Acenaphthene (Ace) is a three ring polycyclic aromatic hydrocarbon (PAH), which consists of naphthalene and a non-aromatic five member ring. Ace has been previously been studied by microwave spectroscopy where the rotational constants were reported[1]. New measurements from 2-8 GHz using chirped pulse-Fourier transform microwave spectroscopy (CP-FTMW) will be presented. The high sensitivity achieved enabled us to observe all 13C isotopologues in natural abundance and determine the Kraitchman substitution structure. The spectra of Ace complexed with water and H$_2^{18}$O were also recorded at this frequency range. From these spectra, we have been able to assign the complexes Ace-(H$_2$O)$_n$, n=1-3 and (Ace)$_2$-H$_2$O and experimentally derive the O-atom position of the H$_2$O. The Ace-(H$_2$O)$_3$ complex is especially interesting as the water aggregate forms a slightly distorted cyclic water trimer from that observed in the IR[2]. These complexes could give insight about the formation of ice grains in the interstellar medium.