LAM’s LAMs

Low barrier methyl internal rotation in 3-pentyn-1-ol
as observed by microwave spectroscopy

LAM Nguyen, ISABELLE Kleiner
Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA)
Université Paris-Est Créteil

KONRAD Eibl, RAPHAELA Kannengießer, WOLFGANG Stahl
Institute of Physical Chemistry, RWTH Aachen University, Germany
Motivation

- Many methyl internal rotation problems, but only few very low barrier cases ($V_3 < 30 \text{ cm}^{-1}$), e.g. acetamide ($V_3 \approx 25 \text{ cm}^{-1}$).\(^1\)

- Why?
 - Low barriers are hard to calculate
 - Rotational spectra are hard to assign and to fit
 - No simple intuitive rules to predict the barrier height
 - V_3 and V_6 components might become comparable in magnitude \(\rightarrow\) complicates the spectral analysis (e.g. meta-fluorotoluene\(^2\) or trans-methyl nitrite\(^3\))

Low barrier ($V_3 < 10 \text{ cm}^{-1}$) cases

Triple bond – a low barrier guarantee

\[
\text{CH}_3 - \text{CH}_3
\]
Ethane
about 1000 cm\(^{-1}\)

\[
\text{CH}_3 - \text{C} \equiv \text{C} - \text{CH}_3
\]
Dimethylacetylene
almost free internal rotation

\[
\text{CH}_3 - \text{C} \equiv \text{C} - \text{R}
\]
Propynyl methyl group
< 10 cm\(^{-1}\)
Low barrier ($V_3 < 10 \text{ cm}^{-1}$) cases

$$\text{CH}_3-\text{C}≡\text{C}-\text{R}$$

<table>
<thead>
<tr>
<th>Compound</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethylacetylene-d$_3$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methylsilylacetylene</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrolyl fluoride</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Butynoic acid</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Butynol</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Chloro-2-butyne</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R = CD$_3$</td>
<td>5.62(16) cm$^{-1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R = SiH$_3$</td>
<td>3.77(70) cm$^{-1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R = COF</td>
<td>2.20(12) cm$^{-1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R = COOH</td>
<td>1.00900(42) cm$^{-1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R = CH$_2$OH</td>
<td>6.93(9) cm$^{-1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R = CH$_2$Cl</td>
<td>10.05(9) cm$^{-1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3-Pentyn-1-ol

\[\text{CH}_3-C\equiv C-R \]

- \(R = \text{CH}_2\text{CH}_2\text{OH} \)
- The conformational landscape is completely determined by \(\varphi_1 \) and \(\varphi_2 \) (rotation about the \(C_7-C_{10} \) and \(C_{10}-O_{13} \) bonds)
- MP2/6-311++G(d,p) level of theory
- \(\varphi_3 = (C_{10}, C_7, C_1, H_2) \): \(V_3 \) barrier of the propynyl methyl group
Conformational analysis

- $(\varphi_1,\varphi_2), (-\varphi_1,-\varphi_2)$: same potential energy due to the linearity of the CH$_3$CCCH$_2$ moiety $\rightarrow \frac{1}{2}$ of the calculations
Conformational analysis

<table>
<thead>
<tr>
<th></th>
<th>ΔE</th>
<th>ΔE_{ZPE}</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>μ_α</th>
<th>μ_β</th>
<th>μ_γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0</td>
<td>0</td>
<td>8.0269</td>
<td>1.6892</td>
<td>1.4718</td>
<td>1.774</td>
<td>-1.059</td>
<td>0.710</td>
</tr>
<tr>
<td>II</td>
<td>6.57</td>
<td>3.98</td>
<td>19.1378</td>
<td>1.2092</td>
<td>1.1622</td>
<td>0.757</td>
<td>-1.835</td>
<td>0.000</td>
</tr>
<tr>
<td>III</td>
<td>6.34</td>
<td>5.67</td>
<td>18.4968</td>
<td>1.2065</td>
<td>1.1604</td>
<td>-1.524</td>
<td>0.384</td>
<td>1.307</td>
</tr>
<tr>
<td>IV</td>
<td>10.11</td>
<td>8.58</td>
<td>8.5047</td>
<td>1.5960</td>
<td>1.4203</td>
<td>-1.031</td>
<td>-0.306</td>
<td>1.444</td>
</tr>
<tr>
<td>V</td>
<td>9.83</td>
<td>9.07</td>
<td>8.2789</td>
<td>1.5969</td>
<td>1.4174</td>
<td>-0.096</td>
<td>-1.527</td>
<td>-0.732</td>
</tr>
</tbody>
</table>
Microwave spectrum

