Energetically Feasible Proton Permutations in the Photodissociation of H$_5^+$

Zhou Lin
Massachusetts Institute of Technology

Anne B. McCoy
University of Washington

6/20/2016

MF04 71st International Symposium on Molecular Spectroscopy
\[
H_2 + H_3^+ \leftrightarrow [H_2 - H - H_2]^+ \leftrightarrow H_3^+ + H_2
\]

- Large amplitude motions in \(H_5^+ ([H_2 - H - H_2]^+)\) allows protons to permute \(\rightarrow\) open different pathways for the proton transfer reaction.\[1,2,3,4\]

Photodissociation of $\text{H}_5^+ : \text{Two Steps.}$

$$[\text{H}_2 - \text{H} - \text{H}_2]^+ \xrightarrow{+h\nu} ([\text{H}_2 - \text{H} - \text{H}_2]^+)^* \xrightarrow{\text{dissociation}} \text{H}_3^+ + \text{H}_2$$

Questions to Ask

- Feasible proton permutations?
- Symmetry-allowed combinations of states?
- Electric-dipole selection rules?
- Correlation rules?
Questions to Ask

- Feasible proton permutations?
- Symmetry-allowed combinations of states?
- Electric-dipole selection rules?
- Correlation rules?
Feasible Permutations for \([H_2 - H - H_2]^+\)

- Torsion and proton transfer are allowed.\(^{[1,2,3]}\)

\[P = (12), (34), (12)(34) \]

\[\varepsilon_0^{\text{tor}} \approx \frac{1}{2} \Delta_0^{\text{tor}} \]

\[V(\phi) \]

Feasible Permutations for $[\text{H}_2 - \text{H} - \text{H}_2]^+$

- Torsion and proton transfer are allowed.\cite{Lin,McCoy1,McCoy2,McCoy3}

\[P = (13)(24), (14)(23) \]
\[\text{or } P = (1324), (1423) \]
\[\varepsilon_0^{\text{pt}} > \Delta_0^{\text{pt}} \]

Feasible Permutations for $[\text{H}_2 - \text{H} - \text{H}_2]^+$

- Torsion and proton transfer are allowed.

\[
\begin{bmatrix}
E \\
(12) \\
(34) \\
(12)(34) \\
(13)(24) \\
(14)(23) \\
(1324) \\
(1423)
\end{bmatrix}
\otimes
\begin{bmatrix}
E \\
E^*
\end{bmatrix}
\rightarrow \mathcal{G}_{16}
\]

Feasible Permutations for $\text{H}_3^+ + \text{H}_2$

- Permutations are allowed only within each fragment, H_2 or H_3^+.

$$\left[P(\text{H}_3^+) \right] \otimes \left[P(\text{H}_2) \right] \otimes \begin{bmatrix} E \\ E^* \end{bmatrix} \rightarrow G_{24}$$

$$3! \times 2! \times 2 = 24$$

Questions to Ask

- Feasible proton permutations?
- Symmetry-allowed combinations of states?
- Electric-dipole selection rules?
- Correlation rules?

\[G_{16} + \hbar \nu \]

\[G_{24} \]

\[V(R_{\text{diss}}) \text{ (cm}^{-1}) \]

\[R_{\text{diss}} \text{ (Å)} \]
Questions to Ask

- Feasible proton permutations?
- Symmetry-allowed combinations of states?
- Electric-dipole selection rules?
- Correlation rules?
Rotation/Torsion for \([H_2 - H - H_2]^+\)

- \([H_2 - H - H_2]^+\) includes three coupled rotors.\(^{[1,2]}\)

\[
\begin{align*}
\chi &= \frac{\phi_1 + \phi_2}{2} \\
\gamma &= \frac{\phi_2 - \phi_1}{2} \\
\chi_5 &= \phi_5 - \chi
\end{align*}
\]

- \(\chi_5\) includes \(\phi_5\) plus \(\chi\)
- \(\gamma\) includes \(\phi_2\) minus \(\phi_1\)
- \(\chi_5\) includes \(\phi_5\) minus \(\chi\)

\[
\begin{pmatrix}
\phi_1 \\
\phi_2 \\
\phi_5 \\
\chi \\
\gamma \\
\chi_5
\end{pmatrix}
\]
\(\rightarrow\)
\[
\begin{pmatrix}
\phi_1 + 2\pi \\
\phi_2 \\
\phi_5 \\
\chi + \pi \\
\gamma + \pi \\
\chi_5 + \pi
\end{pmatrix}
\]

\[\text{[1] Merer & Watson, } J. \text{ Mole. Spec., 1973, 47, 499} \]
\[\text{[2] Lin, } J. \text{ Mole. Spec., 2016, 324, 36.}\]
Rotation/Torsion for $[\text{H}_2 - \text{H} - \text{H}_2]^+$

