PUMP AND PROBE SPECTROSCOPY OF CH$_3$F-(ortho-H$_2$)$_n$ CLUSTERS IN SOLID PARAHYDROGEN BY USING TWO CW-IR QUANTUM CASCADE LASERS

HIROYUKI KAWASAKI, ASAO MIZOGUCHI, HIDETO KANAMORI, Department of Physics, Tokyo Institute of Technology, Tokyo, Japan.

The absorption spectrum of the ν_3 (C-F stretching) mode of CH$_3$F in solid para-H$_2$ by FTIR showed a series of equal interval peaksa. Their interpretation was that the n-th peak of this series was due to CH$_3$F-(ortho-H$_2$)$_n$ clusters which were formed CH$_3$F and n's ortho-H$_2$ in first nearest neighbor sites of the para-H$_2$ crystal with hcp structure. In order to understand this system in more detail, we have studied these peaks, especially $n = 0 – 3$ corresponding to 1037 - 1041 cm$^{-1}$, by using high-resolution and high-sensitive infrared quantum cascade laser (QCL) spectroscopy. Before now, we have observed photochromic phenomena of these peaks by taking an advantage of the high brightness of the laserb. However, it has not been revealed what kind of mechanism is undergoing in these processes. In order to solve this problem we introduced two cw-IR QCLs for pump and prove experiment. While the pumping laser is breaching a certain peak with high power, the probing laser is monitoring the increase of other peaks by rapid scan method. The time resolution of this spectroscopy is 5 msec. The new precise kinetic information will help us to understand the molecular interaction in solid para-H$_2$.