR and Tropical Africa show a large amount of net forest 

loss attributed to indirect anthropogenic and natural causes. Total forest regrowth due to human 

land-use activities is about 6-8 million km
2
. During 2005, roughly 24%-28% of the total forests 

present are secondary forests (Figure 2.4 and Table 2.3). North America contains about 26% of 

global secondary forest whereas the former USSR contains 17-23% of global secondary forest 

(Figure 2.5). ISAM-RF estimates show higher secondary forest in all regions due to more 

abandonment of croplands present in RF data compared to HYDE data. 

Global area of savannas shrunk by 5.4-7.1 million km
2
 (i.e. 38%-50%) and shrublands 

decreased by 6.8-8.9 million km
2
 (i.e. 40%-53%) (Table 2.3). The area of grassland and 

pastureland combined increased by about 19.7-24 million km
2
 (i.e. 83%-101%). However, 

regional comparisons show more disagreement than global estimates of change (Figure 2.5). For 

a single time snap during 2005, ISAM-HYDE estimates show 57% less shrubland area in the 

Pacific Developed region compared to ISAM-RF estimates. Except for North America, ISAM-

RF shows more cropland expansion in regions that were originally shrublands, compared to 
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ISAM-HYDE. The area of grassland in ISAM-RF is higher than ISAM-HYDE for all regions 

because of lower pastureland estimates by RF data compared to HYDE data. As we have 

considered only deforestation and reforestation statistics due to agricultural activities from HH 

data, they have been excluded in the discussion relating to comparison of herbaceous land cover 

types. 

LUC conversions during 1765-2005 

Globally 6.6-6.8 million km
2
 of forest loss (~45% of human-caused forest loss) has 

occurred due to cropland expansion, whereas only 2.7-2.9 million km
2
 was due to pastureland 

expansion (Supplementary Table S1). SSEA contributes to 25%-30% (1.6-2.1 million km
2
) of 

forest loss occurring due to conversion to cropland, followed by North America (1.1-1.5 million 

km
2
; 16%-23%). Although the cropland estimates for Latin America by RF, HYDE, and HH are 

in close range of 1.4-1.6 × 10
6
 km

2
 for the early 2000s (Table 2.2), their pathways of expansion 

are very different. ISAM-HYDE estimates only 0.65 × 10
6
 km

2
 of forest loss in Latin America 

due to cropland expansion, whereas ISAM-RF shows almost double the forest loss estimated by 

ISAM-HYDE (Supplementary Table S2). Because HH data was spatialized using ISAM-RF 

estimates, the trend exhibited by ISAM-HH cannot be considered independent from ISAM-RF 

estimates. Roughly 47%-58% (~7.4-9.6 million km
2
) of cropland expansion has occurred due to 

conversion of non-forested land (Supplementary Table S1). 

About 49%-62% of forest loss due to human land use in Latin America occurred due to 

conversion to pastureland, compared to 29%-36% caused due to cropland expansion (from 

Supplementary Table S2 and Table 2.4). Globally, 28.5-31.8 million km
2
 of non-forested land 

was used for pastureland expansion, the majority of which consisted of grasslands. It is 

interesting to note that though the areas of cropland and pastureland estimated by RF are about 1 

× 10
6
 km

2
 and 6.7 × 10

6
 km

2
 lower than HYDE estimates, respectively, for the period 

2001-2005 (Table 2.2), ISAM-RF estimates show substantially more clearing (and regrowth) of 

forested and non-forested land compared to ISAM-HYDE (Supplementary Table S2 and S4). 

This is because HYDE data show a consistently increasing trend in cropland and pastureland 

area over time, compared to RF data which show substantially more abandonment (and thus 

more regrowth of natural vegetation), leading to more gross conversions by ISAM-RF. ISAM-
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RF and ISAM-HH estimates show ~42% contribution of total secondary forest regrowth due to 

cropland abandonment, whereas ISAM-HYDE show a contribution of only about 23%. 

Implications of partitioning to C3/C4 type 

A significant amount of land in North America and Europe estimated as C4 grasslands in 

1765 was classified as C3 grasslands for present-day conditions when changes in CO2 

concentration were taken into account in the simplified method of Still et al., (2003) (Refer to 

supplementary Figure S1). About 10% of the grassland and 22.4% of pastureland from ISAM-

HYDE was classified as C4-type for 2010 (Table 2.3). Combining the same grassland and 

pastureland estimates for 2010 from ISAM-HYDE with the C4 fraction map for the year 1765 

resulted in 18.4% and 32% classified as C4-type, respectively. Both ISAM-HYDE and ISAM-RF 

estimates show about 23% of the total cropland area as C4-type throughout the historical period. 

2.5 Comparison with other studies 

We compared our estimates of forest for the year 1990 with other studies (Table 2.5). The 

year 1990 was chosen for comparison because it is the farthest year from present for which many 

gridded estimates were available that would facilitate regional comparisons. All the previous 

modeling (Klein Goldewijk, 2001; Hurtt et al., 2006; Yang et al., 2010; Hurtt et al., 2011) studies 

show good agreement with one another, even regionally. However, global total forest area 

estimates from ISAM-HYDE, ISAM-RF, and ISAM-HH are about 10 × 10
6
 km

2
 less than 

previous studies. Major disagreements occur in North America and the former USSR, where our 

estimates of forest area are reduced by 3.3 and 4.7 million km
2
, respectively. Because our forest 

estimates are a reflection of estimates from satellite-based land cover data, the differences in 

estimates arising in these regions can be attributed to unaccounted land-cover change, assuming 

the rule-based approach accurately captures land-cover change occurring due to all major land-

use activities. 

We compared our estimates with FAO forest statistics for 1990 (FAO, 2010). Due to 

difference between the definition of forest used in FAO (see FAO, 2001; 2006; 2010) and this 

study, we performed a ótest caseô wherein we repeated the entire calculations using a potential 

vegetation map derived from MODIS land cover data from the year 2005 (Friedl et al., 2010) 

classified under the University of Maryland (UMD) classification scheme (Hansen et al., 2000). 
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Land cover classification in the UMD scheme is favorable for making direct comparisons with 

FAO estimates. In this case, the estimates seem to agree reasonably well with FAO statistics, 

with ISAM-HYDE estimates being at the high end for Tropical Africa and Pacific Developed 

regions. Similar trends were observed when MODIS-estimated forest area (UMD classification 

scheme) for the year 2005 was directly compared with FAO forest estimates for the same year 

(FAO, 2010). 

2.6 Discussion and conclusions 

This study focused on characterizing historical land-cover change and LUC conversions 

using annual maps of cropland, pastureland, wood harvest, and urban land as inputs. Due to 

uncertainties associated with estimates of historical land-use activities, three different data sets 

on agricultural extent were used to derive three different estimates, consistently using the same 

rule-based method of prioritizing and converting vegetation. Information from remote sensing 

data was used to constrain and modify the rule-based method to implicitly account for land-cover 

changes due to indirect anthropogenic or natural causes. The differences among the three 

estimates produced in this study can be largely explained by the spatial and temporal differences 

in estimates of cropland and pastureland areas among the three data sets. Therefore these data 

sets offer a wide range of plausible regional estimates of uncertainty and the extent to which 

different ecosystems have undergone changes historically. 

The data sets produced in this study have several associated limitations. Since the annual 

cropland and pastureland maps reveal only the net changes in area, we could not calculate the 

effect of shifting cultivation in this study. Hurtt et al. (2006) performed a sensitivity test by 

assuming a standard land abandonment rate of 6.7% yr
-1

 due to shifting cultivation in the tropics, 

and showed that excluding shifting cultivation could lead to underestimation of secondary land 

created by agriculture. However, we chose not to include shifting cultivation in our study due to 

high uncertainty in the magnitude and spatial patterns (Hurtt et al., 2006) historically associated 

with shifting cultivation. In addition, our assumption that all forest on the land cover map for 

1765 (starting year of analysis) was primary forest potentially underestimates the secondary 

forest area created due to wood harvest and cropland abandonment before 1765. The validity of 

this assumption is well established due to the fact that the aim of this study is to characterize 

land-cover change after the pre-industrial era. 
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There are three major sources of uncertainty. First, the potential vegetation map produced 

from satellite data is assumed to accurately represent the land cover that would have existed at 

present if human activities have been non-existent. Hence, the usage of potential vegetation map 

to represent pre-industrial land cover assumes that changes in environmental conditions have not 

changed the land cover. The second source of uncertainty arises from the rule-based approach to 

prioritize land-cover change used in this method; this is a simple representation of historical 

trends associated with various land-use activities that are not fully understood, and difficult to 

generalize at a global or regional scale. As shown, the rule-based approach leads to a land cover 

map that differs substantially compared to satellite estimates for recent years. However, we 

attribute the differences to unaccounted land-cover change and grid-cell level variations in land-

use trends assumed in our rule-based approach. This difference is subsequently used to revise the 

rules at the grid-cell level to produce estimates close to satellite observations. Hence, the 

estimates provided here are largely dependent on the simplified representation of converting land 

cover assumed in this study. However, we have not performed a systematic sensitivity analysis 

of the different assumptions made to modify land cover. The third source of uncertainty arises 

due to land-use data sets used as inputs. Estimates of historical gridded wood harvest data were 

based on several assumptions, which are subject to uncertainty (Hurtt et al., 2006). As shown in 

this study and in other previous studies (Klein Goldewijk and Ramankutty, 2004; Jain and Yang, 

2005), spatial and temporal patterns of historical cropland and pastureland have significant 

uncertainties. This is reflected in the distribution of non-forested land cover types as estimated 

using three agricultural data sets (Figure 2.5). As a result, only the total non-forested land as a 

single broad category matches with satellite estimates. The individual forest area, however, does 

seem to agree reasonably well between the three estimates, primarily due to the calibration 

carried out in step 4 (Sect. 2.3). Constraining each land cover type (especially herbaceous types) 

to be close to satellite estimates is impossible, as the cropland and pastureland estimates 

prescribed based on input data sets need to remain unaltered. In addition, medium/coarse-

resolution satellite data have less accuracy in classifying herbaceous land cover types than trees 

or barren land (Friedl et al., 2010). 