Molecular beam FT microwave spectroscopy, 2 – 26.5 GHz

High resolution
- Line widths in the range 10 – 25 kHz → measurement accuracy better than 2 kHz
- Doppler effect; carrier gas: helium

Broadband scan
- Series of automatically recorded spectra in the high resolution mode
- 250 kHz step width, 50 decays per step
- Frequency range : 11.0 – 17.0 GHz
Molecular parameters

<table>
<thead>
<tr>
<th>Par.a</th>
<th>Unit</th>
<th>Fit A</th>
<th>Fit A/E</th>
<th>Fit BELGI</th>
<th>calc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GHz</td>
<td>8.45793246(91)</td>
<td>8.10191(64)</td>
<td>8.095373(67)</td>
<td>8.0269</td>
</tr>
<tr>
<td>B</td>
<td>GHz</td>
<td>1.68514380(81)</td>
<td>1.6826991(47)</td>
<td>1.6828322(52)</td>
<td>1.6892</td>
</tr>
<tr>
<td>C</td>
<td>GHz</td>
<td>1.46706356(79)</td>
<td>1.4670091(12)</td>
<td>1.46700749(61)</td>
<td>1.4718</td>
</tr>
<tr>
<td>Δ_J</td>
<td>kHz</td>
<td>0.8719(36)</td>
<td>0.819(15)</td>
<td>1.0049(26)</td>
<td>0.106</td>
</tr>
<tr>
<td>Δ_{JK}</td>
<td>kHz</td>
<td>-4.519(22)</td>
<td>-4.562(73)</td>
<td></td>
<td>1.809</td>
</tr>
<tr>
<td>Δ_K</td>
<td>kHz</td>
<td>56.70(21)</td>
<td>48.5(21)</td>
<td></td>
<td>37.045</td>
</tr>
<tr>
<td>δ_j</td>
<td>kHz</td>
<td>0.20590(59)</td>
<td>0.2029(47)</td>
<td></td>
<td>0.247</td>
</tr>
<tr>
<td>δ_k</td>
<td>kHz</td>
<td>5.41(39)</td>
<td></td>
<td></td>
<td>4.491</td>
</tr>
<tr>
<td>V_3</td>
<td>cm$^{-1}$</td>
<td>-</td>
<td>9.4548(94)</td>
<td>9.099(68)</td>
<td>7.725</td>
</tr>
<tr>
<td>ρ</td>
<td>-</td>
<td>-</td>
<td>0.046437982b</td>
<td>0.04734(11)</td>
<td>0.0479</td>
</tr>
<tr>
<td>$\angle(i,a)$</td>
<td>$^\circ$</td>
<td>-</td>
<td>22.5843(15)</td>
<td>22.54908(67)</td>
<td>22.32</td>
</tr>
<tr>
<td>$\angle(i,b)$</td>
<td>$^\circ$</td>
<td>-</td>
<td>67.8091(15)</td>
<td>67.84554(64)</td>
<td>68.07</td>
</tr>
<tr>
<td>$\angle(i,c)$</td>
<td>$^\circ$</td>
<td>-</td>
<td>86.0123(7)</td>
<td>86.00870(22)</td>
<td>86.02</td>
</tr>
<tr>
<td>D_{pi2J}</td>
<td>kHz</td>
<td>-</td>
<td>1.59(48)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_{pi2K}</td>
<td>kHz</td>
<td>-</td>
<td>-767(93)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_{pi2-}</td>
<td>kHz</td>
<td>-</td>
<td>-17.56(65)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_0</td>
<td>GHz</td>
<td>-</td>
<td>161.68(29)</td>
<td>158.173(17)</td>
<td>159.83</td>
</tr>
<tr>
<td>I_α</td>
<td>uÅ²</td>
<td>-</td>
<td>3.1257(55)b</td>
<td>3.19509(31)b</td>
<td>3.1619</td>
</tr>
<tr>
<td>N$_A$ / N$_E$</td>
<td>-</td>
<td>52/0c</td>
<td>52/40c</td>
<td>52/40c</td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>kHz</td>
<td>2.1</td>
<td>20.7</td>
<td>1.6</td>
<td></td>
</tr>
</tbody>
</table>

