Vibrational Conical Intersections in CH$_3$SH:
Implications for Spectroscopy and Dynamics in the CH Stretch Region

David S. Perry, Bishnu P. Thapaliya, Mahesh B. Dawadi, and Ram Bhatta
The University of Akron
CH stretch vibrations in CH$_3$SH

- Asymmetric CH stretches are quasi-degenerate (TF05 – Ron Lees, et al.)
- Degeneracy is required at C_{3v} ($\rho = 0$), not at $\rho_{eq} = 83^\circ$.
- In CH$_3$OH the two asymmetric CH stretches are ν_2 and ν_9.
 - 42 cm$^{-1}$ apart
 - Split by Jahn-Teller coupling
- Extend the Jahn-Teller model to very large ρ.
CH stretch vibrations in CH₃SH

- Asymmetric CH stretches are quasi-degenerate (TF05 – Ron Lees, *et al.*)
- Degeneracy is required at C_{3v} ($\rho = 0$), not at $\rho_{eq} = 83^\circ$.
- In CH₃OH the two asymmetric CH stretches are ν_2 and ν_9.
 - 42 cm⁻¹ apart
 - Split by Jahn-Teller coupling
- Extend the Jahn-Teller model to very large ρ.

Electronic potential energy, U

- 24,000 cm⁻¹

- $\rho_{eq} = 83^\circ$
- $\gamma = 24,000$ cm⁻¹
An $E \otimes e$ Jahn-Teller Model for Large-Amplitude Motion

- Use the Cartesian basis for the 2 asymmetric CH stretches

$$H_f = \begin{bmatrix} H_{f}^{a_1} & 0 \\ 0 & H_{f}^{a_1} \end{bmatrix} + \begin{bmatrix} H^{e}_{fxx} & H^{e}_{fxy} \\ H^{e}_{fxy} & -H^{e}_{fxx} \end{bmatrix}$$

- Expand coupling terms in the real spherical harmonics

$$H_{fi}^{\Gamma} (\rho, \gamma) = \sum_{l,m} c_{l,m}^{\Gamma} Y_{lm} (\rho, \gamma)$$

- Only symmetry-allowed terms appear ($l \geq |m|$):
 - A_1 terms $H_{f}^{a_1}$: $m = 0, 3, 6, ...$
 - E terms H^{e}_{fxx}: $m = 1, 2, 4, 5, ...$ (cosine forms)
 - H^{e}_{fxy}: $m = -1, -2, -4, -5, ...$ (sine forms)

- The E terms are Jahn-Teller coupling of order $|m|$.
An E⊗e Jahn-Teller Model for Large-Amplitude Motion

- Eigenvalues are adiabatic CH stretch energies.
- Keep Jahn-Teller coupling up to 4th order:

\[
E_{\pm} = (V^{0\gamma} + U^{0\gamma}) + (V^{3\gamma} + U^{3\gamma}) \cos 3\gamma + (V^{6\gamma} + U^{6\gamma}) \cos 6\gamma \\
\pm \left\{ (W^{1\gamma})^2 + (W^{2\gamma})^2 + (W^{4\gamma})^2 + 2W^{1\gamma}(W^{2\gamma} + W^{4\gamma}) \cos 3\gamma + 2W^{2\gamma}W^{4\gamma} \cos 6\gamma \right\}^{1/2}
\]

with

\[
U^{m\gamma}(\rho) = \sum_{l=m, m+1, \ldots} a_{lm} \frac{Y_{lm}(\rho, \gamma)}{\cos m\gamma}
\]

Electronic potential

\[
V^{m\gamma}(\rho) = \sum_{l=m, m+1, \ldots} c_{lm} \frac{Y_{lm}(\rho, \gamma)}{\cos m\gamma}
\]

Diagonal vibrational energies

\[
W^{m\gamma}(\rho) = \sum_{l=m, m+1, \ldots} c_{lm}^e \frac{Y_{lm}(\rho, \gamma)}{\cos m\gamma}
\]

Jahn-Teller coupling terms of order \(m = 1, 2, 4 \).
Asymmetric CH stretch vibrations

CCSD(T)/aug-cc-pVTZ – nearly level-independent

- Dominant effect: Variation of the single-bond CH force constant
Asymmetric CH stretch vibrations

CCSD(T)/aug-cc-pVTZ – nearly level-independent

\[C_3v \]

Staggered

Eclipsed

Experimental Splitting 1.5 cm\(^{-1}\)

1.48 cm\(^{-1}\)

\[\rho_{eq} = 83^\circ \]
Fit to the Jahn-Teller Hamiltonian

- Conical intersections occur where even and odd coupling orders cancel.
- RMS of fit = 0.2 cm\(^{-1}\)
Asymmetric CH stretch vibrations in CH$_3$SH

CCSD(T)/aug-cc-pVTZ

- V^{0y} is suppressed
Comparison to Methanol

CH_3SH

CH_3OH
CH$_3$SH Diabatization

Diabatic Surfaces
Jahn-Teller 1^{st}-order
Jahn-Teller 2^{nd}-order
1$^{\text{st}}$- and 2$^{\text{nd}}$-orders equal

Coupling
Methanol Diabatization

3 diabatization schemes correspond to Xu, Hougen, Lees' 3 limiting cases.

