Spontaneous and Selective Formation of HSNO, a Crucial Intermediate Linking Nitroso and H$_2$S Chemistries

Matthew J. Nava†, Marie-Aline Martin-Drumel, Christopher A. Lopez, Kyle N. Crabtree, Caroline C. Womack, Thanh L. Nguyen, Sven Thorwirth, Christopher C. Cummins, John F. Stanton and Michael C. McCarthy

†Massachusetts Institute of Technology

June 22, 2016
RSNOs in Biology
RSNOs are speculated to be important signaling molecules

\[
\text{O} \quad \text{N} \quad \text{S} \quad \text{R} = \text{S-nitrosothiol}
\]

- HSNO may be responsible for the 'cross talk' between NO and H\textsubscript{2}S
Evidence for the Presence of HSNO Under Biologically Relevant Conditions

-Treatment of red blood cells with GSNO results in S-nitrosated Hb subunit

--> HSNO can diffuse through cell membranes
Literature Precedent for the Existence of HSNO

Matthew J. Nava

Chem. 1987, 91, 5203–5209

\[3\text{NH}_3 + \text{OSCl}_2 \rightarrow \text{OSNH} + 2\text{NH}_4\text{Cl} \]

\[\text{OSNH} \xrightarrow{\text{hv}, 250 \text{ nm}} \text{HSNO} + \text{HOSN} + \text{HONS} \]

-Structural parameters could not be determined

-The existence of HSNO is still disputed in the biology community
Unknown Lines Identified Upon Mixing H$_2$S and NO

\[\text{NO} + \text{H}_2\text{S} \rightarrow ??? \]

- Discharge diminishes signal
- Lines identified as HSNO

Signal

11762.3 11762.727 11763.3

Frequency (MHz)
Concentration of Relevant Species upon Varying the Amount of H$_2$S

\[4 \text{NO} \rightarrow \text{N}_2\text{O} + \text{N}_2\text{O}_3 \]

\[\text{H}_2\text{S} + \text{N}_2\text{O}_3 \rightarrow \text{HSNO} + \text{HONO} \]

Matthew J. Nava

ISMS 2016
Calculated Pathway for the Formation of HSNO from H$_2$S and N$_2$O$_3$

Calculated at the CCSD(T)/ANO1 level of theory

Matthew J. Nava
ISMS 2016
Formation of N_2O_3 Occurs Through a Metal Surface Catalyzed Disporportionation Reaction

Oxygen can also react with NO to generate NO$_2$

$$3 \text{NO} \xrightarrow{\Delta G=-105\text{kJ/mol}} \text{NO}_2 + \text{N}_2\text{O}_3$$

$$\text{NO} + \text{NO}_2 \leftrightarrow \text{N}_2\text{O}_3$$

$K_{eq}(RT,P) = 0.06$
- Last second mixing enhances HSNO production
- HSNO forms through a surface rx
- SS Mesh just prior to expansion enhances signal
- Premixing NO and O₂ enhances production of HSNO (through N₂O₃)
Concentration of Relevant Species upon Varying the Amount of H$_2$S After Optimization of Conditions

\[\text{trans-HSNO} \]
\[\text{cis-HSNO} \times 5 \]
Attempted Preparation of HSN18O using 18O$_2$

Lack of labeled oxygen incorporation into HSNO

\[
\begin{align*}
\text{NO} + \text{NO}_2 & \rightleftharpoons \text{NO}_2\text{NO} \\
K_{eq}(RT,P): 0.06
\end{align*}
\]

\[
\begin{align*}
2 \text{NO} + \text{O}_2 & \rightarrow 2 \text{NO}_2
\end{align*}
\]

\[
\begin{align*}
^{18}\text{O}_2 & \rightarrow \text{HSNO}^{18}\text{O}
\end{align*}
\]
Attempted Preparation of HSN18O Using H$_2^{18}$O

Incorporation of labeled oxygen into HSNO

Proceeds through N$_2$O$_4$, which generates NO$^+$ and NO$_3^-$
MW Spectrum of the HSN18O Fundamental Line
Acquired with 10 shots

HSN18O

$J' \leftarrow J'' = 1 \leftarrow 0$

$F' \leftarrow F'' =$

$0 \leftarrow 1$

$1 \leftarrow 1$

$2 \leftarrow 1$

MHz

11226.416 11226.886 11227.193

Matthew J. Nava ISMS 2016
1.345(2) 1.834(1) 1.181(1) 95.2(2) 115.93(6)
1.335(3) 1.852(2) 1.177(2) 90.1(1) 114.63(6)
Histogram of S–N Bond Lengths in the CSD

- All S-N bond lengths
- All S-N bond lengths in RSNO compounds
Concentration of Relevant Species upon Varying the Amount of H_2S

Excess H_2S causes depletion of the HSNO signal
Observation of $N_2^{18}O$ Upon Addition of Excess H_2S to $HSN^{18}O$

Nitroxy (HNO) likely species responsible for formation of labeled N_2O

\begin{align*}
\begin{array}{c}
\text{This Work} \\
\text{*Rx not directly confirmed} \\
\text{Known Reaction} \\
*\text{Recall } N_2O \text{ passes through } H_2^{18}O \text{ with } ^{18}O \text{ label incorporation}
\end{array}
\end{align*}
Treatment of N_2O_3 With CH_3SH to Generate CH_3SNO

Confirm utility of this reaction as well as identify intermediates.
- Existence of HSNO was verified and structural parameters were determined

- In vivo conditions were not used but MW spectroscopy can be used to understand fundamental reaction dynamics

- Verify the presence of HNO, a biologically active cellular redox signaling molecule
Acknowledgements

Ivana Ivanovic-Burmazovic
(Friedrich-Alexander-Universität Erlangen-Nürnberg)

Funding:
NSF (CHE-1362118)
NASA (NNX13AE59G)
DFG (TH 1301/3-2)
DOE (DE-FG02-07ER1588)