Several regional and national-level reconstructions using finer resolution census data 

have revealed significant differences in estimates of cropland and pastureland compared to older 

versions of RF and HYDE global data sets. For example, Li  et al. (2010) found that RF data 



24 
 

overestimated cropland area in China by a factor of 21 for the year 1700 and 1.6 for 1990 when 

compared with the cropland data of Northeast China (Ye and Fang., 2011) reconstructed based 

on combining calibrated historical data from multiple sources. Similarly, they found significant 

differences in the spatial distribution of cropland in HYDE data for the 18th and 19th century. 

Historical reconstructions over Amazonia (Leite et al., 2011) using municipal-level census data 

with higher level of details also show considerable difference in spatial patterns and magnitude 

compared to RF data. The range of uncertainties in regional estimates is expected to have 

narrowed in most recent RF and HYDE data used in this study, but significant differences still 

exist. Because the three estimates produced in this study are directly dependent on these global 

land-use data sets, our global data sets should also be used with caution while drawing inferences 

from regional-level analysis. Since no single agricultural land-use data set used here can be 

pointed out as better as or worse than another, it is recommended to use all three estimates 

alongside one another to gain a better picture of the range of uncertainties. 

The biggest source of uncertainty in the global C budget remains emissions due to 

LUCC, (Canadell, 2002) and these are estimated to be in the order of ± 0.5 GtC y
-1

 (Houghton, 

2005; Houghton et al., 2012). Several multi-model comparison experiments have been performed 

to determine the uncertainty of LUCC in the global carbon budget (e.g. McGuire et al., 2001; 

Pitman et al., 2009; Reick et al., 2010). The LUCC uncertainty experiments involve using a 

common land-use data set (e.g. HYDE or RF) in each of the models and comparing the land-use 

fluxes. However, due to differences in the structure of each model, the method adopted to 

implement the common land-use data differs significantly between each model (e.g. see Pitman 

et al., 2009). As a result, it is impossible to attribute the estimated uncertainty to model-related 

uncertainty and uncertainties arising due to differences in the method of implementing land-use 

data between different models. However, driving the same model with multiple LUCC data sets 

derived consistently using same method, as discussed here, opens a new avenue for studying 

LUCC data-related uncertainty by eliminating the model-related uncertainty. 

Certainly, indirect anthropogenic and natural effects have been dominant factors in 

historical land-cover change and have been poorly documented at a global scale (Lambin et al., 

2003). Additionally, land-cover modifications like agricultural intensification have been thought 

to have a widespread impact on climate through altered surface attributes and changes in 
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biogeochemical cycles. Recent advances in remote sensing observations have provided a more 

accurate and globally consistent picture of more subtle changes in land cover (e.g. changes in 

tree height, vegetation biomass, and vegetation structure), in addition to capturing land-cover 

changes. Because globally consistent remote sensing observations are available only for the past 

four decades, we need to rely on other methods of reconstructing large time-scale changes in 

land cover. Monitoring all forms of land-cover change extensively and consistently at a global 

scale for the pre-satellite era, even at medium/coarse spatial and temporal resolution, was 

impractical. Hence, several assumptions need to be made to account for its impact on LUCC. 

Future research is required on monitoring long-term changes in all forms of land-cover change 

and land-cover modifications at higher spatial and temporal resolutions through remote sensing 

observations. Further, tracking LUC conversions rather than net changes in land cover can help 

facilitate better understanding of trends and fate of LUCC and its implications. 

As pointed out by Pitman et al. (2009), implementing a common LUCC data set among 

different models is impossible. As a result, implementing the land cover maps and LUC 

conversion estimates presented here in different models may be subject to different 

approximations depending on the complexity and parameters associated with each model. 

However, we have chosen land cover classifications such that the data can be implemented in 

models without introducing much uncertainty. Preliminary results of regional and global carbon 

emissions for the last three decades, estimated by implementing these three sets of data in the 

ISAM, have already been used in the IPCC AR5. A detailed assessment of the range of 

biogeophysical and biogeochemical impacts produced by these three estimates is in progress 

using a coupled ISAM-CESM framework. We believe that the data sets presented here will be 

useful to modelers interested in studying the effects of historical LUCC on biogeophysics, 

biogeochemistry and hydrological cycle, as well as in general to the global change community 

interested in studying the impacts of historical LUCC. Digital versions of these data sets can be 

downloaded from the webpage (http://www.atmos.illinois.edu/~meiyapp2/datasets.htm). 
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2.7 Tables 

Table 2.1 Land cover classifications used in this study 

No. Land cover type Symbol 

1* Tropical evergreen broadleaf forest TrpEBF 

2* Tropical deciduous broadleaf forest TrpDBF 

3* Temperate evergreen broadleaf forest TmpEB

F 4* Temperate evergreen needleleaf forest TmpEN

F 5* Temperate deciduous broadleaf forest TmpDB

F 6* Boreal evergreen needleleaf forest BorENF 

7* Boreal deciduous needleleaf forest BorDNF 

8* Savanna Savanna 

9* C3 grassland/steppe C3grass 

10* C4 grassland/steppe C4grass 

11* Dense shrubland Densesh

rub 12* Open shrubland Openshr

ub 13* Tundra Tundra 

14* Desert Desert 

15* Polar desert/rock/ice PdRI 

16 Secondary tropical evergreen broadleaf 

forest 

SecTrpE

BF 17 Secondary tropical deciduous broadleaf 

forest 

SecTrp

DBF 18 Secondary temperate evergreen broadleaf 

forest 

SecTmp

EBF 19 Secondary temperate evergreen needleleaf 

forest 

SecTmp

ENF 20 Secondary temperate deciduous broadleaf 

forest 

SecTmp

DBF 21 Secondary boreal evergreen needleleaf 

forest 

SecBorE

NF 22 Secondary boreal deciduous needleleaf 

forest 

SecBor

DNF 23* Water/Rivers Water 

24 C3 cropland C3crop 

25 C4 cropland C4crop 

26 C3 pastureland C3past 

27 C4 pastureland C4past 

28 Urban land Urban 

Note: * Natural land cover classes used in this study. Except for water/rivers (No. 23), all 

other natural land cover classes were directly derived from the potential vegetation map of 

Ramankutty and Foley (1999). Note that C3 and C4 grasslands (Nos. 9 and 10) are considered to 

be a single land cover class in the potential vegetation map and during the initial stages of 

calculation. Partitioning to C3 and C4 types is carried out in the last step (step 5; Sect. 2.3). 
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Table 2.2 Regional areas of cropland and pastureland averaged for the period 2001-2005 

estimated directly from RF (Updated estimates based on Ramankutty and Foley, 1999), HYDE 

(Klein Goldewijk et al., 2011) and HH (Houghton, 2008) data sets across 9 regions covering the 

world. The 9 regions are based on Houghton et al. (1983). Units are in million km
2
. All values 

are rounded to one decimal place. 

 

Regions 
Cropland Pastureland 

RF HYDE HH Range RF HYDE HH Range 

North 

America 
2.1 2.3 1.9 1.9 ï 2.3 2.4 2.5 0.0 0.0 ï 2.5 

Latin 

America 
1.6 1.5 1.4 1.4 ï 1.6 4.8 5.4 2.8 2.8 ï 5.4 

Europe 1.2 1.2 0.1 0.1 ï 1.2 0.6 0.7 0.0 0.0 ï 0.7 

North Africa 

and Middle 

East 

0.8 0.9 0.3 0.3 ï 0.9 1.8 3.0 0.0 0.0 ï 3.0 

Tropical 

Africa 
2.0 2.0 1.9 1.9 ï 2.0 7.0 8.0 0.0 0.0 ï 8.0 

Former 

USSR 
2.0 2.2 0.4 0.4 ï 2.2 3.3 3.6 0.0 0.0 ï 3.6 

China 1.3 1.6 0.7 0.7 ï 1.6 3.5 5.2 0.0 0.0 ï 5.2 

South & 

South-East 

Asia 

3.0 2.9 1.5 1.5 ï 3.0 0.3 0.4 0.0 0.0 ï 0.4 

Pacific 

Developed 

Region 

0.4 0.6 0.2 0.2 ï 0.6 2.6 4.1 0.0 0.0 ï 4.1 

World 14.3 15.3 7.6 7.6 ï 15.3 26.3 33.0 2.8 
2.8 ï 

33.0 
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Table 2.3 Global area of various land cover types for 4 time slices based on ISAM-RF, ISAM-HYDE, and ISAM-HH estimates. 

óPrimary forestô includes TrpEBF, TrpDBF, TmpEBF, TmpENF, TmpDBF, BorENF, and BorDNF. óSecondary forestô includes 

SecTrpEBF, SecTrpDBF, SecTmpEBF, SecTmpENF, SecTmpDBF, SecBorENF, and SecBorDNF. Shrublands are a combination of 

Denseshrub and Openshrub. óOthersô category includes Tundra, Desert, and PdRI. The estimates of cropland and pastureland area are 

slightly lower than the original estimates (Table 2.1) due to a difference in land mask used and other minor adjustments made in step 3 

(Sect. 2.3) for consistency purposes (Unit: million km
2
) 

 

Land cover 1765 1900 2000 2005 

Type 

RF/HYDE

/HH 

 

RF HYDE HH RF HYDE HH RF HYDE HH 

Primary Forest 45.4 34.9 34.8 33.5 22.1 22.5 20.8 21.7 22.2 20.