a Parameters

b Calculated

c Estimated from spectrum parameter F_0
Molecular parameters

<table>
<thead>
<tr>
<th>Par. (^a)</th>
<th>Unit</th>
<th>Fit A</th>
<th>Fit A/E</th>
<th>Fit BELGI</th>
<th>calc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>GHz</td>
<td>8.45793246(91)</td>
<td>8.10191(64)</td>
<td>8.095373(67)</td>
<td>8.0269</td>
</tr>
<tr>
<td>(B)</td>
<td>GHz</td>
<td>1.68514380(81)</td>
<td>1.6826991(47)</td>
<td>1.6828322(52)</td>
<td>1.6892</td>
</tr>
<tr>
<td>(C)</td>
<td>GHz</td>
<td>1.46706356(79)</td>
<td>1.4670091(12)</td>
<td>1.46700749 (61)</td>
<td>1.4718</td>
</tr>
<tr>
<td>(\Delta_J)</td>
<td>kHz</td>
<td>0.8719(36)</td>
<td>0.819(15)</td>
<td>1.0049(26)</td>
<td>0.106</td>
</tr>
<tr>
<td>(\Delta_{JK})</td>
<td>kHz</td>
<td>-4.519(22)</td>
<td>-4.562(73)</td>
<td>—</td>
<td>1.809</td>
</tr>
<tr>
<td>(\Delta_K)</td>
<td>kHz</td>
<td>56.70(21)</td>
<td>48.5(21)</td>
<td>—</td>
<td>37.045</td>
</tr>
<tr>
<td>(\delta_j)</td>
<td>kHz</td>
<td>0.20590(59)</td>
<td>0.2029(47)</td>
<td>—</td>
<td>0.247</td>
</tr>
<tr>
<td>(\delta_k)</td>
<td>kHz</td>
<td>5.41(39)</td>
<td>—</td>
<td>—</td>
<td>4.491</td>
</tr>
<tr>
<td>(V_3)</td>
<td>cm(^{-1})</td>
<td>—</td>
<td>9.4548(94)</td>
<td>9.099(68)</td>
<td>7.725</td>
</tr>
<tr>
<td>(\rho)</td>
<td>—</td>
<td>—</td>
<td>0.046437982(^b)</td>
<td>0.04734(11)</td>
<td>0.0479</td>
</tr>
<tr>
<td>(\angle(i,a))</td>
<td>(^\circ)</td>
<td>—</td>
<td>22.5843(15)</td>
<td>22.54908(67)</td>
<td>22.32</td>
</tr>
<tr>
<td>(\angle(i,b))</td>
<td>(^\circ)</td>
<td>—</td>
<td>67.8091(15)</td>
<td>67.84554(64)</td>
<td>68.07</td>
</tr>
<tr>
<td>(\angle(i,c))</td>
<td>(^\circ)</td>
<td>—</td>
<td>86.0123(7)</td>
<td>86.00870(22)</td>
<td>86.02</td>
</tr>
<tr>
<td>(D_{pi2J})</td>
<td>kHz</td>
<td>—</td>
<td>1.59(48)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(D_{pi2K})</td>
<td>kHz</td>
<td>—</td>
<td>-767(93)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(D_{pi2-})</td>
<td>kHz</td>
<td>—</td>
<td>-17.56(65)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(F_0)</td>
<td>GHz</td>
<td>—</td>
<td>161.68(29)</td>
<td>158.173(17)</td>
<td>159.83</td>
</tr>
<tr>
<td>(I_\alpha)</td>
<td>u(^\AA)(^2)</td>
<td>—</td>
<td>3.1257(55)(^b)</td>
<td>3.19509(31)(^b)</td>
<td>3.1619</td>
</tr>
<tr>
<td>(N_A/N_E)</td>
<td>—</td>
<td>52/0(^c)</td>
<td>52/40(^c)</td>
<td>52/40(^c)</td>
<td>—</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>kHz</td>
<td>2.1</td>
<td>20.7</td>
<td>1.6</td>
<td>—</td>
</tr>
</tbody>
</table>
Molecular parameters

