Progress in the Rotational Analysis of the Ground and Low-Lying Vibrationally Excited States of Malonaldehyde

E. Scott Goudreau,
Dennis W. Tokaryk and Stephen C. Ross
Department of Physics
University of New Brunswick
Fredericton, New Brunswick, Canada

Brant E. Billinghurst
Canadian Light Source Inc.
Saskatoon, Saskatchewan, Canada
Malonaldehyde – An Intramolecular Tunnelling Prototype

- C_s symmetry with a C_{2v} transition state (MS group – G_4)

- Barrier height is about 1400 cm$^{-1}$
 - from *ab initio* calculation
 (Wang et al. 2008 and others)
Lütt schwager et al. (2013)
IR / Raman observations
Lüttchschwager et al. (2013)
IR / Raman observations

Assignment #1 Assignment #2
Lüttschwager et al. (2013)
IR / Raman observations
Assignment #1 Assignment #2
Schröder and Meyer (2014)
ab initio calculations
Lüttchwager et al. (2013)
IR / Raman observations

Assignment #1

Assignment #2

Schröder and Meyer (2014)
ab initio calculations
Lüttswager et al. (2013)
IR / Raman observations

Assignment #1

Schröder and Meyer
(2014)

ab initio calculations

Assignment #2
Lüttswager et al. (2013)
IR / Raman observations

Assignment #1

Schröder and Meyer (2014)
\textit{ab initio} calculations

Assignment #2
The Two Lowest-Frequency Modes

• $\nu \text{O} \cdots \text{O}$
 In-plane ring opening/closing mode
 - Increases tunnelling-splitting

• $\gamma \text{C}_c\text{H}$
 Out-of-plane bending mode
 - Reduces tunnelling-splitting

Lüttschwager et al.
Molecular Physics, 2013
Canadian Light Source Synchrotron

Our CLS Malonaldehyde Spectrum

- Features corresponding to all of Lüttswager’s low-frequency assignments are present in the spectrum.

* = Impurity
Our CLS Malonaldehyde Spectrum

- Features corresponding to all of Lüttschwager’s low-frequency assignments are present in the spectrum.
The 390/405 cm\(^{-1}\) Tunnelling Pair (out-of-plane)
c-type bands at 384/390 cm\(^{-1}\)
Lüttswager et al. (2013)
IR / Raman observations

Assignment #1 Assignment #2

Schröder and Meyer
(2014)
ab initio calculations

21.6 21.6 22.4
Lüttswager et al. (2013)
IR / Raman observations

Assignment #1 Assignment #2

Schröder and Meyer (2014)
ab initio calculations
Lüttschwager et al. (2013)
IR / Raman observations

Assignment #1 Assignment #2

Schröder and Meyer (2014)
ab initio calculations
The 282 cm\(^{-1}\) state (out-of-plane)
c-type band at 282 cm\(^{-1}\)

- Identified $K_C=0$ and $K_C=1$ branches
- Combination differences (c-type) match 0 cm\(^{-1}\) ground state
Lüttchwager et al. (2013)
IR / Raman observations

Assignment #1

Schröder and Meyer (2014)
ab initio calculations

Assignment #2
Lüttswager et al. (2013)
IR / Raman observations

Assignment #1 Assignment #2

Schröder and Meyer
(2014)
ab initio calculations
The 241 cm$^{-1}$ state (in-plane)

a-type 220 cm$^{-1}$ and b-type 241 cm$^{-1}$ bands

- Both a- and b-type bands have a common upper state: confirmed by combination differences
- Lower states = ground state tunnelling pair
- Where is the other tunnelling component?
Lüttschwager et al. (2013)
IR / Raman observations

Assignment #1 Assignment #2

Schröder and Meyer (2014)
ab initio calculations
Lütschwager et al. (2013)
IR / Raman observations

Schröder and Meyer (2014)
ab initio calculations

Assignment #1
Assignment #2
The 184 cm\(^{-1}\) Band

• Several branches have been found

• However: *no matching combination differences*
The 1975 PhD Thesis of Walter Rowe

- Graduate student under E. Bright Wilson of Harvard University (co-author of “Molecular Vibrations”)

- Worked on the first major spectroscopic study of malonaldehyde (microwave)

- Reported a rotational analysis of 8 vibrational states including the ground state pair