- Rotation/torsion wave function is invariant under E'.[1,2]

\[K^{pK}(\chi) \propto |J, K\rangle + p_K(-1)^{J+K}|J, -K\rangle \]
\[N^p_{\gamma}(\gamma) \propto |N_\gamma\rangle + p_\gamma|-N_\gamma\rangle \]
\[K^p_{55}(\chi_5) \propto |K_5\rangle + p_5|-K_5\rangle \]
\[K^{pK} \times N^p_{\gamma} \times K^{p5}_{55} \rightarrow \text{itself} \]
\[G_{16} \otimes \begin{bmatrix} E \\ E' \end{bmatrix} \rightarrow G_{16}^{(2)} \]

single-valued $\Gamma_S = A/B_{1,2}^+(g,u)$, E^\pm
double-valued $\Gamma_D = E_{1,2,g,u}$

\[\Gamma_S \otimes \Gamma_S = \Gamma_S \]
\[\Gamma_S \otimes \Gamma_D = \Gamma_D \]
\[\Gamma_D \otimes \Gamma_D = \Gamma_S \]

Rotation/Torsion for $[\text{H}_2 - \text{H} - \text{H}_2]^+$

- Total rotational/torsional symmetry is single-valued.$^{[1,2]}$

![Diagram](image)

<table>
<thead>
<tr>
<th>Γ</th>
<th>K_{PK}^{pK}</th>
<th>N_{γ}^{pK}</th>
<th>K_{5}^{p5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{1g}^+</td>
<td>$0^+, 4^+, \ldots$</td>
<td>$0^+, 4^+, \ldots$</td>
<td>$0^+, 4^+, \ldots$</td>
</tr>
<tr>
<td>A_{1u}^-</td>
<td>$-$</td>
<td>$2^-, 6^-, \ldots$</td>
<td>$-$</td>
</tr>
<tr>
<td>A_{2g}^-</td>
<td>$0^-, 4^-, \ldots$</td>
<td>$-$</td>
<td>$4^-, 8^-, \ldots$</td>
</tr>
<tr>
<td>B_{1g}^+</td>
<td>$2^+, 6^+, \ldots$</td>
<td>$2^+, 6^+, \ldots$</td>
<td>$2^+, 6^+, \ldots$</td>
</tr>
<tr>
<td>B_{1u}^-</td>
<td>$-$</td>
<td>$4^-, 8^-, \ldots$</td>
<td>$-$</td>
</tr>
<tr>
<td>B_{2g}^-</td>
<td>$2^-, 6^-, \ldots$</td>
<td>$-$</td>
<td>$2^-, 6^-, \ldots$</td>
</tr>
<tr>
<td>E_1</td>
<td>$-$</td>
<td>$1^\pm, 3^\pm, \ldots$</td>
<td>$-$</td>
</tr>
<tr>
<td>E_g</td>
<td>$1^\pm, 3^\pm, \ldots$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>E_{u}</td>
<td>$-$</td>
<td>$-$</td>
<td>$1^\pm, 3^\pm, \ldots$</td>
</tr>
</tbody>
</table>

$^{[1]}$ Merer & Watson, *J. Mole. Spec.*, 1973, 47, 499
Questions to Ask

• Feasible proton permutations?
• Symmetry-allowed combinations of states?
• Electric-dipole selection rules?
• Correlation rules?

\[
|v, J, K, I\rangle \\
|v', J', K', I'\rangle \\
|v'', J'', K'', I''\rangle
\]
Questions to Ask

• Feasible proton permutations?
• Symmetry-allowed combinations of states?
• Electric-dipole selection rules?
• Correlation rules?

\[G_{16}^{(2)} \]

\[\psi, J', K', I' \]

\[\psi'', J'', K'', I'' \]

\[\mu \]

\[Z \]

\[G_{24} \]

\[V(R_{diss}) \ (\text{cm}^{-1}) \]

\[R_{diss} \ (\text{Å}) \]
Dipole Selection Rules for \([H_2 - H - H_2]^+\)

- An electric dipole allowed transition requires\(^1,^2\)
 \[
 \hat{\mu}_T = \langle \Psi_{rv}' | \hat{\mu}_Z | \Psi_{rv}'' \rangle \hat{e}_Z \neq 0
 \]
- Decompose into body-fixed axes
 \[
 \hat{\mu}_T = \sum_{\alpha=x,y,z} \langle \Psi_r' | \hat{e}_\alpha \cdot \hat{e}_Z | \Psi_r'' \rangle \langle \Psi_t' | \langle \Psi_5' | \langle \Psi_v' | \hat{\mu}_\alpha | \Psi_v'' \rangle | \Psi_5'' \rangle | \Psi_t'' \rangle \hat{e}_\alpha
 \]

\[
\begin{align*}
\Gamma(\hat{e}_\alpha \cdot \hat{e}_Z) & \subseteq \Gamma_r' \otimes \Gamma_r'' \\
\Gamma(\hat{\mu}_\alpha) & \subseteq (\Gamma_v' \otimes \Gamma_v'') \otimes (\Gamma_5' \otimes \Gamma_5'') \otimes (\Gamma_t' \otimes \Gamma_t'')
\end{align*}
\]