<table>
<thead>
<tr>
<th>Par.</th>
<th>Unit</th>
<th>Fit A</th>
<th>Fit A/E</th>
<th>Fit BELGI</th>
<th>calc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GHz</td>
<td>8.45793246(91)</td>
<td>8.10191(64)</td>
<td>8.095373(67)</td>
<td>8.0269</td>
</tr>
<tr>
<td>B</td>
<td>GHz</td>
<td>1.68514380(81)</td>
<td>1.6826991(47)</td>
<td>1.6828322(52)</td>
<td>1.6892</td>
</tr>
<tr>
<td>C</td>
<td>GHz</td>
<td>1.46706356(79)</td>
<td>1.4670091(12)</td>
<td>1.46700749(61)</td>
<td>1.4718</td>
</tr>
<tr>
<td>ΔJ</td>
<td>kHz</td>
<td>0.8719(36)</td>
<td>0.819(15)</td>
<td>1.0049(26)</td>
<td>0.106</td>
</tr>
<tr>
<td>ΔJK</td>
<td>kHz</td>
<td>-4.519(22)</td>
<td>-4.562(73)</td>
<td>—</td>
<td>1.809</td>
</tr>
<tr>
<td>ΔK</td>
<td>kHz</td>
<td>56.70(21)</td>
<td>48.5(21)</td>
<td>—</td>
<td>37.045</td>
</tr>
<tr>
<td>δj</td>
<td>kHz</td>
<td>0.20590(59)</td>
<td>0.2029(47)</td>
<td>—</td>
<td>0.247</td>
</tr>
<tr>
<td>δk</td>
<td>kHz</td>
<td>5.41(39)</td>
<td>—</td>
<td>—</td>
<td>4.491</td>
</tr>
<tr>
<td>V₃</td>
<td>cm⁻¹</td>
<td>—</td>
<td>9.4548(94)</td>
<td>9.099(68)</td>
<td>7.725</td>
</tr>
<tr>
<td>ρ</td>
<td>—</td>
<td>—</td>
<td>0.046437982ᵇ</td>
<td>0.04734(11)</td>
<td>0.0479</td>
</tr>
<tr>
<td>Λ(i,a)</td>
<td>°</td>
<td>—</td>
<td>22.5843(15)</td>
<td>22.54908(67)</td>
<td>22.32</td>
</tr>
<tr>
<td>Λ(i,b)</td>
<td>°</td>
<td>—</td>
<td>67.8091(15)</td>
<td>67.84554(64)</td>
<td>68.07</td>
</tr>
<tr>
<td>Λ(i,c)</td>
<td>°</td>
<td>—</td>
<td>86.0123(7)</td>
<td>86.00870(22)</td>
<td>86.02</td>
</tr>
<tr>
<td>Dᵦ₂J</td>
<td>kHz</td>
<td>—</td>
<td>1.59(48)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Dᵦ₂K</td>
<td>kHz</td>
<td>—</td>
<td>-767(93)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Dᵦ₋₂⁻⁻⁻</td>
<td>kHz</td>
<td>—</td>
<td>-17.56(65)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>F₀</td>
<td>GHz</td>
<td>—</td>
<td>161.68(29)</td>
<td>158.173(17)</td>
<td>159.83</td>
</tr>
<tr>
<td>Iα</td>
<td>uÅ²</td>
<td>—</td>
<td>3.1257(55)ᵇ</td>
<td>3.19509(31)ᵇ</td>
<td>3.1619</td>
</tr>
<tr>
<td>Nₐ/Nₑ</td>
<td>—</td>
<td>52/0ᶜ</td>
<td>52/40ᶜ</td>
<td>52/40ᶜ</td>
<td>—</td>
</tr>
<tr>
<td>σ</td>
<td>kHz</td>
<td>2.1</td>
<td>20.7</td>
<td>1.6</td>
<td>—</td>
</tr>
</tbody>
</table>
Molecular parameters

