NOO Peroxy Isomer Exposed With Velocity-Map Imaging

Steve Gibson, Steve Cavanagh, Brenton Lewis, Ben Laws
RSPE Australian National University
ISMS, 23 June 2016

- Photodetachment/VMI
- VMI $\text{NO}_2^- \rightarrow \text{NO}_2$
- Peroxy NOO isomer
 - PES
 - PAD
 - Dynamics
$A^- + h\nu \rightarrow A^*^- \rightarrow A^* + e^-$
Spectrometer - photodetachment/photofragmentation

- anion source-
pulsed molecular jet
HV discharge

- mass separation
- TOF

photodetachment: electron
velocity-mapping lens
MCPs and phosphor detector

Fast beam spectrometer (based on Neumark/Continetti design):
Cyr PhD Thesis (UC Berkeley 1993)
Velocity-map imaging lens:
Gating-bunching-rereferencing unit:

Photodetachment:
\[A^- + h\nu \rightarrow A^* + e^- \]
Velocity-map imaging

VMI lens coaxial with ion-beam

A laser

MCPs + phosphor

CCD camera

Hemispherical Analyser

Grid Electrode Lens

Velocitv Map Imaging Lens

3D Photodetachment

2D Projection of O_2^-

3D slice

Inverse Abel transformation: Gascooke/Hansen and Law

Velocity-map imaging

3D Photodetachment

e^- Intensity vs photon energy

Photoelectron spectrum (PES)

PE angular distribution (PAD)

2D Projection of O_2^-

3D slice

Inverse Abel transformation: Gascooke/Hansen and Law

NO$_2$ Photoelectron Spectrum

$\lambda = 519\text{nm}$

NO$_2$
- Prominent air pollutant
- Photochemical smog, tropospheric ozone
- Respiratory problems in humans

- Additional e^- structure
- $D_0(\text{ON} \cdots \text{O}^-) = 3.932 \text{ eV} > h\nu = 2.39 \text{ eV}$
NO₂ Photoelectron Spectrum

\[\lambda = 519 \text{nm} \]

Additional \(e^- \) structure

\[D_0(\text{ON} \cdots \text{O}^-) = 3.932 \text{ eV} > h\nu = 2.39 \text{ eV} \]
Extra electron structure - Peroxy NOO

\[\omega_1 \approx 1270(20) \text{ cm}^{-1} \]

\[\omega_2 \sim 720 \text{ cm}^{-1} \]

\[\omega_3 \text{ inactive} \]

\[D_0(\text{NO} \cdots \text{O}^-) = 0.13 \text{eV} \]

Observation fragment O\(^-\) results from dissociation of peroxy NO-O bond
NO$_2$ Photoelectron Spectrum

$\lambda = 519$nm

- Additional e$^-$ structure
- D_0(ON···O$^-$) = 3.932 eV > $h\nu$ = 2.39 eV

Additional e$^-$ structure

D0(ON···O$^-$) = 3.932 eV > $h\nu$ = 2.39 eV
A peroxy NOO isomer was first proposed by Clynne and Thrush in 1961, as a reaction intermediate in atmospheric chemistry

\[\text{N} + \text{O}_2 \rightarrow \text{NOO} \rightarrow \text{NO} + \text{O} \]

However there is still debate about whether NOO is a stable isomer, or just a reaction intermediate.

NOO has been used in past photodetachment cross section experiments to possibly explain observed tails below the EA of NO2.
A peroxy NOO isomer was first proposed by Clynne and Thrush in 1961, as a reaction intermediate in atmospheric chemistry:

\[\text{N} + \text{O}_2 \rightarrow \text{NOO} \rightarrow \text{NO} + \text{O} \]

(1)

However, there is still debate about whether NOO is a stable isomer, or just a reaction intermediate.

NOO has been used in past photodetachment cross section experiments to possibly explain observed tails below the EA of NO2.

First direct proof of existence of peroxy NOO isomer
\[l(\theta, \epsilon) = \frac{\sigma(\epsilon)}{4\pi} [1 + \beta(\epsilon) P_2(\cos \theta)] \]

\(\beta \) anisotropy parameter

\[\beta = 2 + 12(A_2 \epsilon)^2 - 36(A_2 \epsilon) \cos(\Delta) \]

\[\frac{5[2 + 3(A_2 \epsilon)^2]}{2} \]

\(\Delta = \) partial wave phase shift

d-orbital electron, \(\Delta \ell = \pm 1 \)

Hanstorp approx: \(A_2 \epsilon \sim R_f / R_p \)

\(\epsilon \) electron kinetic energy (eV)

\(\beta \) anisotropy parameter
\[I(\theta, \epsilon) = \frac{\sigma(\epsilon)}{4\pi} \left[1 + \beta(\epsilon)P_2(\cos \theta) \right] \]

\[\beta \text{ anisotropy parameter} \]

\[\text{Hanstorp } A_3 = 0.50(1), \cos = 0.94(1) \]

Photodynamics

O\(^-\) fragmentation √

\[
\text{NOO}^- + h\nu \rightarrow \text{NO} + \text{O}^- \\
\text{O}^- + h\nu \rightarrow \text{O} + e^- \\
\text{NO}^- \text{ fragmentation} \times \\
\text{NOO}^- + h\nu \not\rightarrow \text{NO}^- + \text{O} \\
\text{NOO}^- \text{ detachment} √ \\
\text{NOO}^- + h\nu \rightarrow \text{NOO} + e^-
\]

Confirmation of peroxy NOO isomer

How abundant is the peroxy isomer in the atmosphere? Possible implications?

=⇒ Further studies needed

BAL ANU 12 / 13
Confirmation of peroxy NOO isomer

How abundant is the peroxy isomer in the atmosphere? Possible implications?

⇒ Further studies needed

O\(^-\) fragmentation ✓

NOO\(^-\) + h\(\nu\) → NO + O\(^-\)

O\(^-\) + h\(\nu\) → O + e\(^-\)

NO\(^-\) fragmentation ×

NOO\(^-\) + h\(\nu\) → NO\(^-\) + O

NOO\(^-\) detachment ✓

NOO\(^-\) + h\(\nu\) → NOO + e\(^-\)
Conclusions

- **NO$_2^-$ detachment**: additional e$^-$ structure observed

- **O$^-$ present**: but D_0(ON···O$^-$) = 3.932 eV > $h\nu$ = 2.39 eV

- **Low BE e$^-$**: similar to NO, but with a 600 cm$^{-1}$ shift in dominant vibrational frequency. Also evidence of a second mode

- **ab-initio calculations**: predicted vibrational frequency for peroxy NOO isomer in agreement with PES. Small D_0(NO···O$^-$) = 0.13 eV would explain the presence of O$^-$

- **PAD**: NOO$^-$ detachment more isotropic than NO$^-$

- **Photodynamics**: Photofragment O$^-$ produced but no NO$^-$ produced. Gives final confirmation of peroxy NOO isomer

- **Future Studies**: How abundant is the peroxy isomer in nature? Possible implications?