Resolving a long-standing ambiguity:
The non-planarity of *gauche*-1,3-butadiene revealed by microwave spectroscopy

M. A. Martin-Drumel1,2, P. B. Changala3, S. Eibenberger2, G. Buckingham3, J. H. Baraban3, D. Patterson2, G. B. Ellison3, J. F. Stanton4, & M. C. McCarthy1,2

1Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
2Harvard University, Cambridge, MA, USA
3University of Colorado, Boulder, CO, USA
4The University of Texas, Austin, TX, USA
1,3-butadiene (butadiene, C₄H₆) is the prototype molecule for the Diels-Alder reaction which requires a planar conjugated cis-diene.

\[\text{[4+2] cycloaddition}\]

\[\text{diene } \quad \text{dienophile } \quad \text{cyclohexene}\]
1,3-butadiene (butadiene, C$_4$H$_6$) is the prototype molecule for the Diels-Alder reaction which requires a planar conjugated cis-diene.

\[
\text{[4+2] cycloaddition}
\]

Regioselective and stereoselective reaction
→ **Concerted mechanism**
The structure of butadiene – the simplest conjugated polyene – remains elusive for its cis forms.

\[\sim 3\% \text{ of the population at room temperature} \]

\[\sim 3.5 \text{ kcal/mol} \]
The structure of butadiene – the simplest conjugated polyene – remains elusive for its cis forms.

\[\sim 3.5 \text{ kcal/mol} \]

\[\sim 3\% \text{ of the population at room temperature} \]

Competition between steric interactions and conjugation of the double bonds.
Need of unambiguous experimental and theoretical results to resolve the ambiguity on cis-butadiene structure

Planar structure
\[
\text{cis} \\
(C_{2v})
\]

Twisted structure
\[
\text{gauche} \\
(C_2)
\]

Exp.
- IR
- Raman
- IR matrix
- UV matrix

Calc.
- MCSCF
- SCF, CISD, MP2, CCSD(T)

Need of unambiguous experimental and theoretical results to resolve the ambiguity on cis-butadiene structure

Planar structure

* cis
 * (C\textsubscript{2v})

Twisted structure

* gauche
 * (C\textsubscript{2})

Exp.

- IR Raman
- IR matrix
- UV matrix

Calc.

- MCSCF
- SCF, CISD, MP2, CCSD(T)

We show that the second most stable conformer of butadiene possesses a gauche structure in the gas phase.
We show that the second most stable conformer of butadiene possesses a *gauche* structure in the gas phase.
The small calculated dipole moment requires sensitive microwave techniques

<table>
<thead>
<tr>
<th>Cavity FTMW</th>
<th>Buffer gas cell FTMW + CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>5–40 GHz</td>
</tr>
<tr>
<td>Rot. temperature</td>
<td>5–10 K</td>
</tr>
<tr>
<td>supersonic expansion</td>
<td></td>
</tr>
<tr>
<td>1 kV dc discharge</td>
<td></td>
</tr>
</tbody>
</table>
The small calculated dipole moment requires sensitive microwave techniques.

<table>
<thead>
<tr>
<th></th>
<th>Cavity FTMW</th>
<th>Buffer gas cell FTMW + CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>5–40 GHz</td>
<td>12–18 GHz</td>
</tr>
<tr>
<td>Rot. temperature</td>
<td>5–10 K</td>
<td>5–10 K</td>
</tr>
<tr>
<td></td>
<td>supersonic expansion</td>
<td>buffer gas cooling</td>
</tr>
<tr>
<td></td>
<td>1 kV dc discharge</td>
<td>230 °C capillary</td>
</tr>
<tr>
<td>FWHM</td>
<td>∼ 40 kHz</td>
<td>∼ 100 kHz</td>
</tr>
<tr>
<td>Dipole moment</td>
<td>0.1–5</td>
<td>∼ 1</td>
</tr>
<tr>
<td>Repetition rate</td>
<td>6 Hz</td>
<td>50,000 Hz</td>
</tr>
</tbody>
</table>
Our measurements reveal the existence of two tunneling components for *gauche*-butadiene.

Chirped-pulse spectrum, buffer gas cell,

\[\sim 2 \text{ min integration time} \]
Our measurements reveal the existence of two tunneling components for *gauche*-butadiene.

Chirped-pulse spectrum, buffer gas cell,
~ 2 min integration time

Initial prediction
$1_{10} - 1_{01}$
Measurements reveals the different dynamics of the two experiments

Buffer gas cell

Cavity

\[\frac{I(0^+)}{I(0^-)} \approx 1 \]

\[\frac{I(0^+)}{I(0^-)} \approx 20 \]
The accurate molecular parameters derived confirm the non planarity of the molecule

<table>
<thead>
<tr>
<th></th>
<th>GS</th>
<th>0⁺</th>
<th>0⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calc.ᵃ</td>
<td>Calc.ᵇ</td>
<td>Exp.</td>
</tr>
<tr>
<td>A₀</td>
<td>21244</td>
<td>21220</td>
<td>21223</td>
</tr>
<tr>
<td>B₀</td>
<td>5654</td>
<td>5678</td>
<td>5671</td>
</tr>
<tr>
<td>C₀</td>
<td>4576</td>
<td>4589</td>
<td>4577</td>
</tr>
</tbody>
</table>

Δ = −2.5

ᵃ Full dimensional VPT2 calculation: AE-CCSD(T)/PCVQZ (rₑ) + FC-(T)/CCSD(T)/ANO0 (α)
ᵇ 1D torsional calculation: FC-CCSD(T)/ANO1
ᶜ δ = Exp. / Calc.
Subsequent isotopic spectroscopy has highlighted the dipole moment variation between isotopologues.

\[\frac{I}{I_0} = 0.6\% \]

\[\frac{I}{I_0} = 0.6\% \]

Dipole moments calculated at the ANO0 level, adjusted with \(\mu_{\text{ANO1}} \).
Subsequent isotopic spectroscopy has highlighted the dipole moment variation between isotopologues.

$I/I_0 = 0.6\%$

NA

$I/I_0 = 0.6\%$

NA

0^{-}, 0^{+}

13444 13446 13448 13450 GHz

$Pure$

$I/I_0 = 80\%$

$Pure$

$I/I_0 = 1 - 10\%$
Subsequent isotopic spectroscopy has highlighted the dipole moment variation between isotopologues.

\[\frac{I}{I_0} = 0.6\% \]

\[\frac{I}{I_0} = 0.6\% \]

\[\frac{I}{I_0} = 80\% \]

\[\frac{I}{I_0} = 1 - 10\% \]

Dipole moments calculated at the ANO0 level, adjusted with \(\mu_e \) ANO1.
Subsequent isotopic spectroscopy has highlighted the dipole moment variation between isotopologues.

Dipole moments calculated at the ANO0 level, adjusted with μ_e ANO1.
A partial geometry has been derived from the accurate molecular parameters determined

Partial r_{e}^{SE} structure:

0^+ experimental rotational constants corrected for zero point vibration effects at the VPT2 level (α: FC-(T)/CCSD(T)/ANO00)

Bond lengths in Å
Butadiene is a non-planar molecule and thus must adopt first a planar conformation for Diels-Alder reaction.