<table>
<thead>
<tr>
<th></th>
<th>XIAM</th>
<th>BELGI-C₁</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Par.</td>
<td>Unit</td>
<td>Fit A</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>GHz</td>
<td>8.45793246(91)</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>GHz</td>
<td>1.68514380(81)</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>GHz</td>
<td>1.46706356(79)</td>
</tr>
<tr>
<td>C</td>
<td>ΔJ</td>
<td>kHz</td>
<td>0.8719(36)</td>
</tr>
<tr>
<td>ΔJ</td>
<td>ΔJK</td>
<td>kHz</td>
<td>-4.519(22)</td>
</tr>
<tr>
<td>ΔJK</td>
<td>ΔK</td>
<td>kHz</td>
<td>56.70(21)</td>
</tr>
<tr>
<td>ΔK</td>
<td>δj</td>
<td>kHz</td>
<td>0.20590(59)</td>
</tr>
<tr>
<td>δj</td>
<td>δk</td>
<td>kHz</td>
<td>5.41(39)</td>
</tr>
<tr>
<td>δk</td>
<td>V₃</td>
<td>cm⁻¹</td>
<td></td>
</tr>
<tr>
<td>V₃</td>
<td>ρ</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>Δ(i,a)</td>
<td>°</td>
<td></td>
</tr>
<tr>
<td>Δ(i,a)</td>
<td>Δ(i,b)</td>
<td>°</td>
<td></td>
</tr>
<tr>
<td>Δ(i,b)</td>
<td>Δ(i,c)</td>
<td>°</td>
<td></td>
</tr>
<tr>
<td>Δ(i,c)</td>
<td>D_{pi2J}</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>D_{pi2J}</td>
<td>D_{pi2K}</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>D_{pi2K}</td>
<td>D_{pi2–}</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>D_{pi2–}</td>
<td>F₀</td>
<td>GHz</td>
<td></td>
</tr>
<tr>
<td>F₀</td>
<td>Iα</td>
<td>μÅ²</td>
<td></td>
</tr>
<tr>
<td>Iα</td>
<td>N_A/N_E</td>
<td>—</td>
<td>52/0</td>
</tr>
<tr>
<td>N_A/N_E</td>
<td>σ</td>
<td>kHz</td>
<td>2.1</td>
</tr>
<tr>
<td>σ</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Molecular parameters

- **BELGI-C₁** considers the interaction between different torsional states and includes more higher order terms.
- **XIAM**: well-suited for the assignment step (fast, user-friendly, parameters with physical meaning and small correlations).
- Larger **XIAM** deviations in other internal rotation problems with higher barriers, i.a. ethyl acetate (101.606(23) cm⁻¹, 85.3 kHz), allyl acetate (98.093(12) cm⁻¹, 54.0 kHz), vinyl acetate (151.492(34) cm⁻¹, 92.3 kHz)

<table>
<thead>
<tr>
<th>Par. (^a)</th>
<th>Unit</th>
<th>Fit A</th>
<th>Fit A/E</th>
<th>Fit BELGI</th>
<th>calc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(_A)/N(_E)</td>
<td>–</td>
<td>52/0°</td>
<td>52/40°</td>
<td>52/40°</td>
<td>–</td>
</tr>
<tr>
<td>σ</td>
<td>kHz</td>
<td>2.1</td>
<td>20.7</td>
<td>1.6</td>
<td>–</td>
</tr>
</tbody>
</table>
Molecular parameters

