Toward Precision Mid-Infrared Spectroscopy on the OH Radical

Arthur Fast, John E. Furneaux, Samuel A. Meek

Max Planck Institute for Biophysical Chemistry
Göttingen, Germany

June 24, 2016
Our Experiment

- Precision measurements of OH $X^2Π_{3/2}$, $ν' = 2 \leftrightarrow ν'' = 0$ at $2 \times 2.87 \, \mu m$ (3580 cm$^{-1}$, 104 THz)
- Goal: measure transition frequency at the level of the natural linewidth $Γ = 6$ Hz (2×10^{-10} cm$^{-1}$)
 - Relative precision of $\sim 3 \cdot 10^{-14}$
- Transition is sensitive to possible time-variation of m_e/m_p
Many dimensionless physical constants whose values cannot be predicted mathematically

\[\alpha \equiv \frac{e^2}{4\pi\epsilon_0\hbar c} \approx \frac{1}{137.035\,999\,139}(31) \text{ (CODATA 2014)} \]

\[\mu \equiv \frac{m_e}{m_p} \approx \frac{1}{1836.152\,673\,89}(17) \text{ (CODATA 2014)} \]

Possible that these values change in time and/or space

(Uzan, Rev. Mod. Phys. 75, 403–455 (2003))
Many dimensionless physical constants whose values cannot be predicted mathematically

\[\alpha \equiv \frac{e^2}{(4\pi\varepsilon_0\hbar c)} \approx 1/137.035\,999\,139(31) \text{ (CODATA 2014)} \]

\[\mu \equiv \frac{m_e}{m_p} \approx 1/1836.152\,673\,89(17) \text{ (CODATA 2014)} \]

Possible that these values change in time and/or space

(Uzan, Rev. Mod. Phys. 75, 403–455 (2003))

Changes in \(\mu \) lead to shifts in rotational, vibrational transitions

\[B \sim \mu \implies \frac{\Delta \nu_{\text{rot}}}{\nu_{\text{rot}}} = \frac{\Delta \mu}{\mu} \]

\[\omega_e \sim \sqrt{\mu} \implies \frac{\Delta \nu_{\text{vib}}}{\nu_{\text{vib}}} = \frac{1}{2} \frac{\Delta \mu}{\mu} \text{ (but larger absolute shift)} \]
Experimental overview

- 1064nm @ 20°C
- PPLN
- 1.7 µm
- Cell
- 532 nm
- 616 nm @ -116°C
- BIBO
- 308 nm
- 776 nm
- 2.9 µm
- PPLN
- 1.7 µm
- 2.9 µm
- I₂ Cell
- 308 nm
- 616 nm
Pulse train from mode-locked laser equivalent to many CW lasers in the frequency domain

Optical frequency of every comb tooth determined by only two parameters

- f_r — repetition rate of laser (~ 1 GHz)
- f_0 — phase slip relative to envelope (between 0 and $f_r/2$)
Absolute measurement of optical frequencies

Absolute frequency of CW laser given by
\[f_{\text{CW}} = nf_r + f_0 + f_{\text{beatnote}} \]

Arrows indicating:
- \(f_{\text{beatnote}} = f_{\text{CW}} - nf_r - f_0 \)
- \(f = nf_r + f_0 \)

- \(f_r \), \(f_0 \), and \(f_{\text{beatnote}} \) are radio frequencies, can be compared to atomic clock reference
- \(n \) is an integer
Stabilizing the comb with a 1064/532 nm laser

\[f_{bn,1064} = f_{CW,1064} - nf_r - f_0 \]
\[f_{bn,532} = 2f_{CW,1064} - 2nf_r - f_0 \]

From these beatnotes, we can calculate

\[f_{bn,532} - 2f_{bn,1064} = f_0 \]
\[f_{bn,532} - f_{bn,1064} = f_{CW,1064} - nf_r \]

Direct comparison of \(f_{CW,1064} \) and \(f_r \)
Frequency measurement of 1064-nm laser