- Rough vibrational frequencies using relative intensity

- Indication of mode symmetry (in-plane or out-of-plane) using inertial defect

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Frequency (cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-plane</td>
<td>0</td>
</tr>
<tr>
<td>In-plane</td>
<td>16 ± 14</td>
</tr>
<tr>
<td>In-plane</td>
<td>277 ± 22</td>
</tr>
<tr>
<td>In-plane</td>
<td>293 ± 8</td>
</tr>
<tr>
<td>Out-of-plane</td>
<td>237 ± 20</td>
</tr>
<tr>
<td>Out-of-plane</td>
<td>282 ± 9</td>
</tr>
<tr>
<td>Out-of-plane</td>
<td>393 ± 59</td>
</tr>
<tr>
<td>Out-of-plane</td>
<td>390 ± 35</td>
</tr>
</tbody>
</table>
The 1975 PhD Thesis of Walter Rowe

- Graduate student under E. Bright Wilson of Harvard University (co-author of “Molecular Vibrations”)

- Worked on the first major spectroscopic study of malonaldehyde (microwave)

- Reported a rotational analysis of 8 vibrational states including the ground state pair

- Rough vibrational frequencies using relative intensity

- Indication of mode symmetry (in-plane or out-of-plane) using inertial defect

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Frequency (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-plane</td>
<td>0</td>
</tr>
<tr>
<td>In-plane</td>
<td>16 ± 14</td>
</tr>
<tr>
<td>In-plane</td>
<td>277 ± 22</td>
</tr>
<tr>
<td>In-plane</td>
<td>293 ± 8</td>
</tr>
<tr>
<td>Out-of-plane</td>
<td>237 ± 20</td>
</tr>
<tr>
<td>Out-of-plane</td>
<td>282 ± 9</td>
</tr>
<tr>
<td>Out-of-plane</td>
<td>393 ± 59</td>
</tr>
<tr>
<td>Out-of-plane</td>
<td>390 ± 35</td>
</tr>
</tbody>
</table>

Rowe does not observe a state near 184 cm⁻¹
Lüttswager et al. (2013) IR / Raman observations

Schröder and Meyer (2014) ab initio calculations
Rowe (1975) Microwave observations
Lüttswager et al. (2013) IR / Raman observations
Schröder and Meyer (2014) \textit{ab initio} calculations
Rowe (1975)
Microwave observations

Lüttchwager et al. (2013)
IR / Raman observations

Schröder and Meyer (2014)
\textit{ab initio} calculations
The 390/405 cm\(^{-1}\) Tunnelling Pair (out-of-plane)
c-type bands at 384/390 cm\(^{-1}\)

\[
\begin{align*}
390 \text{ (Rowe Microwave)} &= 405 \text{ (IR)} \\
393 \text{ (Rowe Microwave)} &= 390 \text{ (IR)}
\end{align*}
\]

Confirmed by:
- Matching upper state combination differences
- Similarity of constants
- Able to fit 390 and 405 cm\(^{-1}\) states with IR and Rowe microwave data together

<table>
<thead>
<tr>
<th></th>
<th>Rowe 390 cm(^{-1})</th>
<th>IR 405 cm(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9832.76 MHz</td>
<td>9832.79 MHz</td>
</tr>
<tr>
<td>B</td>
<td>5169.44 MHz</td>
<td>5169.27 MHz</td>
</tr>
<tr>
<td>C</td>
<td>3390.49 MHz</td>
<td>3390.36 MHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Rowe 393 cm(^{-1})</th>
<th>IR 390 cm(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9825.55 MHz</td>
<td>9825.66 MHz</td>
</tr>
<tr>
<td>B</td>
<td>5204.75 MHz</td>
<td>5205.46 MHz</td>
</tr>
<tr>
<td>C</td>
<td>3403.85 MHz</td>
<td>3402.97 MHz</td>
</tr>
</tbody>
</table>
ISMS 2016
Schröder and Meyer (2014)

ab initio calculations

Lüttschwager et al. (2013)

IR / Raman observations

Rowe (1975)
Microwave observations

Black: In-plane
Blue: Out-of-plane

316

293
282
277
237

30

282
273
252

284
270

184
Black: In-plane

Blue: Out-of-plane

Rowe (1975) Microwave observations
Lüttchwager et al. (2013) IR / Raman observations
Schröder and Meyer (2014) ab initio calculations

184

316

293

282

277

284

273

270

252

237

241
The 241 cm\(^{-1}\) state (in-plane)

a-type 220 cm\(^{-1}\) and b-type 241 cm\(^{-1}\) bands

237 (Rowe Microwave) = 241 (IR)