<table>
<thead>
<tr>
<th>Par.</th>
<th>Unit</th>
<th>Fit A</th>
<th>Fit A/E</th>
<th>Fit BELGI</th>
<th>calc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GHz</td>
<td>8.45793246(91)</td>
<td>8.1019164(64)</td>
<td>8.09537367(67)</td>
<td>8.0269</td>
</tr>
<tr>
<td>B</td>
<td>GHz</td>
<td>1.68514380(81)</td>
<td>1.68269914(47)</td>
<td>1.68283225(52)</td>
<td>1.6892</td>
</tr>
<tr>
<td>C</td>
<td>GHz</td>
<td>1.46706356(79)</td>
<td>1.46700911(12)</td>
<td>1.46700749(61)</td>
<td>1.4718</td>
</tr>
<tr>
<td>Δ_J</td>
<td>kHz</td>
<td>0.8719(36)</td>
<td>0.819(15)</td>
<td>1.0049(26)</td>
<td>0.106</td>
</tr>
<tr>
<td>Δ_{JK}</td>
<td>kHz</td>
<td>-4.519(22)</td>
<td>-4.562(73)</td>
<td>-</td>
<td>1.809</td>
</tr>
<tr>
<td>Δ_K</td>
<td>kHz</td>
<td>56.70(21)</td>
<td>48.5(21)</td>
<td>-</td>
<td>37.045</td>
</tr>
<tr>
<td>δ_j</td>
<td>kHz</td>
<td>0.20590(59)</td>
<td>0.2029(47)</td>
<td>-</td>
<td>0.247</td>
</tr>
<tr>
<td>δ_k</td>
<td>kHz</td>
<td>5.41(39)</td>
<td>-</td>
<td>-</td>
<td>4.491</td>
</tr>
<tr>
<td>V_3</td>
<td>cm$^{-1}$</td>
<td>-</td>
<td>9.4548(94)</td>
<td>9.099(68)</td>
<td>7.725</td>
</tr>
<tr>
<td>ρ</td>
<td>-</td>
<td>-</td>
<td>0.046437982b</td>
<td>0.04734(11)</td>
<td>0.0479</td>
</tr>
<tr>
<td>$\angle(i,a)$</td>
<td>$^\circ$</td>
<td>-</td>
<td>22.5843(15)</td>
<td>22.54908(67)</td>
<td>22.32</td>
</tr>
<tr>
<td>$\angle(i,b)$</td>
<td>$^\circ$</td>
<td>-</td>
<td>67.8091(15)</td>
<td>67.84554(64)</td>
<td>68.07</td>
</tr>
<tr>
<td>$\angle(i,c)$</td>
<td>$^\circ$</td>
<td>-</td>
<td>86.0123(7)</td>
<td>86.00870(22)</td>
<td>86.02</td>
</tr>
<tr>
<td>D_{pi2j}</td>
<td>kHz</td>
<td>-</td>
<td>1.59(48)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D_{pi2K}</td>
<td>kHz</td>
<td>-</td>
<td>-767(93)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D_{pi2-}</td>
<td>kHz</td>
<td>-</td>
<td>-17.56(65)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F_0</td>
<td>GHz</td>
<td>-</td>
<td>161.68(29)</td>
<td>158.173(17)</td>
<td>159.83</td>
</tr>
<tr>
<td>I_α</td>
<td>uÅ2</td>
<td>-</td>
<td>3.1257(55)b</td>
<td>3.19509(31)b</td>
<td>3.1619</td>
</tr>
<tr>
<td>N_{A}/N_{E}</td>
<td>-</td>
<td>52/0c</td>
<td>52/40c</td>
<td>52/40c</td>
<td>-</td>
</tr>
<tr>
<td>σ</td>
<td>kHz</td>
<td>2.1</td>
<td>20.7</td>
<td>1.6</td>
<td>-</td>
</tr>
</tbody>
</table>
Molecular parameters