Diabatic Surfaces
Jahn-Teller 1st-order

Jahn-Teller 2nd-order

1st- and 2nd-orders equal

Coupling
CH$_3$SH and CH$_3$OH Comparison

Adiabatic, CH$_3$SH

Diabatic, Jahn-Teller 1$^{\text{st}}$-order, CH$_3$SH

Coupling, 1$^{\text{st}}$- and 2$^{\text{nd}}$-orders equal, CH$_3$SH

Adiabatic, CH$_3$OH

Diabatic, Jahn-Teller 1$^{\text{st}}$-order, CH$_3$OH

Coupling, 1$^{\text{st}}$- and 2$^{\text{nd}}$-orders equal, CH$_3$OH
<table>
<thead>
<tr>
<th>Fourier term U^{γ_1}</th>
<th>Parameter a,b,c</th>
<th>Value d,e,f</th>
<th>Fourier term W^{γ_1}</th>
<th>Parameter g,h,i</th>
<th>Value j,k,l</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_0^{(0)}$</td>
<td>3.30095E4 (4.E1)</td>
<td>$b_0^{(0)}$</td>
<td>1.12453E4 (5.E-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_1^{(0)}$</td>
<td>-1.50622E4 (5.E1)</td>
<td>$b_1^{(0)}$</td>
<td>-2.42011E1 (6.E-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_2^{(0)}$</td>
<td>3.0758E4 (4.E1)</td>
<td>$b_2^{(0)}$</td>
<td>7.08361E1 (3.E-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_3^{(0)}$</td>
<td>-2.04977E3 (2.E1)</td>
<td>$b_3^{(0)}$</td>
<td>1.05213E1 (1.E-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_4^{(0)}$</td>
<td>3.42375E3 (1.E1)</td>
<td>$b_4^{(0)}$</td>
<td>-5.95254E-1 (9.E-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_6^{(0)}$</td>
<td>8.42112E2 (1.E0)</td>
<td>$b_{10}^{(0)}$</td>
<td>-1.19588E0 (9.E-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_8^{(0)}$</td>
<td>2.79798E2 (3.E-1)</td>
<td>$b_{12}^{(0)}$</td>
<td>-5.04997E-1 (9.E-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_{10}^{(0)}$</td>
<td>1.05715E2 (2.E-1)</td>
<td>$b_{14}^{(0)}$</td>
<td>2.28496E-1 (8.E-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_{12}^{(0)}$</td>
<td>4.05045E1 (2.E-1)</td>
<td>V^{γ_1}</td>
<td>7.88918E0 (2.E-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_{14}^{(0)}$</td>
<td>1.63229E1 (1.E-1)</td>
<td>$b_3^{(3)}$</td>
<td>1.16344E1 (2.E-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_{16}^{(0)}$</td>
<td>7.09012E0 (1.E-1)</td>
<td>$b_5^{(3)}$</td>
<td>3.78829E0 (2.E-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_{18}^{(0)}$</td>
<td>2.04663E0 (9.E-2)</td>
<td>$b_7^{(3)}$</td>
<td>1.73914E0 (1.E-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_3^{(3)}$</td>
<td>5.98817E2 (2.E0)</td>
<td>$b_9^{(3)}$</td>
<td>6.10201E-1 (9.E-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_4^{(3)}$</td>
<td>-1.95957E2 (3.E0)</td>
<td>$b_{11}^{(3)}$</td>
<td>1.29995E-1 (2.E-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_5^{(3)}$</td>
<td>2.90249E2 (2.E0)</td>
<td>$b_6^{(6)}$</td>
<td>6.69021E2 (3.E-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_7^{(3)}$</td>
<td>3.02098E1 (2.E0)</td>
<td>$b_7^{(6)}$</td>
<td>2.3168E-2 (2.E-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_8^{(3)}$</td>
<td>1.36379E1 (2.E0)</td>
<td>W^{γ_1}</td>
<td>9.24198E0 (2.E-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_9^{(3)}$</td>
<td>1.76821E1 (8.E-1)</td>
<td>$c_1^{(1)}$</td>
<td>-1.97897E1 (3.E-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_{10}^{(3)}$</td>
<td>2.53787E0 (7.E-2)</td>
<td>$c_2^{(1)}$</td>
<td>-2.87824E0 (6.E-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_{11}^{(3)}$</td>
<td>3.6708E0 (1.E-1)</td>
<td>$c_3^{(1)}$</td>
<td>-6.37778E0 (9.E-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_{13}^{(3)}$</td>
<td>4.89657E-1 (4.E-2)</td>
<td>$c_7^{(1)}$</td>
<td>-2.91523E0 (8.E-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_{15}^{(3)}$</td>
<td>6.46955E-1 (1.E-1)</td>
<td>$c_9^{(1)}$</td>
<td>-1.14541E0 (7.E-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_{17}^{(3)}$</td>
<td>-1.19922E1 (3.E-2)</td>
<td>$c_{11}^{(1)}$</td>
<td>-2.17707E-1 (2.E-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_{19}^{(3)}$</td>
<td>-5.66397E-1 (3.E-2)</td>
<td>$c_5^{(4)}$</td>
<td>-6.54657E-1 (1.E-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c_2^{(2)}$</td>
<td>3.97752E0 (1.E-1)</td>
<td>$c_6^{(4)}$</td>
<td>-7.48121E-1 (2.E-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c_4^{(2)}$</td>
<td>-4.1412E0 (2.E-1)</td>
<td>$c_{10}^{(4)}$</td>
<td>2.40606E-1 (9.E-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c_5^{(2)}$</td>
<td>2.58245E0 (1.E-1)</td>
<td>Calculation method</td>
<td>CCSD(T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c_{10}^{(2)}$</td>
<td>6.90844E-1 (9.E-2)</td>
<td>Basis set</td>
<td>aug-cc-pVTZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c_{12}^{(2)}$</td>
<td>2.68789E-1 (8.E-2)</td>
<td>RMS (vibrational part) i</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RMS (overall) i</td>
<td>0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N_{data}^{u}</td>
<td>114</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>