- Parallel transition \((\alpha = z)\)
 \[
 \Gamma(\hat{e}_Z \cdot \hat{e}_Z) = A_{2g}^-, \Gamma(\hat{\mu}_Z) = B_{2u}^+ \rightarrow K, N_\gamma + K_5 \ o/e \ to \ o/e
 \]
- Perpendicular transition \((\alpha = x, y)\)
 \[
 \Gamma(\hat{e}_{x,y} \cdot \hat{e}_Z) = E_g, \Gamma(\hat{\mu}_{x,y}) = E_u \rightarrow K, N_\gamma + K_5 \ o/e \ to \ e/o
 \]

Questions to Ask

- Feasible proton permutations?
- Symmetry-allowed combinations of states?
- Electric-dipole selection rules?
- Correlation rules?

\[
\begin{align*}
G_{16}^{(2)} &\neq 0 \\
G_{24} &\neq 0
\end{align*}
\]
Questions to Ask

- Feasible proton permutations?
- Symmetry-allowed combinations of states?
- Electric-dipole selection rules?
- Correlation rules?
Correlation Rules of Wave Functions

• Correlation of the wave functions requires\(^1\),\(^2\),\(^3\)

\[
\langle \Psi \left(\mathcal{G}^{(2)}_{16} \right) | P | \Psi \left(\mathcal{G}_{24} \right) \rangle \neq 0
\]

• Nuclear spin is conserved.

• Correlations between nuclear spin eigenstates are straightforward.

• Correlations between rovibrational wave functions are under investigation.

Correlation Rules of Nuclear Spins

<table>
<thead>
<tr>
<th>I (H_5^+)</th>
<th>Γ_n ($G_{16}^{(2)}$)</th>
<th>I (H_3^+)</th>
<th>I (H_2^+)</th>
<th>I (H_5^+)</th>
<th>Γ_n ($G_{24}^{(2)}$)</th>
<th>I (H_3^+)</th>
<th>I (H_2^+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/2</td>
<td>A_{1g}^+</td>
<td>3/2</td>
<td>1</td>
<td>1/2</td>
<td>A_{1g}^+</td>
<td>3/2</td>
<td>1</td>
</tr>
<tr>
<td>3/2</td>
<td>A_{1g}^+</td>
<td>3/2</td>
<td>1</td>
<td>1/2</td>
<td>A_{1g}^+</td>
<td>1/2</td>
<td>1</td>
</tr>
<tr>
<td>3/2</td>
<td>A_{1g}^+</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>B_{1g}^+</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>3/2</td>
<td>B_{2u}^+</td>
<td>3/2</td>
<td>1</td>
<td>1/2</td>
<td>B_{2u}^+</td>
<td>1/2</td>
<td>1</td>
</tr>
<tr>
<td>3/2</td>
<td>B_{2u}^+</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>B_{2u}^+</td>
<td>1/2</td>
<td>1</td>
</tr>
<tr>
<td>3/2</td>
<td>E^+</td>
<td>3/2</td>
<td>0</td>
<td>1/2</td>
<td>E^+</td>
<td>1/2</td>
<td>1</td>
</tr>
<tr>
<td>3/2</td>
<td>E^+</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>E^+</td>
<td>1/2</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>species</th>
<th>I</th>
<th>species</th>
<th>I</th>
<th>species</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ortho\cdot H_5^+$</td>
<td>5/2</td>
<td>$ortho\cdot H_3^+$</td>
<td>3/2</td>
<td>$ortho\cdot H_3^+$</td>
<td>3/2</td>
</tr>
<tr>
<td>$meta\cdot H_5^+$</td>
<td>3/2</td>
<td>$para\cdot H_3^+$</td>
<td>1/2</td>
<td>$para\cdot H_3^+$</td>
<td>1/2</td>
</tr>
<tr>
<td>$para\cdot H_5^+$</td>
<td>1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questions to Ask

- Feasible proton permutations?
- Symmetry-allowed combinations of states?
- Electric-dipole selection rules?
- Correlation rules?

\[\langle v, J, K, I(G_{24}) | v', J', K', I' (G_{16}^{(2)}) \rangle \neq 0 \]

\[\langle v', J', K', I' (G_{16}^{(2)}) | \hat{\mu}_Z | v'', J'', K'', I'' (G_{16}^{(2)}) \rangle \neq 0 \]
Conclusions

• Different geometries different feasible permutations and different permutation-inversion groups.

• Near the equilibrium structure, the rotational-torsional wave function is invariant under E' operation.

• Parallel dipole transition do not affect odd/even of rotational quantum numbers K, but perpendicular transitions do.

• Correlation rules between two extreme geometries can be easily determined for nuclear spins.
Acknowledgements

University of Washington
Dr. Anne B. McCoy

National Institute of Standards and Technology
Dr. Jon T. Hougen

The Ohio State University
Laura C. Dzugan
Meng Huang
Bernice Opoku-Agyeman
Melanie L. Marlett
Scott M. Garner

Stanford University
Jason E. Ford

California State University – Fullerton
Dr. Andrew S. Petit

Funds
National Science Foundation
Presidential Fellowship