3 Secondary Forest 0.0 2.9 2.9 3.1 7.9 7.0 7.5 8.3 7.2 7.8 

C3 Cropland 2.9 5.9 6.2 4.2 10.0 11.4 5.5 10.0 11.6 5.6 

C4 Cropland 0.6 1.7 1.8 1.2 2.9 3.4 1.5 2.9 3.4 1.5 

C3 Pastureland 3.0 9.1 9.1 3.3 18.0 24.4 4.2 18.0 24.6 4.3 

C4 Pastureland 1.2 3.0 3.6 1.7 5.9 7.7 2.6 5.5 7.3 2.6 

C3 Grasslands 14.6 15.6 15.4 20.2 16.5 13.8 26.0 17.2 14.1 26.

4 C4 Grasslands 4.9 4.1 3.7 5.8 2.7 1.8 4.5 2.7 1.7 4.2 

Savannas 14.2 13.0 12.5 14.2 9.1 7.2 14.2 8.8 7.1 14.

2 Shrublands 16.9 14.1 14.6 16.8 10.1 8.0 16.8 10.1 8.0 16.

8 Others 26.1 25.7 25.4 26.1 24.4 22.5 26.1 24.4 22.5 26.

1 Urban Land 0.0 < 0.1 < 0.1 < 0.1 0.4 0.4 0.4 0.5 0.5 0.5 
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Table 2.4 Area of forest cleared and forest regrown during the period 1765-2005 across 9 regions covering the world, based on 

ISAM-RF, ISAM-HYDE, and ISAM-HH estimates. Total deforested and forest regrowth estimates are based on four land-use 

activities only. However, changes in forest area effected due to calibration with satellite data (step 4; Sect. 2.3) are reflected in year 

2005 forest estimates (Unit: million km
2
) 

 

Regions 
Forest area 

in 1765 

Total deforested area Total forest regrowth 
Estimated 

forest area in 

2005 
ISAM-

RF 

ISAM-

HYDE 

ISA

M-

HH 

ISAM-

RF 

ISAM-

HYDE 

ISAM-

HH 

North 

America 
9.6 3.3 3.5 3.3 2.4 2.0 2.2 5.8-6.2 

Latin 

America 
10.5 3.1 2.4 4.5 1.0 0.6 1.2 8.4-8.8 

Europe 2.5 2.0 1.6 1.3 1.5 1.0 1. 1 1.2-1.4 

North Africa 

and 

Middle 

East 

0.2 0.1 0.1 0.1 < 0.1 < 0.1 < 0.1 ~0.1 

Tropical 

Africa 
5.3 1.2 1.2 0.9 0.4 0.3 0.5 2.7-3.0 

Former 

USSR 
8.1 1.4 1.8 0.9 0.8 1.1 0.7 5.9-6.0 

China 2.3 1.1 1.1 0.7 0.8 0.3 0.7 1.1-1.4 

South & 

South-

East Asia 

5.8 2.0 2.1 2.4 0.7 0.4 1.2 2.0-3.1 

Pacific 

Develope

d Region 

1.2 0.4 0.4 0.4 0.3 0.2 0.3 ~1.1 

World 45.5 14.7 14.4 14.5 8.0 6.0 8.0 28.3-30.0 
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Table 2.5 Comparison of regional forest area estimated in this study with other published studies 

for the year 1990. The results from this study are provided as a range of forest area estimated 

from ISAM-RF, ISAM-HYDE, and ISAM-HH. An additional ótest caseô was performed 

(following UMD land classification scheme) to facilitate direct comparisons with FAO estimates 

(Unit: million km
2
) 

 

Regions 

Yang et 

al. 

(2010) 

Klein 

Goldew

ijk  

(2001) 

Hurtt et 

al. 

(2006) 

IPCC 

AR5
a)
 

 

This 

stud

y 

Test case 

FAO
b)

 

This study 

(UMD 

scheme) 

North America 9.5 8.7 9.3 9.3 5.8-

6.0 

5.1 4.1-4.5 

Latin America 9.0 9.2 9.0 8.6 7.4-

8.3 

10.2 9.8-10.1 

Europe 2.1 2.2 1.6 1.5 1.3-

1.4 

1.7 1.5 

North Africa 

and Middle 

East 

0.1 < 0.1 < 0.1 < 0.1 < 

0.1 

0.1 0.4 

Tropical Africa 4.3 3.3 4.4 4.0 2.8-

3.15 

6.9 7.0-9.8 

Former USSR 11.0 11.9 9.7 10.0 5.9-

6.0 

8.1 6.3- 6.5 

China 1.0 1.3 2.5 2.0 1.2-

1.35 

1.7 1.8- 2.0 

South & South-

East Asia 
4.1 3.3 3.3 3.4 

3.1-

3.2 
3.6 3.3- 3.4 

Pacific 

Developed 

Region 

1.2 1.4 1.1 1.1 1.1 2.2 2.4- 3.7 

World 42.3 41.5 40.9 39.9 29.0

-

30.1 

39.6 37.2-41.3 

Note: a) Based on Hurtt et al. (2011), b) from Global Forest Resource Assessment (FRA) 2010 
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2.8 Figures 

Figure 2.1 Global distribution of forest area during 2005 based on (a) 500 m resolution MODIS 

Land Cover Data Set (Friedl et al., 2010) following IGBP land classification scheme aggregated 

to 0.5°×0.5° resolution and (b) estimates by Hurtt et al. (2011). (Unit: % per grid cell area) 
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Figure 2.2 Schematic showing the process involved in step 3 to estimate LUCC and LUC 

conversions. Step 4 involves modification of priority factors estimated from step 3 using forest 

area estimated from MODIS land cover data (Friedl et al., 2010). óiô denotes year, which 

increases from 1765 to 2005/2007/2010 (ISAM-HH/ISAM-RF/ISAM-HYDE) in annual time 

steps. The priority factors shown here are just an example, and they vary for each land cover type 

from year to year between each grid cell. 
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Figure 2.3 Estimated global forest area for the year 2005 based on ISAM-RF, (a) Without calibration (b) after calibration using 

MODIS land cover data (Friedl et al., 2010). (Unit: % per grid cell area) 
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Figure 2.4 Estimated (a) primary and (b) secondary forest area for the year 2005 based on ISAM-RF. (Unit: % per grid cell area) 
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Figure 2.5 Regional comparisons of various natural land cover types during 2005 based on 

ISAM-RF, ISAM-HYDE, and ISAM-RF. óPrimary forestô includes TrpEBF, TrpDBF, TmpEBF, 

TmpENF, TmpDBF, BorENF, and BorDNF. óSecondary forestô includes SecTrpEBF, 

SecTrpDBF, SecTmpEBF, SecTmpENF, SecTmpDBF, SecBorENF, and SecBorDNF. 

Shrublands are a combination of Denseshrub and Openshrub. Grasslands are a combination of 

C3grass and C4grass. óOthersô category includes Tundra, Desert and PdRI. (Unit: million km
2
) 
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CHAPTER 3 

CO2 emissions from land use change affected more by nitrogen cycle, than by 

the choice of land cover data 

3.1 Abstract 

The high uncertainty in land-based CO2 fluxes estimates is thought to be mainly due to 

uncertainty in quantifying historical changes between forests, croplands and grassland, but also 

due to different processes included in calculation methods. Inclusion of a nitrogen cycle in 

models is fairly recent and strongly affects carbon fluxes. In this study, for the first time, we use 

a model with C and N dynamics with three distinct historical reconstructions of land-use and 

land-use change (LULUC) to quantify LULUC emissions and uncertainty that includes the 

integrated effects of not only climate and CO2, but also nitrogen. The modeled global average 

emissions including N dynamics for the 1980ôs, 1990ôs and 2000 to 2005 were 1.8±0.2, 1.7±0.2, 

and 1.4±0.2 GtC/yr respectively (mean and range across LULUC data sets). The tropical 

emissions were 0.8±0.2, 0.8±0.2 and 0.7±0.3GtC/yr, and the non-tropics were 1.1±0.5, 0.9±0.2 

and 0.7±0.1 GtC/yr. Between the 1980s and the 2000s, the HYDE data set indicated a decrease 

in emissions in the tropics (30%) and non-tropics (50%); RF showed little change in the tropics 

and a 34% decline in the non-tropics; Houghton showed little change in either region. Compared 

to previous studies that did not include N dynamics, modeled net LULUC emissions were higher, 

particularly in the non-tropics. In the model, N limitation reduces regrowth rates of vegetation in 

temperate areas resulting in higher net emissions. Our results indicate that exclusion of N 

dynamics leads to an underestimation of LULUC emissions by around 70% in the non-tropics, 

10% in the tropics and 40% globally in the 1990ôs. The differences due to inclusion/exclusion of 

the N cycle of 0.1 GtC/yr in the tropics, 0.6 GtC/yr in the non-tropics and 0.7 GtC/yr globally 

(mean across land cover data sets) in the 1990ôs were greater than differences due to the land 

cover data in the non-tropics and globally (0.2 GtC/yr). While land cover information is 

improving with satellite and inventory data, this study indicates the importance of accounting for 

different processes, in particular the N cycle.  

3.2 Introduction 
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 Land-use and land-use change (LULUC) refers to carbon (C) fluxes from the land due 

to human activity: that resulting from the use or management of land within one type of land 

cover (e.g., forest management for wood harvest) and changes in land-cover type (e.g. 

deforestation, afforestation, conversion of grasslands to pastureland). In total, LULUC was 

responsible for ~11% of all anthropogenic CO2 emissions (7.8±0.4 GtC/yr fossil fuel; 1.0±0.5 

GtC/yr LULUC) in the decade 2000 to 2009 (le Quéré et al., 2012).  

