FAR-INFRINGEMENT SPECTROSCOPY OF SYN-VINYL ALCOHOL

PAUL RASTON, Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA; HAYLEY BUNN, School of Chemistry and Physics, The University of Adelaide, Adelaide, South Australia, Australia.

Vinyl alcohol has been extensively studied in both the microwavea,b and mid-IRc,d spectral regions, where 9 out of 15 vibrational modes have been identified. Here we present the first far-IR spectrum of vinyl alcohol, collected below 700 cm-1 at the Australian Synchrotron. The high resolution (0.001 cm-1) spectrum reveals the ν_{11} and ν_{15} fundamentals of syn-vinyl alcohol at 489 cm-1 and 407 cm-1, in addition to two hot bands of the ν_{15} mode at 369 cm-1 and 323 cm-1. High J transitions in the R-branch of the ν_{15} band were found to be perturbed by an a-axis Coriolis interaction with the nearby ν_{11} state. The ν_{15} torsional mode of syn-vinyl alcohol was fit using a Watson’s A-reduced Hamiltonian to yield rotational, centrifugal distortion, and Coriolis coupling parameters.

aS. Saito, Chem. Phys. Lett. 42, 3 (1976)
bM. Rodler et al., J. Am. Chem. Soc. 106, 4029 (1984)
cY. Koga et al., J. Mol. Spec. 145, 315 (1991)
dD-L. Joo et al., J. Mol. Spec. 197, 68 (1999)