Detection of *in vitro* S-nitrosylated Compounds with Cavity Ring-down Spectroscopy

Mary L. Rad, Monique M. Mezher and Kevin K. Lehmann
University of Virginia, Charlottesville, VA

Benjamin M. Gaston
Case Western Reserve University, Cleveland, OH
Introduction
Vasoconstriction → NO released by epithelial cells → Vasodilation

GSNO

Cell Membrane
Trans-nitrosylation

Cell Membrane

GSNO

Cysteine

GSH

SNO-Cys
Cystic Fibrosis

Thick mucus not eliminated by cilia

Immature CFTR Chloride Channel
Functioning CFTR Chloride Channel

GSNO

Cysteine

SNO-Cys
GSNO

Cysteine

L-leucine

SNO-Cys
Cysteine

HS_\text{NH}_2_\text{CO}_2\text{OH}

L-leucine

\text{NH}_2_\text{CH}_3\text{CO}_2\text{OH}
Mass Spectrometry

Chemiluminescence
Mass Spectrometry

Chemiluminescence

Sample Prep: enzymatic digestion, LC, etc.

ionization → M/Z separation → fragmentation → M/Z separation → detection

LOD ~5 ppbV

Pan et al. Sci. Rep. 5: 8725, 2005
Mass Spectrometry

Sample Prep

Sample

enzymatic digestion, LC, etc.

ionization

M/Z separation

fragmentation

M/Z separation

detection

LOD ~5 ppbV

Chemiluminescence

\[\text{NO} + \text{O}_3 \rightarrow \text{NO}_2 + \text{O}_2 \]

Visible light emitted
Methods
$^{14}\text{NO} \quad R(13/2)_{3/2}$

$^{15}\text{NO} \quad R(15/2)_{3/2}$
Optical cavity pressure ~20 torr

100 sccm flow rate: residence time ~10 s
Results
50, 100 and 250 μL injections of 3x serial dilutions of GSNO-15. Data convolved with exponentially modified Gaussian function to suppress noise.

Raw data calibration curve.
LOD (3σ) = 8.23 pmoles
Slope = 0.0175(2) area units/pmole
function er=errcon(x,sig,t,mu)
 t=1/t;
 er=t./2.*exp(t./2.*(2.*mu+t.*sig^2-2.*x)).*erfc((mu+t.*sig^2-x)./(sqrt(2)).*sig));
end
50, 100 and 250 μL injections of 3x serial dilutions of GSNO-15. Data convolved with exponentially modified Gaussian function to suppress noise.

Raw data calibration curve.
LOD (3σ) = 8.23 pmoles
Slope = 0.0175(2) area units/pmole

EMG convolved data calibration curve.
LOD (3σ) = 0.59 pmoles
Slope = 0.0179(3) area units/pmole
Biological Sample Measurement

Human airway epithelial cells incubated with added 15N-s-nitro-cystamine (CANO)

Two cell growth filters RSNO concentration of 10 ± 1 nM
Exponential decay fits of ^{15}NO released vs incubation time $y = y_0 + Ae^{-t/\tau}$

<table>
<thead>
<tr>
<th></th>
<th>$1/\tau$ (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-leucine</td>
<td></td>
</tr>
<tr>
<td>+leucine</td>
<td></td>
</tr>
<tr>
<td>control</td>
<td>0.01 ± 0.5</td>
</tr>
</tbody>
</table>
Exponential decay fits of 15NO released vs incubation time $y = y_0 + Ae^{-t/\tau}$

<table>
<thead>
<tr>
<th>Condition</th>
<th>$1/\tau$ (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-leucine</td>
<td>0.1 ± 0.06</td>
</tr>
<tr>
<td>+leucine</td>
<td>0.1 ± 0.2</td>
</tr>
<tr>
<td>control</td>
<td>0.01 ± 0.5</td>
</tr>
</tbody>
</table>
Future Work
$R(13/2)_{3/2}$
Circularly polarized light gives $\Delta M = +1$ transitions.
Coefficient values ± one standard deviation

\[a = 1.4073 \times 10^{-9} \pm 0.0208 \]

\[b = -0.0090108 \pm 0.0005 \]

Slope = -0.0090108

Slope = -0.010225
Coefficient values ± one standard deviation

\[a = 1.4073 \times 10^{-9} \pm 0.0208 \]
\[b = -0.0090108 \pm 0.0005 \]

Slope = -0.0090108

Slope = -0.010225
Coefficient values ± one standard deviation

\[a = 1.4073 \times 10^{-9} \pm 0.0208 \]

\[b = -0.0090108 \pm 0.0005 \]

\[a = -9.3506 \times 10^{-8} \pm 0.0177 \]

\[b = -0.010225 \pm 0.000499 \]

Slope = -0.0090108

Slope = -0.010225
Coefficient values ± one standard deviation

- $a = 1.4073 \times 10^{-9} \pm 0.0208$
- $b = -0.0090108 \pm 0.0005$

180 MHz p-p Laser Frequency Modulation

Slope = -0.0090108

No Laser Frequency Modulation

Slope = -0.010225
Conclusions
We have implemented an instrument that is capable of reaching the sensitivity necessary for *in vitro* metabolic studies of s-nitrosothiols by way of cell growth medium measurements.

Additional improvements are necessary to determine s-nitrosothiol concentration directly in cultured cells.

Zeeman modulation shows better stability than laser modulation indicating we will have better sensitivity with this new system.

L-leucine has undetermined effect on CANO uptake, but control trials show CANO is being broken down by human airway epithelial cells.
We have implemented an instrument that is capable of reaching the sensitivity necessary for \textit{in vitro} metabolic studies of s-nitrosothiols by way of cell growth medium measurements.

Additional improvements are necessary to determine s-nitrosothiol concentration directly in cultured cells.

Zeeman modulation shows better stability than laser modulation indicating we will have better sensitivity with this new system.

L-leucine has undetermined effect on CANO uptake, but control trials show CANO is being broken down by human airway epithelial cells.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{graph.png}
\caption{Coefficient values ± one standard deviation}
\begin{align*}
a &= -9.3506e-008 \pm 0.0177 \\
b &= -0.010225 \pm 0.000499 \\
\text{Slope} &= -0.010225
\end{align*}
\end{figure}
We have implemented an instrument that is capable of reaching the sensitivity necessary for *in vitro* metabolic studies of s-nitrosothiols by way of cell growth medium measurements.

Additional improvements are necessary to determine s-nitrosothiol concentration directly in cultured cells.

Zeeman modulation shows better stability than laser modulation indicating we will have better sensitivity with this new system.

L-leucine has undetermined effect on CANO uptake, but control trials show CANO is being broken down by human airway epithelial cells.
Acknowledgements

I would like to acknowledge the following for their help and support in the proposal of this project:

Laura Smith, Vitali Stsiapura, Gerard Wysocki

Financial support: UVA, NSF, and NIH
Questions?