 The land and the ocean each take up about 30% of all anthropogenic C emissions 

(Denman et al., 2007; Le Quéré et al., 2011). The land takes up C from the atmosphere due to 

natural processes, affected by environmental change such as CO2 and N fertilization effects, and 

climate change (e.g. longer growing seasons in northern extra-tropical forests) (Denman et al., 

2007). The atmospheric measurements of [CO2] combined with O2: N ratios suggest that the land 

is currently acting as a net sink of CO2 despite large-scale tropical deforestation (Denman et al., 

2007; Raupach, 2011). Both the IPCC (Denman et al., 2007) and the Global Carbon Project (Le 

Quéré et al., 2012) calculate land sink due to the natural response of ecosystems to 

environmental change as the residual from other better-constrained flux terms and LULUC 

emissions calculated by models (2.5±0.8 GtC/yr, le Quéré et al., 2012). Thus this term is often 

known as the ñresidual terrestrial fluxò. Uncertainties in LULUC emissions propagate into 

uncertainties in the residual terrestrial uptake calculations, making these two terms the most 

uncertain in the C budget (Denman et al., 2007; Le Quéré et al., 2012).  

 Estimates of the flux of C from LULUC vary widely between different model estimates 

(Houghton et al., 2012). According to the most recent IPCC assessment (Denman et al., 2007), C 

emissions due to LULUC for the 1990ôs had a range of 0.5 - 2.7 GtC/yr, with a median value of 

1.6 GtC/yr based on two results: the Houghton (2003) book-keeping model and FAO (2005) 

data, and the tropical satellite study of DeFries et al. (2002) also using the Houghton book-

keeping model. With improvements in data on land cover change and biomass, and better 

understanding, information and modeling of different land processes, the mean estimate has been 

revised downwards and the range across results is reduced despite the much larger number of 

modeled estimates now published. A recent inter-comparison study of many published estimates 

reported a mean, standard deviation and range across 13 process-based vegetation models and 

book-keeping models of 1.1 ± 0.2 GtC/yr (full range 0.75 - 1.50 GtC/yr) for the 1990ôs 
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(Houghton et al., 2012). The authors of the inter-comparison used the limited amount of 

literature assessing uncertainty in LULUC emission estimates, along with expert judgment to 

suggest an uncertainty of ± 0.5 GtC/yr.  

 It is widely acknowledged that a key uncertainty in LULUC emissions stems from 

uncertainties in estimating historical changes in areal coverage between forests, croplands and 

grassland, though the uncertainties have significantly narrowed with time mainly due to 

improved data from satellites and inventories (Houghton, 2010; Hurtt et al., 2011; Klein 

Goldewijk and Ramankutty, 2004; Lepers et al., 2005; Ramankutty et al., 2007; Verburg et al., 

2011). Further uncertainty stems from incomplete understanding of all the processes affecting 

the net flux of C from LULUC, different approaches adopted to calculate emissions, and data 

related uncertainties. Several previous inter-comparison studies (e.g. Houghton et al., 2012; Ito et 

al., 2008; Ramankutty et al., 2007) have evaluated the overall range of uncertainty associated 

with estimates of net flux of C resulting from LULUC. However, complex linkages between the 

various contributing factors have made it difficult to quantify and attribute the resulting 

uncertainties to each of its sources. 

In an earlier study, Jain and Yang (2005) quantified the uncertainties resulting from 

using two different but commonly used land-use change data sets (RF - Ramankutty and Foley, 

1999; and Houghton and Hackler, 2001) to drive the C cycle component of a land-surface model, 

the Integrated Science Assessment Model (ISAM) for the time period 1765 ï 1990. Differences 

in the rates of changes in cropland area between the two data sets contributed significantly to 

uncertainty in estimated C fluxes, and argued that further refinement of land use data sets using 

ground and satellite-based measurements was required. The Jain and Yang (2005) study was 

useful in explaining and quantifying the uncertainty due to LULUC on C flux as a part of wider 

studies on estimating LULUC related uncertainties (Piao et al., 2008; Ramankutty et al., 2007; 

Ricciuto et al., 2008). 

 In recent years, several LULUC data sets have been updated. Improvements have 

primarily taken place on three aspects: Using historical inventory data with higher level of spatial 

detail; integrating multiple and advanced high-resolution satellite estimates; an improved 

methodology to downscale inventory data to grid cell level. Three of the most commonly used 

data sets were harmonized using a globally consistent methodology by Meiyappan and Jain 
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(2012): (1) and (3) The HYDE spatially explicit data set (Klein Goldewijk et al., 2010, 2011) 

which is the basis of the Hurtt et al. (2011) data set supplied for Earth System Models being used 

in the upcoming IPCC Fifth Assessment Report; (2) The spatially explicit RF data set 

(Ramankutty and Foley, 1999), updated to include pasture conversions (Ramankutty et al., 

2008); and (3) The Houghton data set (Houghton and Hackler, 2001) updated with FAO (2005) 

forest area data (Houghton, 2008, the version that was used by Meiyappan and Jain, 2012) and 

more recently with FAO (2010) data which substantially revised down deforestation rates for the 

1990ôs 

 The effects of inclusion of different processes in calculating LULUC fluxes have been 

explored with various process-based global vegetation models. Several studies have shown that 

emissions from LULUC activities are different when considering the fertilization effects of 

changing [CO2] on ecosystem C balance (Churkina et al., 2008; Pongratz et al., 2009, Arora and 

Boer, 2010). Most process models now include the effects of climate and CO2 on vegetation, but 

few include the effects of nitrogen (N).  

 N is a limiting nutrient for plant growth in mid- and high-latitude regions (Vitousek and 

Howarth, 1991). In tropical regions, N is not considered a limiting nutrient, because the warmer 

and wetter tropical climate enhances N mineralization in soils (Vitousek and Howarth, 1991) and 

biological N fixation is high (Yang et al., 2009). The N cycle is rapidly changing due to human 

activity (Canfield et al., 2010; Galloway et al., 2004, 2008). Enhanced N in the atmosphere can 

act as a pollutant or have a fertilization effect on plants (Reay et al., 2008). Climate, CO2 and N 

all interact to alter plant growth (Jain et al., 2009) and decomposition, thus affecting both the C 

lost when vegetation is removed, and the rate of C accumulation in regrowing vegetation and 

soils (Mathers et al., 2006).  

 A recent modeling study by Zaehle et al. (2011) indicates that anthropogenic N inputs 

account for about a fifth of the C sequestered by terrestrial ecosystem between 1996 and 2005. 

Churkina et al. (2008) estimated a C uptake of 0.75 - 2.21 GtC/yr during the 1990ôs by re-

growing forest in response to enhanced N deposition. The wide ranges in their study arise from 

assumptions made about proportions and age of re-growing forests. However neither study 

included the effects of LULUC.  
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 Yang et al. (2010) modeled for the first time the effect of including a fully coupled N 

cycle (in ISAM) on global LULUC. ISAM results indicated that the contribution of N deposition 

to C uptake was about 0.13 GtC/yr in regrowing secondary forests, and 0.31 GtC/yr in all 

ecosystem types. Consideration of full N dynamics limited C uptake due to N limitation in 

regrowing forests in northern temperate regions in particular. The study was very sensitive to 

land transitions in tropical regions. While N is not a limiting nutrient in primary tropical forests, 

the results suggested strong N limitation in the secondary forests of tropical regions, because 

land use change activities (harvesting, burning) remove large amounts of N from the system. N 

removal due to LULUC constrained the fertilizing effects of N deposition and atmospheric CO2 

in some regions, but less in others depending on climatic conditions emphasizing the need to 

consider the interactive effects of all three drivers (climate, CO2, N) on net LULUC flux. 

 In this paper, we build upon our previous studies to provide revised estimates of C 

emissions from historical LULUC looking for the first time at the effects of N under different 

LULUC scenarios. This study presents several crucial updates on multiple fronts, in particular: 

(1) We use a fully coupled Carbon-Nitrogen (C-N) cycle component of the ISAM (Yang et al., 

2009), very few of the current generation of global vegetation models include a N cycle 

component, and only ISAM has been applied specifically to estimate LULUC emissions (2) The 

study incorporates the impact of N limitation and N deposition on the C sink associated with 

secondary forest regrowth including the effects of wood harvest activities (Yang et al., 2010), (3) 

The estimates have been extended until the year 2010 where possible, and (4) We use three 

historical reconstruction of LULUC (Meiyappan and Jain, 2012; data available from 

http://www.atmos.illinois.edu/~meiyapp2/datasets.htm) based on new and updated data sets 

(Klein Goldewijk et al., 2011; updated estimates based on Ramankutty and Foley (1999) and 

Ramankutty et al. (2008); and, Houghton, 2008). In addition, all the three reconstructed data sets 

include the effects of urban land expansion (Klein Goldewijk et al., 2010) and wood harvest 

(Hurtt et al., 2011).  

3.3 Materials and methods  

Overview of the ISAM C-N model 
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 The C-N cycle component of the Integrated Science Assessment Model (ISAM) is used 

to assess the C emissions from LULUC. The structure, parameterization, and performance of 

ISAM has been previously discussed in detail (Jain and Yang, 2005; Jain et al., 2009; Yang et 

al., 2009). Here, we provide an overview. The model calculates C and N fluxes between 

vegetation and the atmosphere, above and below ground litter, and soil organic matter 

compartments of the terrestrial biosphere at 0.5
o
x0.5

o
 spatial resolution. The modeled C cycle 

accounts for important feedback processes, including impact of increasing atmospheric [CO2] on 

NPP; impact of temperature and precipitation changes on photosynthesis, autotrophic and 

heterotrophic respiration; and the effect of N deposition on C uptake by plants. The modeled N 

cycle accounts for major processes as described in Yang et al. (2009). In addition, the model 

accounts for both symbiotic and non-symbiotic biological N fixation. The performance of ISAM 

and its N cycle has been extensively calibrated and evaluated using field measurements (Jain et 

al., 2005; Yang et al., 2009).  