<table>
<thead>
<tr>
<th></th>
<th>Par.</th>
<th>Unit</th>
<th>Fit A</th>
<th>Fit A/E</th>
<th>Fit BELGI</th>
<th>calc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>XIAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>GHz</td>
<td>8.45793246(91)</td>
<td>8.10191(64)</td>
<td>8.095373(67)</td>
<td>8.0269</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>GHz</td>
<td>1.68514380(81)</td>
<td>1.6826991(47)</td>
<td>1.6828322(52)</td>
<td>1.6892</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>GHz</td>
<td>1.46706356(79)</td>
<td>1.4670091(12)</td>
<td>1.46700749(61)</td>
<td>1.4718</td>
</tr>
<tr>
<td>ΔJ</td>
<td>kHz</td>
<td>0.8719(36)</td>
<td>0.819(15)</td>
<td>1.0049(26)</td>
<td>0.106</td>
<td></td>
</tr>
<tr>
<td>ΔJK</td>
<td>kHz</td>
<td>-4.519(22)</td>
<td>-4.562(73)</td>
<td>-</td>
<td>1.809</td>
<td></td>
</tr>
<tr>
<td>ΔK</td>
<td>kHz</td>
<td>56.70(21)</td>
<td>48.5(21)</td>
<td>-</td>
<td>37.045</td>
<td></td>
</tr>
<tr>
<td>δ_j</td>
<td>kHz</td>
<td>0.20590(59)</td>
<td>0.2029(47)</td>
<td>-</td>
<td>0.247</td>
<td></td>
</tr>
<tr>
<td>δ_k</td>
<td>kHz</td>
<td>5.41(39)</td>
<td>-</td>
<td>-</td>
<td>4.491</td>
<td></td>
</tr>
<tr>
<td>V_3</td>
<td>cm$^{-1}$</td>
<td>-</td>
<td>9.4548(94)</td>
<td>9.099(68)</td>
<td>7.725</td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>-</td>
<td>-</td>
<td>0.046437982b</td>
<td>0.04734(11)</td>
<td>0.0479</td>
<td></td>
</tr>
<tr>
<td>$\angle(i,a)$</td>
<td>°</td>
<td>-</td>
<td>22.5843(15)</td>
<td>22.54908(67)</td>
<td>22.32</td>
<td></td>
</tr>
<tr>
<td>$\angle(i,b)$</td>
<td>°</td>
<td>-</td>
<td>67.8091(15)</td>
<td>67.84554(64)</td>
<td>68.07</td>
<td></td>
</tr>
<tr>
<td>$\angle(i,c)$</td>
<td>°</td>
<td>-</td>
<td>86.0123(7)</td>
<td>86.00870(22)</td>
<td>86.02</td>
<td></td>
</tr>
<tr>
<td>D_{pi2J}</td>
<td>kHz</td>
<td>-</td>
<td>1.59(48)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>D_{pi2K}</td>
<td>kHz</td>
<td>-</td>
<td>-767(93)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>D_{pi2-}</td>
<td>kHz</td>
<td>-</td>
<td>-17.56(65)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>F_0</td>
<td>GHz</td>
<td>-</td>
<td>161.68(29)</td>
<td>158.173(17)</td>
<td>159.83</td>
<td></td>
</tr>
<tr>
<td>I_α</td>
<td>uÅ2</td>
<td>-</td>
<td>3.1257(55)b</td>
<td>3.19509(31)b</td>
<td>3.1619</td>
<td></td>
</tr>
<tr>
<td>N_A/N_E</td>
<td>-</td>
<td>52/0c</td>
<td>52/40c</td>
<td>52/40c</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>kHz</td>
<td>2.1</td>
<td>20.7</td>
<td>1.6</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>BELGI-C$_1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Represents the parameter being fit.

b Standard deviation.

c Standard deviation

<table>
<thead>
<tr>
<th></th>
<th>Fit A/E</th>
<th>Fit BELGI</th>
<th>calc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8.095373(67)</td>
<td>8.0269</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1.6828322(52)</td>
<td>1.6892</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1.46700749(61)</td>
<td>1.4718</td>
<td></td>
</tr>
<tr>
<td>ΔJ</td>
<td>1.0049(26)</td>
<td>0.106</td>
<td></td>
</tr>
<tr>
<td>ΔJK</td>
<td>-4.562(73)</td>
<td>1.809</td>
<td></td>
</tr>
<tr>
<td>ΔK</td>
<td>48.5(21)</td>
<td>37.045</td>
<td></td>
</tr>
<tr>
<td>δ_j</td>
<td>0.2029(47)</td>
<td>0.247</td>
<td></td>
</tr>
<tr>
<td>δ_k</td>
<td>-</td>
<td>4.491</td>
<td></td>
</tr>
<tr>
<td>V_3</td>
<td>9.099(68)</td>
<td>7.725</td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>0.04734(11)</td>
<td>0.0479</td>
<td></td>
</tr>
<tr>
<td>$\angle(i,a)$</td>
<td>22.54908(67)</td>
<td>22.32</td>
<td></td>
</tr>
<tr>
<td>$\angle(i,b)$</td>
<td>67.84554(64)</td>
<td>68.07</td>
<td></td>
</tr>
<tr>
<td>$\angle(i,c)$</td>
<td>86.00870(22)</td>
<td>86.02</td>
<td></td>
</tr>
<tr>
<td>D_{pi2J}</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>D_{pi2K}</td>
<td>-767(93)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>D_{pi2-}</td>
<td>-17.56(65)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>F_0</td>
<td>158.173(17)</td>
<td>159.83</td>
<td></td>
</tr>
<tr>
<td>I_α</td>
<td>3.19509(31)b</td>
<td>3.1619</td>
<td></td>
</tr>
<tr>
<td>N_A/N_E</td>
<td>52/40c</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>1.6</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
3-Pentyn-1-ol vs. 3-Butyn-1-ol

Structure comparison