<table>
<thead>
<tr>
<th></th>
<th>Rowe 237 cm(^{-1})</th>
<th>IR 241 cm(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9853.73 MHz</td>
<td>9853.76 MHz</td>
</tr>
<tr>
<td>B</td>
<td>5173.44 MHz</td>
<td>5173.45 MHz</td>
</tr>
<tr>
<td>C</td>
<td>3394.70 MHz</td>
<td>3394.75 MHz</td>
</tr>
</tbody>
</table>

Confirmed by:

- Matching upper state combination differences
- Similarity of constants
- Able to fit 241 cm\(^{-1}\) state with IR and Rowe microwave data together
Black: In-plane

Blue: Out-of-plane

Rowe (1975) Microwave observations
Lütschwager et al. (2013) IR / Raman observations
Schröder and Meyer (2014) \textit{ab initio} calculations
Black: In-plane
Blue: Out-of-plane

Rowe (1975) Microwave observations
Lüttswager et al. (2013) IR / Raman observations
Schröder and Meyer (2014) ab initio calculations

293 282 277
237 241

316 284 270 252

184
ISMS 2016

Black: In-plane
Blue: Out-of-plane

Schröder and Meyer (2014) ab initio calculations
Lüttswager et al. (2013) IR / Raman observations
Rowe (1975) Microwave observations

IR / Raman observations
The 252 cm$^{-1}$ band
Comparing to c-type simulated bands

- Q-branch of our experimental spectrum

- Simulated band from 21 cm$^{-1}$ to Rowe’s 277 cm$^{-1}$ state

- Simulated band from 21 cm$^{-1}$ to Rowe’s 282 cm$^{-1}$ state

- Simulated band from 21 cm$^{-1}$ to Rowe’s 293 cm$^{-1}$ state
The 252 cm\(^{-1}\) band
Comparing to c-type simulated bands

Q-branch of our experimental spectrum

Simulated band from 21 cm\(^{-1}\) to Rowe’s 277 cm\(^{-1}\) state

Simulated band from 21 cm\(^{-1}\) to Rowe’s 282 cm\(^{-1}\) state

Simulated band from 21 cm\(^{-1}\) to Rowe’s 293 cm\(^{-1}\) state
The 282 cm$^{-1}$ state revisited

C-type band at 282 cm$^{-1}$

Q-branch of our experimental spectrum

Simulated band from 0 cm$^{-1}$ to Rowe’s 282 cm$^{-1}$ state

Simulated band from 0 cm$^{-1}$ to Rowe’s 277 cm$^{-1}$ state

Simulated band from 0 cm$^{-1}$ to Rowe’s 293 cm$^{-1}$ state
The 282 cm\(^{-1}\) state \textit{revisited}

c-type band at 282 cm\(^{-1}\)

- Q-branch of our experimental spectrum
- Simulated band from 0 cm\(^{-1}\) to Rowe’s 282 cm\(^{-1}\) state
- Simulated band from 0 cm\(^{-1}\) to Rowe’s 277 cm\(^{-1}\) state
- Simulated band from 0 cm\(^{-1}\) to Rowe’s 293 cm\(^{-1}\) state
Proposed correspondences to our observations

Schröder and Meyer (2014) ab initio calculations

Rowe (1975) Microwave observations
Proposed correspondences to our observations

Rowe (1975) Microwave observations

Schröder and Meyer (2014) *ab initio* calculations
Proposed correspondences to our observations

Rowe (1975) Microwave observations

Schröder and Meyer (2014)

ab initio calculations
Proposed correspondences to our observations

Rowe (1975)
Microwave observations

Schröder and Meyer (2014)
ab initio calculations
Rowe (1975) Microwave observations

Proposed correspondences to our observations

Schröder and Meyer (2014) \textit{ab initio} calculations
Rowe (1975)
Microwave observations

Proposed correspondences to our observations

Schröder and Meyer (2014)
ab initio calculations
Schröder and Meyer (2014) \textit{ab initio} calculations

Rowe (1975) Microwave observations
Proposed correspondences to our observations

? 184
Conclusion

- Rowe’s 40-year-old unpublished microwave observations from his 1975 thesis were extremely helpful in our analysis.

- Results:
 - vibrational assignments based on high-resolution synchrotron spectra (mostly) support Lüttschwager’s assignments
 - rotational analysis of several bands
 - no evidence for a malonaldehyde fundamental at 184 cm\(^{-1}\).
Acknowledgements

Dr. James Tait and Dr. David MaGee (UNB Chemistry) – Malonaldehyde precursor synthesis

Dr. Colin Western (University of Bristol) - PGOPHER program

NSERC Discovery Grants (Tokaryk, Ross)

NSERC CGS-M award (Goudreau)
Seliskar and Hoffmann, J. Mol. Spectrosc., 1982