 Each 0.5
o
x0.5

o
 grid cell contains at least one of the eighteen land-cover types (Yang et 

al., 2010), of which ten are forest land-cover types and the other three cropland, pastureland and 

urban land. ISAM accounts for five climatic types of primary forest (tropical evergreen, tropical 

deciduous, temperate evergreen, temperate deciduous and boreal) and their corresponding 

ñsecondary forestsò. The model accounts separately for forest regrowth following agricultural 

abandonment and wood harvest, and this is what we refer to as ñsecondary forestò (Yang et al., 

2010).  

 The land conversions in the model are carried out based on the method described in 

Meiyappan and Jain (2012). We start with a map of potential natural vegetation at 0.5
o
 x 0.5

o
 

resolution, which is indicative of the land cover that would have existed if human activities were 

absent. We then advance in time (starting from 1765 to 2010), by superimposing the year-to-year 

cropland, pastureland, wood harvest and urban land maps in the same order of preference. We 

define rules, specific to each land disturbance activity (cropland, pastureland, wood harvest and 

urban land), for replacing natural vegetation. In general, following cropland and pastureland 

expansion, the natural vegetations present in a grid cell are removed proportional to its area and 

demand for cropland/pastureland. Upon abandonment (reduction in cropland/pastureland area 

between two consecutive years), the land recovers back to the dominant potential natural 



50 
 

vegetation in the grid cell. Wood is preferentially harvested from primary forest, and secondary 

(regrowing) forest is used when the extent of primary forest is less than the demand. Urban land 

expansion usually occurs at the expense of cropland abandonment and in other cases from 

natural vegetations. The resulting land cover maps for the period 2000 - 2005 are compared with 

remote sensing based land cover maps (500m resolution MODIS data - Friedl et al., 2010) 

spanning the same period. Discrepancies in forest area between satellite data and model 

estimates are used to accordingly adjust the land-disturbance activity specific rules to increase 

(or decrease) the proportions at which forest was cleared (or regrown) historically following 

expansion (or abandonment) of agricultural activity, such that rerunning the model with adjusted 

rules results in land cover maps whose forest distribution closely agrees with remote sensing 

observations for recent years. Thus, the three reconstructions start with a common potential 

natural vegetation map and end with a map whose forest distribution are consistent with satellite 

estimates, but the pathway they follow between the starting and ending point is constrained by 

the land-use data sets used. 

 Emissions of C due to LULUC are calculated as described in Jain and Yang (2005). In 

brief, upon removal of natural vegetation from a grid cell, a specified fraction of vegetation 

biomass is transferred to litter reservoirs, effectively representing plant material left on the 

ground following deforestation activities (Yang et al., 2009). The remaining vegetation materials 

are either burned to clear the land for agriculture, which releases C and N (in gaseous and/or 

mineral form) contained in the burned plant material; or is transferred as C and N to wood and/or 

fuel product reservoirs and subsequently released at three different rates depending on the 

assigned product categories.  

LULUC data 

 The three historical land-cover data reconstructions (ISAM-HYDE, ISAM-RF and 

ISAM-HH) were based on cropland and pastureland area change in the three updated historical 

land use change data sets: (1) HYDE 3.1 (Historical Database of the Global Environment) (Klein 

Goldewijk et al., 2011), (2) RF (Ramankutty and Foley,1999) including new pastureland 

estimates and updated cropland estimates based on and Ramankutty et al. (2008), and (3) 

Houghton and Hackler (2001) deforestation estimates updated in Houghton (2008) with revised 

deforestation rates from FAO (2005) respectively. The HYDE and RF data sets are both based on 
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FAOSTAT agricultural statistics including data on change in agricultural land area (FAO, 2009) 

which is available from 1960, making assumptions on the change in other land cover (e.g. forest) 

to meet agricultural demand. The Houghton (2008) data set is based primarily on FAO Forest 

Resource Assessment area change and biomass data (FAO, 2005) making assumptions about 

change in other land cover (e.g., croplands, pasture) to account for forest area change, supported 

by FAOSTAT data. A variety of other historical information is used to estimate land use 

transitions prior to the availability of FAO data in each data set. A common spatially explicit 

data set for wood harvest based on FAO data (Hurtt et al., 2011) and urban land extent (Klein 

Goldewijk et al., 2010) was applied to all three reconstructions. ISAM-HYDE, ISAM-RF and 

ISAM-HH estimates start from the year 1765 and extend until 2010, 2007 and 2005 respectively. 

All three reconstructions start with a common land-cover map during 1765 and follow different 

pathways as determined by the land-use data sets to attain forest area distributions close to 

satellite estimates of forests for recent years. The sum of non-forested land-cover types 

(herbaceous vegetation, cropland, pastureland and urban land) matches satellite estimates. 

However, there are discrepancies between the land-use data sets and satellite estimates in the 

extent of individual herbaceous land-cover types. 

Model Simulations Performed 

 The ISAM was initialized with an atmospheric [CO2] of 278 ppmv, representative of 

approximate conditions in the starting year (1765 AD) of the model simulation, to allow 

vegetation and soil C pools to reach an initial steady state. During the time period of 1765 - 

2010, net C exchanges between atmosphere and terrestrial ecosystems are calculated based on 

observed changes in climate (updated estimates based on Mitchell and Jones, 2005), atmospheric 

[CO2] (Meinshausen et al., 2010), wet and dry atmospheric N deposition rates (Galloway et al., 

2000), and three distinct historical reconstructions of LULUC as harmonized in Meiyappan and 

Jain (2012).  

Two separate model runs are carried out to calculate the contribution of LULUC to the 

terrestrial C fluxes (Table 3.1). In the first model run (A1), atmospheric [CO2], climate and N 

deposition rates are varied with time based on prescribed values and the LULUC is assumed to 

be zero over time. In the second model run (A2), atmospheric [CO2], climate, N deposition rates 

and LULUC are varied with time. The second model run (A2) was performed for each of the 
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three historical LULUC reconstruction used in this study. The emissions due to LULUC are 

estimated by subtracting C fluxes calculated in first model run (A1) from the second model run 

(A2). With this approach we captured the interactive effects of CO2, Climate and N limitation on 

LULUC emissions.  

We carried out two additional model runs (B1 and B2) to study the impact of excluding 

the interactive effects of N limitation on LULUC emissions (Table 3.1). Both experiments B1 

and B2 are similar to A1 and A2 respectively, but they did not include the effects of N limitation. 

Land is always assumed to have sufficient N for plant growth. Subtracting carbon fluxes 

calculated in experiment B1 from that of B2 provides an estimate of LULUC emissions that only 

includes the interactive effects of CO2 and climate. This (B2-B1) model experiment is analogous 

to the majority of other model approaches to calculating the LULUC flux in models that include 

only climate and CO2 effects (e.g. McGuire et al, 2001; Pongratz et al., 2009; Piao et al., 2009; 

van Minnen et al., 2009, Arora et al. 2010 non-interactive runs; Stocker et al. 2011). The 

difference between the two sets of experiments (A2 ï A1) and (B2 ï B1) is an indicator of the 

effect of additionally considering N cycle effects and its interactions with CO2 and climate on 

LULUC fluxes. We did not look at the effects of N on LULUC alone (ie excluding climate and 

CO2 effects) as the paper attempts the best quantification of LULUC including all possible 

drivers and processes, and to assess the possible uncertainty in LULUC estimates by failing to 

account for N effects.  

1) LULUC flux including N effect = A2 (ȹ climate, CO2, N, LULUC) ï A1 (ȹ climate, CO2, N) 

2) LULUC flux excluding N effect = B2 (ȹ climate, CO2, LULUC) ï B1 (ȹ climate, CO2) 

3) Effect of N on LULUC flux = (B2 ï B1) ï (A2 ï A1) 

3.4 Results  

Global net LULUC emissions based on different land cover reconstructions 

Large inter-annual variations in global net C emissions from LULUC are observed in 

the model runs based on each of the three data sets, for the period 1900 - 2010 (Figure 3.1). 

These variations are mainly induced by the effects of inter-annual variations in climate on 

LULUC fluxes. In particular, soil respiration, decomposition of slash and litter, and NPP in 
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growing vegetation are affected by changes in temperature and precipitation in both the runs 

subject to LULUC (A2 and B2) and those not (A1 and B1) (e.g. McGuire et al., 2001; Jain and 

Yang, 2005). Since the natural vegetation responds to climate drivers the same way in B1 and 

B2, the flux shown here (B2-B1) here reflects the combined effect of LULUC and climate 

variability (in addition to CO2 and N) on the land affected by LULUC only. 

From 1900 to 2005, the global cumulative net emissions from LULUC were 178, 160 and 

163 GtC for ISAM-HYDE, ISAM-RF and ISAM-HH respectively. The ISAM-HYDE estimated 

global total C emissions for the time period 1900 - 2010 were 180 GtC. (All data in this section 

are from model runs including the N dynamics unless otherwise stated). All three estimated 

emission trajectories show substantially different trends over the period 1900 to 1960, although 

all have a mean value of ~1.5 GtC/yr (Figure 3.1). The net emissions based on all three data sets 

peaked in the 1950ôs, with ISAM-HH reaching its peak slightly later than the other two data sets. 

This result from rapid deforestation due to expansion of agriculture in the tropics around the 

early 1950ôs followed by a rapid reduction in the rates of deforestation around the late 1950ôs 

and early 1960ôs, with less of a reduction based on ISAM-HH data. Emissions estimates based 

on ISAM-HH data are very different from those based on ISAM-RF and ISAM-HYDE in the 

1960ôs. Emissions over the last three decades then follow similar trends based on all three data 

sets; an increase from 1970 to 1990 and a decline since 1990. 