$f_{bn,1064} = -66.4\ \text{MHz}$

$f_{bn,532} = -90.5\ \text{MHz}$

$f_r = 999.908798\ \text{MHz}$

$n = 281656$

$RBW: 1\ \text{MHz}$

$VBW: 30\ \text{kHz}$

$f_0 = 42.3\ \text{MHz}$

$f_{CW,1064} = 281\,630\,288\ \text{MHz}$
Experimental overview

1064nm @ 20 °C

PPLN

1.7 µm

I2Cell

532 nm

616 nm @ -116 °C

616 nm

BIBO

308 nm

776 nm

2.9 µm

1.7 µm

308 nm

616 nm

1064nm @ 20 °C

PPLN

1.7 µm

I2Cell

532 nm

616 nm @ -116 °C

616 nm

BIBO

308 nm

776 nm

2.9 µm

1.7 µm

308 nm

616 nm
High-precision saturated absorption lock to I_2 transition

- 1064-nm laser very stable at short times, but drifts
- Rubidium clock, GPS only improve stability on timescales $\gtrsim 1$ s
High-precision saturated absorption lock to I$_2$ transition

- 1064-nm laser very stable at short times, but drifts
- Rubidium clock, GPS only improve stability on timescales $\gtrsim 1$ s
- Iodine reference bridges gap between short and long timescales

Döringshoff et al., “High performance iodine frequency reference for tests of the LISA laser system”, EFTF-2010
High-precision saturated absorption lock to I$_2$ transition

- Low-temperature cold finger (reduces pressure shift)
- Frequency-shifted pump (eliminates shifts from back reflections)
- Active stabilization of beam pointing
Modulation transfer spectroscopy of R(56) 32-0 transition

Experimental overview

1064 nm @ 20 °C
PPLN
H
1.7 µm
I₂ Cell
2
532 nm
616 nm @ -116 °C
616 nm
BIBO
308 nm
776 nm
2.9 µm
1.7 µm
PPLN

1064 nm @ 20 °C

616 nm @ -116 °C

PPLN
532 nm
776 nm
1.7 µm
2.9 µm

I₂ Cell

BIBO
308 nm

616 nm
Singly-resonant CW OPO pumped at $\lambda_p = 1064$ nm, 15 W.
- For OH transition, $\lambda_s = 1690$ nm, $\lambda_i = 2870$ nm
- Small amount of $\lambda_p + \lambda_i$ produced / measured using comb
 - $\left(\frac{1}{\lambda_p} + \frac{1}{\lambda_i} \right)^{-1} = 776$ nm
- High bandwidth (200 kHz) piezo mirror for stabilising idler
- Idler tunable from 2400 to 4000 cm$^{-1}$ (4.17 – 2.5 μm)
Experimental overview

1064nm @ 20 °C

616 nm @ -116 °C

BIBO

308 nm

776 nm

2.9 µm

1.7 µm

PPLN
Diode laser

Cutoff for laser diodes near 633 nm
Lower temperature \rightarrow larger bandgap, shorter wavelength

Diode laser dewar

Grating feedback, external cavity diode laser attached to the bottom of liquid N$_2$ dewar in vacuum
Single mode operation at 615 nm

~100 mW output power
Experimental overview

1064 nm @ 20 °C

616 nm @ -116 °C

PPLN

1.7 µm

I₂ Cell

532 nm

616 nm

BIBO

308 nm

776 nm

2.9 µm

1.7 µm

PPLN
My Group

John Moore-Furneaux
Visiting professor Jan.–Dec. 2015

Arthur Fast
PhD student since Feb. 2015
Tuning curves for the PPLN crystal

- Poling periods (from top to bottom): 28.5 µm, 29.0 µm, 29.5 µm, 30.0 µm, 30.5 µm, 31.0 µm, and 31.5 µm
- Coarse tuning by changing poling period
- Fine tuning by adjusting temperature