FURTHER ANALYSIS OF THE LABORATORY ROTATIONAL SPECTRUM OF CH$_3$NCO

ZBIGNIEW KISIEL, ON2, Institute of Physics, Polish Academy of Sciences, Warszawa, Poland; LUCIE KOLESNIKOVA, E. R. ALONSO, JOSE L. ALONSO, Grupo de Espectroscopia Molecular, Lab. de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, Universidad de Valladolid, Valladolid, Spain; MANFRED WINNEWISSER, FRANK C. DE LUCIA, Department of Physics, The Ohio State University, Columbus, OH, USA; IVAN MEDVEDEV, Department of Physics, Wright State University, Dayton, OH, USA; BELÉN TERCERO, JOSE CERNICHARO, Departamento de Astrofísica, Centro de Astrobiología CAB, CSIC-INTA, Madrid, Spain; J.-C. GUILLEMIN, Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS - ENSCR, Rennes, France.

Identification by the Rosetta mission that CH$_3$NCO is among the more plentiful molecules on the surface of the comet Churyumov-Gerasimenko stimulated rapid detection of this molecule in the interstellar medium.a,b In particular, we have been successful in detecting almost 400 lines of CH$_3$NCO in Orionb by extending the Koputc cm-wave assignment to frequencies relevant to mm-wave radio-telescopes through measurement of the complete laboratory spectrum up to 363 GHz.b,d

Presently, we describe further progress in understanding the laboratory rotational spectrum of CH$_3$NCO. Assignment has been extended to transitions with $K > 3$ by analysis of Stark and hyperfine patterns of the corresponding lowest-J transitions. Broadband spectra of synthesised pure 13CH$_3$NCO and CH$_3$N13CO isotopic species have also been recorded and assigned. Furthermore, the progress in fitting this very low barrier and highly perturbed internal rotation spectrum is described.

dZ.Kisiel et al., 65th ISMS, Columbus, Ohio, RC-13 (2010); 70th ISMS, Champaign-Urbana, Illinois, TG-08 (2015).