The mean decadal net emissions based on ISAM-HYDE data are higher during the 

1980ôs and lower during the 1990ôs and 2000ôs compared to other two data sets, which show 

similar emissions during the 1980ôs and 1990ôs (Table 3.2). Thus the decline in emissions from 

the 1980ôs to the 2000ôs is much more pronounced in ISAM-HYDE. The reasons can be found 

looking at the rate of conversion of land types in the underlying harmonized data sets (Figure 

3.2). ISAM-HYDE shows a sharp decrease in the expansion rates of both cropland and 

pastureland between 1980 and 2005 (Figure 3.2a-d), and a sharp decrease in deforested area 

(Figure 3.2e) which is offset to a lesser extent each decade by a declining expansion of the area 

of secondary forest regrowth (Figure 3.2f) (partly reforestation on abandoned agricultural land 

and partly conversion of ñnaturalò forests to secondary regrowth forests after wood harvest). In 

contrast, ISAM-RF and ISAM-HH data show an increase in conversion to cropland (Figure 3.2a, 

b) and a decrease in conversion of forests to pastures (Figure 3.2c). Both ISAM-RF and ISAM-
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HH show an increase in the expansion rate of secondary forest regrowth from the 1980ôs to the 

2000ôs partly offsetting the loss of primary forest area (Figure 3.2e, f).  

Emissions based on ISAM-HH data become higher than the other two estimates in 2000 

to 2005 (Figure 3.1 and Table 3.2) because the conversion of forests to croplands and pastures 

(Figure 3.2a, c), and hence the overall area of deforestation (Figure 3.2e) are higher. 

Regional differences in LULUC emissions 

There are substantial differences in regional estimates of LULUC emissions between the 

model results based on the different data sets (Table 3.2). Except for Tropical America, Eurasia 

and China, there is no consistent trend exhibited among the three estimates. These three regions 

show a generally decreasing trend between the 1980ôs to the end of the data set for all three data-

sets, with the decline being much more pronounced in ISAM-HYDE than in ISAM-RF and 

ISAM-HH.  

Land-use change emissions based on ISAM-HYDE have decreased substantially over the 

last three decades for the tropics (30% decline) and non-tropics (50%). In contrast, the estimated 

emissions based on ISAM-RF show very little change in the tropics and a smaller decrease in the 

non-tropics (30%) between 2000 to 2005 compared to both the 1980ôs and 1990ôs, which were 

very similar. ISAM-HH shows very little change in the tropics, and a small increase from the 

1980ôs to the 1990ôs then a similar decline again to the 2000ôs (2000 to 2005 average) in the 

non-tropics.  

Over the last three decades, net emission estimates based on ISAM-HH data are higher 

for tropical regions and lower for non-tropical regions compared to net emission estimates based 

on other two data sets (Table 3.2). This is because ISAM-HH data shows much higher 

deforestation rates for agricultural land in tropical regions (especially in Tropical America) 

(Figure 3.2a, c, e). In non-tropical regions, the ISAM-HH data set (based on forest statistics) has 

lower conversion of forests to croplands than the other two datasets, and assumes no clearing of 

forests for pastureland (forest clearing would have been assumed converted to cropland or 

secondary forests). The other two data sets (based on agricultural statistics), derived based on a 

rule-based approach to clear vegetation, have a fraction of pastureland expansion at the expense 

of forests (Meiyappan and Jain, 2012) (Figure 3.2c). Houghton (2008) (which forms the basis for 
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ISAM-HH) assumes that the expansion of pasture area in North America, China and Pacific 

Developed regions occurred in the 1950ôs, and therefore has negligible impact on C emissions 

for recent years. On the other hand, ISAM-HYDE and ISAM-RF indicate that in the non-tropics 

forest area was converted to pastures over the last three decades (Figure 3.2c).  

In the non-tropics, forest regrowth area is generally higher in ISAM-HYDE and ISAM-

RF than in ISAM-HH across all three periods (Figure 3.2f). Forest regrowth would be expected 

to have increased the C stocks in secondary forest ecosystems (Jain et al., 2009; Reay et al., 

2008; Shevliakova et al., 2009; Yang et al., 2010; Churkina et al., 2008) partially offsetting the 

higher emissions from forest to pasture/cropland conversion we see in ISAM-HYDE and ISAM-

RF than in ISAM-HH in the non-tropics. However, the net non-tropical emissions of ISAM-

HYDE and ISAM-RF remain higher than ISAM-HH. Part of the reason for this is that the 

regrowth is limited in the model due to N availability, and therefore the CO2 fertilization effect is 

constrained.  

Effects of including the N cycle 

Including the N cycle in the model resulted in higher net emissions compared to the 

model runs without the interactive N cycle (Table 3.3, numbers in brackets are runs without the 

N-cycle). These results indicate that failing to account for the effects of N dynamics may lead to 

an underestimate in LULUC emissions by around 40% globally across all three data sets. The 

effects were more pronounced in non-tropical regions, where simulations without the N cycle 

were lower by 61 to 76% across all three data sets, while in the tropics emissions were lower 

only by 7 to 9%.  

3.5 Discussion 

Comparison with Other Studies 

Our mean estimate of global net LULUC emission with N dynamics and wood harvest of 

1.68 GtC/yr (range across results 1.48 to 1.83 GtC/yr) for the 1990ôs is the highest compared to 

the other published estimates as shown in Table 3.3 (excluding Denman et al., 2007 which is a 

synthesis based on old estimates). Breaking it down regionally, where other published estimates 

were available for comparison, our net emissions are similar in the tropics (mean 0.78 GtC/yr) 
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but much higher in the non-tropics (0.90 GtC/yr). While other published results find that tropical 

emissions are higher than non-tropical emissions, our estimates based on two data sets (ISAM-

RF and ISAM-HYDE) with N dynamics show the opposite trend, i.e. higher LULUC net 

emissions for non-tropics than tropics. Our modeling results indicate that without considering the 

N dynamics effect, the estimated non-tropical LULUC emissions for ISAM-RF, ISAM-HYDE 

and ISAM-HH cases are underestimated by 0.66, 0.58 and 0.53 GtC/yr respectively for the 

1990ôs, emphasizing the importance of including N dynamics in estimating LULUC emissions. 

The range of non-tropical emission estimates when N dynamics is excluded in our study (0.17 - 

0.43 GtC/yr) are not only well within the range of values of other published studies, but also 

lower than estimates for the tropics.   

N is usually not considered as a limiting nutrient in the tropical regions, because warmer 

and wetter tropical climate enhance N mineralization in soils, and biological N fixation is high. 

Therefore, it is not surprising that ISAM estimated tropical emission with (0.56 ï 1.13 GtC/yr) 

and without (0.51 - 1.04 GtC/yr) N dynamics are approximately the same as eachother (Table 

3.3), and are well within other model estimated range of values (0.0 - 1.44 Gt/C).  

It is interesting to note that Houghtonôs own book-keeping model estimates (Houghton, 

2010) are the highest for the tropics and the lowest for the non-tropics as compared to other 

model estimates (Table 3.3). This is, unsurprisingly, similar to the results we found using the 

ISAM-HH data set compared to the other data sets within our modeling study, as it is driven by 

the underlying data assumptions in the Houghton data set based on FAO FRA forest data (FAO, 

2005). The FAO data indicate a net loss of total forest area in the tropics, and vice-versa in the 

non-tropics (Houghton, 2010) for the last three decades. In contrast, other data sets (HYDE or 

RF) used by other modeling studies indicate a decrease in forest area for both tropics and non-

tropics (This cannot be directly interpreted from the data in Figure 3.2 as some of the area of 

primary deforestation goes to secondary forests after harvesting and some does not, likewise only 

a portion of secondary forest regrowth happens on deforested land, some happens on agricultural 

land, so the numbers cannot be directly summed to get net change in forest area). Note that the 

latest FAO FRA (FAO, 2010) substantially revised down deforestation rates in the tropics.  

The land cover data may not be the full reasons for discrepancies. Houghton (2010) is 

even higher than our ISAM-HH results in the tropics and even lower in the non-tropics. Thus, it 
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might also be partly due to the differences in the modeling framework used by Houghton (2010) 

and other studies shown in Table 3.3. Houghton (2010) estimates are based on book-keeping 

model that tracks areas of land conversions and calculates subsequent changes in C pools using 

standard growth and decay curves derived from actual field inventory data from the literature 

that are unchanging over the calculation period (representing either recent or historic climate and 

environmental conditions) and averaged over a large region or vegetation type. Most other 

modeling studies, with the exceptions of satellite based tropical region estimates of DeFries et al. 

(2002) and Achard et al. (2004), model soil and vegetation processes and how they are affected 

by climate, atmospheric CO2, and, in this study, N drivers that vary spatially and possibly 

temporally. A sensitivity analysis based on process-based model and book-keeping model 

approaches suggests that book-keeping model estimated LULUC emissions were about 40% 

higher than the process based modeling approach, due primarily to higher soil carbon emissions 

assumed to be 25% soil carbon loss following land use change (Reick et al., 2010).  

Most process based studies, including this study, use historical transient CO2 and climate 

as an external driving force and run the model with and without land use and derive the LULUC 

emissions as the difference (e.g. McGuire et al., 2001; Pongratz et al., 2009 ñLULUC+CO2ò; van 

Minnen et al., 2009; Piao et al., 2009; Stocker et al., 2011). Shevliakova et al. (2009) ran with 

present climate and CO2 in the both the with- and without-LULUC simulations.   

