The Near-IR Spectrum of CH$_4$ is dense with many overlapping bands that perturb each other by vibrational and ro-vibrational interactions. Assignments of the individual lines are needed in order to simulate the spectrum as a function of pressure and temperature, as needed in the search for CH$_4$ in extrasolar planets. Both the group at the University College, London1 and that at the University of Reins2 have produced theoretical spectra that allows simulation up to the high temperatures expected on “Hot Jupiters”. The accuracy of these theoretical spectra need to be further tested.

Because CH$_4$ is a light spherical top, assignment of its perturbed spectra is a formidable challenge as none of the lines allowed in the rigid rotor approximation have ground vibrational state combination differences. We are using IR-IR double resonance to observe modulation in the strength of near-IR absorption caused by a modulation of a 3 μm OPO beam that is tuned to a particular transition in the C-H stretching fundamental of CH$_4$. This produces V-type double resonance transitions (which share the lower state with the pump transition), which provides firm assignments for lines normally observed in absorption in the near-IR. We also observe sequential double resonance which reveals transitions that have a known rotational level of the ν_3 fundamental as the lower state and reaches final states in the 9000 cm$^{-1}$ spectral region. These are states of A, E, F_3 vibrational symmetries which are forbidden in transitions from the ground vibrational state. These 3 level double resonance transitions are Doppler Free and have a linewidth of \sim10 MHz due to a combination of near-IR laser jitter and power broadening of the mid-IR transition. We also observed many 4-level double resonance transitions that we have tentatively assigned as arising from the ν_4 fundamental level. These are distinguished from the 3-level double resonance transitions by they being Doppler broadened and having a large phase shift relative to the intensity modulation.