The LULUC past emissions not only affect the ñmanagedò vegetation that is subject to 

LULUC, but also the ñnaturalò or ñprimaryò vegetation. This has been referred to as the 

ñfeedback fluxô (Strassman et al., 2008) or the ñcoupling fluxò (Pongratz et al., 2009). The 

feedback flux on natural vegetation is typically to be considered part of the ñresidual terrestrial 

fluxò as it is an indirect effect of human activity and not considered as part of net LULUC 

emissions. In the case above where LULUC emission are derived by the difference between the 

no-LULUC case and with-LULUC cases, the effects of past LULUC emissions on the natural 

vegetation are factored out, only the past LULUC effects on the vegetation that is subject to 

LULUC is included. However some coupled climate-carbon cycle model studies such as Arora 

and Boer (2010) include the effects of LULUC emissions on natural vegetation which is why 

their flux of 0.25 - 0.84 GtC/yr in the 1990ôs based on different data sets are much lower than 

other estimates, including our own. When they apply the same approach as we use here, their 
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estimated emissions based on RF data increase from 0.71 GtC/yr (their Fig 3.10a, thin orange 

line) to 1.06 GtC/yr (their Fig 3.10a, thick orange line) (pers. comm. data supplied by Arora for 

analysis). The interactive effects of LULUC on atmospheric [CO2] merit further investigation, 

but are beyond the scope of this study.  

Our modeled LULUC emissions for the 2000ôs vary between 1.2 - 1.7 GtC/yr (Table 

3.2), consistent with, but at the high end of most recent estimated range across a number of 

published studies of 0.4 - 1.8 GtC/yr (Houghton et al., 2012).  

Uncertainty in LULUC Emissions Estimates 

Our modeled estimates give an indication of uncertainty in LULUC emissions due to the 

choice of data set. Estimated ranges across the three data sets for 1980ôs, 1990ôs and 2000ôs 

respectively were ±0.26 GtC/yr, ±0.18 GtC/yr and ±0.21 GtC/yr. The estimated uncertainty due 

to data set variability is much lower than other uncertainty estimates (see below) partly reflecting 

more accurate and revised land-use data sets applied in a globally consistent methodology to 

produce historical LULUC estimates (Meiyappan and Jain, 2012) but also as it does not account 

for uncertainty in other data, the model approach or implementation.  

Our results further indicate a large uncertainty due to the missing process of the N cycle 

in other estimates. Failure to account for the N cycle may underestimate net C flux due to 

LULUC by 0.1 GtC/yr in the tropics, 0.6 GtC/yr in the non-tropics and 0.7 GtC/yr globally 

(mean across land cover data sets).  

A recent meta-analysis study by a range of experts for the Global Carbon Project 

(Houghton et al., 2012), estimates the total errors resulting from data related uncertainty and 

incomplete understanding of all the process to be in the order of about ±0.5 GtC/yr based on 

expert judgment, drawing on the range across many published model studies, and studies that 

specifically looked at uncertainty due to data or modeling approaches. Previous publications for 

the Houghton book-keeping model approach gave an uncertainty estimate of ±0.7 GtC/yr 

(Houghton, 2010), that have since been revised down to ±0.5 GtC/yr (Houghton pers comm). 

The most recent IPCC estimated uncertainty of Ñ1.1 GtC/yr for 1990ôs (Denman et al. 2007) can 

now be considered too high. The higher end based on Houghton (2003) was revised downwards 

due to the reduction in the deforestation estimates for tropical regions in subsequent FAO FRA 
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(FAO 2005, 2010) brought about by integration of satellite-based estimates (e.g. Nepstad et al., 

2009; Hansen et al., 2009). The lower end of the range was based on DeFries et al. (2002) is an 

underestimate, as it is based on satellite measurements for three tropical regions, and does not 

account for legacy emissions deforestation rates prior to the period of analysis (1980ôs and 

1990ôs) (Ramankutty et al., 2007). 

Differences in Land Processes Included 

In our study, secondary forest regrowth only occurs as a result of wood harvest and 

agricultural abandonment on land that was originally covered by forests (i.e. a reduction of 

agricultural area in a grid cell will regrow forest). In some countries or regions, for example 

North America Europe, Japan, China and India (Kenji, 2000; Merker et al., 2004; FAO, 2005; 

FAO, 2010), there are active programs of afforestation and reforestation. These may not be 

captured by the data sets of change in agricultural and pasture areas, particularly if the forests are 

established on previously grassland areas, or if they shift agriculture to grassland areas so the 

agricultural area does not decline. Hence, our study may be underestimating the forest area in 

some regions and hence the C uptake by the afforested land. 

This study does not include the effects of fire suppression and woody encroachment, 

which are suggested to contribute to regional C sink (e.g. in the USA, see Pacala et al., 2001). 

This is because the effects of these processes have not yet been well defined due to lack of 

comprehensive data (Denman et al., 2007).  

C emissions due to the common practice of shifting cultivation in the tropics (clearing 

forest often by fire for agriculture then abandoning to regrowth after a number of years) are 

estimated to have a significant impact on historical LULUC emissions (Hurtt et al., 2006, 2011). 

This creates a mosaic of cropped fields often with trees and fallows intermixed with secondary 

and mature forests and cause some loss of ecosystem C (Houghton and Hackler, 2006). We did 

not specifically model the effects of shifting cultivation due to huge uncertainties in magnitude 

and spatial distribution, and as some of these effects would be captured in the data sets of 

changing forest or agricultural area we already used (Hurtt et al., 2006, 2011).  

Natural disturbances such as fire, pests, disease, drought, wind, snow, ice, and floods 

affect 104 Mha of forest on average each year (FAO, 2006), with local- to national-scale 
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ecological significance (e.g. Giglio et al., 2010; van der Werf et al., 2010; also see Lambin et al., 

2003 and Foley et al., 2003). Our study has not considered emissions due natural disturbances 

because it is not human induced LULUC, and in any case it is typically assumed that disturbance 

is followed by regrowth and the net effects are minimal (unless the land is subsequently 

converted to agricultural land). 

A key missing processes is the decomposition of soil C following drainage of tropical 

peatlands (Ballhorn et al., 2009). According to Hooijer et al. (2010), draining and burning of 

peatlands in Southeast Asia are thought to add another 0.3 GtC yr
ī1

 to land-use emissions.  

Summary and implications of results for climate modeling and climate policy 

Emissions of CO2 from LULUC constitute a significant portion of global emissions, and 

therefore strongly affect global climate. Modeling them correctly has implications for global 

climate policy. The estimated cumulative LULUC emissions over the period 1900 - 2010 based 

on ISAM-HYDE data are ~180 GtC, which are ~33% of total C emissions (345 GtC from 

burning fossil fuels - Friedlingstein et al., 2010). The contribution of LULUC to global 

anthropogenic C emissions (land-use plus fossil fuel) in 1990ôs and 2000ôs were ~18 - 22% and 

14 - 17% respectively (using fossil fuel emissions as in Le Quéré et al., 2012) for our modeled 

results across three underlying data sets and including the N cycle.  

Our estimated net global emissions from LULUC (mean and range) across three data sets 

are 1.88 (1.7 to 2.21) GtC/yr for the 1980ôs, 1.66 (1.48 to 1.83) GtC/yr for the 1990ôs, and 1.44 

(1.22 to 1.65) for the 2000ôs (Table 3.2). Our estimates are higher than other published estimates 

that range from 0.80 to 1.5 GtC/yr for the 1990ôs (Table 3.3: Achard et al., 2004; Arora and 

Boer, 2010; DeFries et al., 2002; Houghton, 2010; Piao et al., 2009; Pongratz et al., 2009; 

Stocker et al., 2011; Strassmann et al., 2008; Shevliakova et al., 2009; Van Minnen et al., 2009; 

Yang et al., 2010; Kato et al., 2012) and 1.1 GtC/yr for the 2000ôs (Houghton et al., 2012, 

Friedlingstein et al., 2010). If LULUC emissions are higher than assessed, it means fossil fuel 

emissions would have to be even lower to meet the same mitigation target. 

Our results are higher than other published estimates because they include the effects of 

N limitation on regrowth of forests following wood harvest and agricultural abandonment. This 

effect is particularly noticeable in the cooler non-tropics where N removal through harvest or 
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burning is not compensated by N deposition or N mineralization. The estimated LULUC 

emissions for the tropics are 0.79Ñ0.25 for the 1980ôs, 0.78Ñ0.29 for the 1990ôs and 0.71Ñ0.33 

GtC/yr for the 2000ôs, and for the non-tropics regions are 1.08±0.52, 0.90±0.19 and 0.69±0.12 

GtC/yr for the three decades (Table 3.2). Not only are our results much higher in the non-tropics 

than other results (Table 3.3), but for two of the data sets they are higher in the non-tropics than 

in the tropics. This is because the estimated non-tropical LULUC emissions with N dynamics 

considered are 0.53 - 0.66 GtC/yr higher than without N dynamics for the 1990ôs in the non-

tropics and 0.62 - 0.72 GtC/yr higher globally. Without considering the N cycle, our model 

results of 0.85 - 1.2 GtC/yr globally, 0.51 - 1.04 GtC/yr in the tropics and 0.17 - 0.43 GtC/yr in 

the non-tropics in the 1990ôs across the three data sets are similar to other published studies 

(Table 3.3). Our model results indicate that failing to account for the N cycle underestimates by 

about 40% globally (0.66 GtC/yr), 10% in the tropics (0.07 GtC/yr) and 70% in the non-tropics 

(0.59 GtC/yr).  

Many inventory studies in both managed and natural forests find higher sinks than in the 

past and attribute this to the effects of changing climate and [CO2] (Luyssaert et al., 2008; Lewis 

et al., 2009; Phillips et al., 2008; Pan et al., 2011). Our results are not in conflict with this. 

Climate and CO2 still enhance uptake in northern re-growth forests, but the effects are limited 

when N removal due to LULUC is considered. Since the total net flux of CO2 between the land 

and atmosphere is known from atmospheric measurements, higher emissions from land under 

LULUC in fact imply a greater sink in land not experiencing LULUC and are therefore 

consistent with inventories finding greater sinks in unmanaged forests. The total net flux the 

atmosphere ñseesò from the land is the same; in that sense our results do not imply different 

climate impacts. But our results do have implications for modeling of anthropogenic versus 

natural land fluxes (both natural and anthropogenic sources and sinks are underestimated without 

the N cycle), and thus for climate policy around estimating human-induced emissions and 

mitigation potential on the land. 

We evaluate the uncertainties in LULUC emissions estimates resulting from uncertainties 

in determining land-cover change using three historical LULUC reconstructions based on our 

best estaitmes of LULUC that include not only climate and CO2 but also N. Over the period 1900 

- 1970, our model results for the global LULUC emissions based on three different LULUC 
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reconstructions exhibit substantially different trends (Figure 3.1). The global total emissions are 

very similar thereafter, with emissions increasing until about 1990 and then declining. 

Uncertainty in LULUC emissions due to the underlying data set constitutes about ±0.2 GtC/yr 

over the period 1980 to 2009.  

While the three LULUC estimates show reasonably good agreement at the global scale, 

there are significant disagreements between them at the regional scale (Table 3.2). Regional 

discrepancies in location of CO2 emissions are irrelevant to the global climate impacts of CO2 as 

it is well mixed gas in the atmosphere. However they indicate a much larger uncertainty still 

exists in underlying land cover data than is implied by looking at global decadal averages and 

this uncertainty may affect the overall amount of global LULUC emissions and thus climate. The 

regional differences also have implications for national-level greenhouse gas reporting and 

accounting under the UNFCCC and Kyoto Protocol, and for assessing future LULUC mitigation 

potential. Therefore, the results presented here suggest that the uncertainty in regional LULUC 

data need to be reduced in order to improve climate change projections. 

Regional differences in forest cover will affect regional climate through biophysical 

properties such as albedo, surface roughness, heat transfer and water recycling: for example 

afforestation in mid to high-latitudes reduces albedo and has a warming affect that runs counter 

to the cooling effect of CO2 uptake (e.g. Brovkin et al., 2006; Findell et al., 2007; Kvalevag et 

al., 2010; Pitman et al., 2009; Pongratz et al., 2010). However, assessing the implications of 

regional data differences on biophysical climate effects is beyond the scope of this study.  

Ongoing improvements in satellite data and interpretation for measuring not only changes 

in land cover, but also land management (e.g shifting cultivation selective logging) and biomass 

density will be critical in reducing uncertainties. Reconciling and improving data sets produced 

from different sources (e.g. FAO forest assessment and FAO agricultural assessments), to 

provide more information about land-use transitions is also expected to further reduce 

uncertainties.  
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3.6 Tables 

Table 3.1 Design of the Simulation Experiments. Tick mark (V) indicates the environmental 

factor was varied with time. Cross mark (U) indicates the environmental factor was held constant 

at initial value. Inclusion of N deposition is irrelevant when N dynamics is inactive in the model. 

 

Experiment CO2 Climate N 

Deposition 

LCLUC  N 

Dynamics 

A1 V V V U Active 

A2 V V V V Active 

B1 V V - U Inactive 

B2 V V - V Inactive 
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Table 3.2 Regional breakdown of decadal mean net LULUC emissions (GtC/yr) for the 1980ôs, 1990ôs and 2000ôs based on ISAM-

HYDE, ISAM-RF, and ISAM-HH data sets.  

1
Average for the period 2000-2009 

2
Average for the period 2000-2007 

3
Average for the period 2000-2005 

 

 

 

 

Region/Global 

1980ôs 1990ôs 2000ôs 

ISAM-

HYDE 

ISAM-

RF 

ISAM-

HH 

Mean & 

Range 

 

ISAM-

HYDE 

ISAM-

RF 

ISAM-

HH 

Mean & 

Range 

 

ISAM-

HYDE
1 

ISAM-

RF2 

ISAM-

HH3 

Mean & 

Range 

 

Tropical 

America 
0.26 0.33 0.59 0.39±0.17 0.20 0.34 0.64 0.39±0.22 0.14 0.24 0.46 

0.28±0.16 

Tropical Africa 0.01 -0.03 0.11 0.04±0.07 0.04 -0.03 0.11 0.04±0.07 0.03 -0.04 0.09 0.03±0.06 

Tropical Asia 0.34 0.35 0.40 0.37±0.03 0.31 0.34 0.38 0.34±0.03 0.25 0.43 0.53 0.41±0.14 

Tropics Total 0.61 0.65 1.11 0.79±0.25 0.56 0.65 1.13 0.78±0.29 0.43 0.63 1.08 0.71±0.33 

             

North America 0.30 0.28 0.19 0.25±0.06 0.27 0.28 0.21 0.25±0.03 0.25 0.23 0.28 0.25±0.03 

Eurasia 0.71 0.60 0.29 0.53±0.21 0.47 0.62 0.34 0.48±0.14 0.39 0.46 0.22 0.36±0.12 

China 0.59 0.15 0.08 0.27±0.26 0.19 0.14 0.07 0.13±0.06 0.12 0.09 0.06 0.09±0.03 

Oceania 0.00 0.03 0.02 0.02±0.01 0.00 0.05 0.08 0.04±0.04 0.02 -0.08 0.01 -0.02±0.5 

Non-Tropics 

Total 
1.61 1.06 0.56 1.08±0.52 0.92 1.09 0.70 0.90±0.19 0.80 0.69 0.57 0.69±0.12 

             

Global 2.21 1.70 1.72 1.88±0.26 1.48 1.74 1.83 1.68±0.18 1.22 1.33 1.65 1.40±0.21 
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Table 3.3 Comparison of ISAM estimated LULUC emissions for 1990ôs with other model and 

data studies. The decade 1990 - 1999 was chosen for comparison, as most of the estimates in 

literature covered this time period. Estimates that do not account for N dynamics are provided in 

brackets. 

Study LULUC Data Tropics Non-Tropics Global 

This Study: ISAM-RF 0.65  

(0.59) 

1.09  

(0.43) 

1.74  

(1.02) 

 ISAM-HYDE 0.56  

(0.51) 

0.92  

(0.34) 

1.48  

(0.85) 

 ISAM-HH 1.13  

(1.04) 

0.70 

(0.17) 

1.83  

(1.21) 

 Range 0.56 ï 1.13 

(0.51 ï 1.04) 

0.70 ï 1.09 

(0.17 ï 0.43) 

1.48 ï 1.83 

(0.85 ï 1.21) 

Other studies:     

Strassmann et al. (2008) HYDE (1.02)  (1.08) 

van Minnen et al. (2009)
 
 HYDE (0.70) (0.60) (1.3) 

Arora and Boer (2010)
1
 RF   1.06 

Piao et al. (2011)
 
 HYDE (0.74) (0.48) (1.22) 

Yang et al. (2010) HYDE/RF   1.44 

(1.03) 

Houghton (2010)
 
 Houghton  (1.44) (0.06) (1.50) 

Pongratz et al. (2009)
 2 

 Pongratz 
 

  (1.30) 

Shevliakova et al. (2009)
 
 RF+HYDE 

pastures 

  (1.31) 

Shevliakova et al. (2009)
 
 HYDE   (1.07) 

Kato et al. (2012)
 
 Hurtt (HYDE)   (1.00 -1.28) 

Stocker et al. (2011)    (0.93) 

DeFries et al. (2002)
 3
 AVHRR (0.50-1.50)   

Achard et al. (2004)
4
 Landsat 0.60 -1.10   

Denman et al. (2007) 

range
5 

   (0.50 ï 2.70) 

Houghton et al. (2012) 

range
6 

   (0.75 ï 1.50) 

Other Studies Range
7
  (0.50-1.44) (0.06 -0.48) (0.80 ï 1.50)

 
 

 

1
This result is based on the data underlying the thick orange line figure 3.10a of Arora and Boer 

(2010), data supplied by Arora (pers comm). Their study represents the approach most similar to 

ours for calculating the LULUC flux (see text for details). 
2
 Underlying data set described in Pongratz et al. (2008) is based on RF cropland and RF pasture 

with rates of pasture changes from HYDE. Pastureland was preferential allocated on natural 

grassland. 
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Table 3.3 (Cont.) 

 

 
3
Calculated using the Houghton and Hackler (2003) book-keeping in combination of AVHHR 

satellite data for LULUC. 
4
Calculated using the biomass and biomass change of tropical forest estimates of FAO (FAO, 

1997) and Landsat data for Land-Cover Change. These estimates may have implicitly accounted 

for the N dynamics effect.  
5
Denman et al. (2007) is not an estimate in itself, but is a synthesis range across two estimates 

including uncertainty, DeFries et al. (2002) and Houghton (2003), that has since been updated 

and revised downwards (Houghton, 2010). 
6
Houghton et al. (2012) give the mean and standard deviation across thirteen different model 

estimates of LULUC as 1.12 ± 0.25 GtC/yr, full range as 0.75 - 1.50 GtC/yr. Their estimate of 

uncertainty in mean LULUC emissions is about ± 0.5 GtC/yr,  
7
The range values given here are based on the published studies included in this table and do not 

account for the ranges in Denman et al. (2007) and Houghton et al. (2012) as these are 

themselves ranges across other published estimates. The estimates of Denman et al. (2007) are 

now out of date for the reasons discussed in footnote 5.  
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3.7 Figures 

Figure 3.1 ISAM estimated global land-use emissions for the period 1900-2010 (GtC/yr) based 

on ISAM-HYDE, ISAM-RF and ISAM-HH data sets. Estimates based on ISAM-RF and ISAM-

HH estimates extend until year 2007 and 2005 respectively. 
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Figure 3.2 Average rate of conversions in the tropics and non-tropics from (a) forest to crop, (b) 

herbaceous to crop, (c) forest to pastureland, (d) herbaceous to pasturelands, and (e) deforested 

(includes forest area loss due to wood harvest) and (f) reforested areas due to expansion and 

abandonment of cropland, pastureland and wood harvest decadally. 
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