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Abstract

This thesis primarily addresses the problem of untangling closed geodesics in finite covers of hyperbolic

surfaces. Our motivation comes from results of Scott and Patel. Scott’s result tells us that one can always

untangle a closed geodesic on a hyperbolic surface in a finite degree cover. Our goal is to quantify the

degree of this cover in which the geodesic untangles in terms of the length of the geodesic. Our approach

is to introduce and study the notions of primitivity, simplicity and non-filling index functions for finitely

generated free groups. In joint work with Ilya Kapovich we obtain lower bounds for these functions and

relate these free group results back to the setting of hyperbolic surfaces. Chapters 1-6 in parts comprise of

a joint paper with Kapovich that is under review. Chapter 7 discusses the problem of Nielsen equivalence

in a particular class of generic groups.
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Chapter 1

Introduction

Chapters 1-6 address the problem of untangling closed curves on hyperbolic surfaces by looking at certain

free group functions instead. A group G is residually finite (RF) if for every nontrivial element g ∈ G, there

exists a finite index subgroup H of G such that g /∈ H. A group G is called locally extended residually finite

(LERF) if for any finitely generated subgroup G′ of G and any element g ∈ G with g /∈ G′, there exists a

finite index subgroup H of G which contains G′ but not g. This property of a group is often called “subgroup

separability”.

Let Σ be a compact connected surface with a hyperbolic metric ρ and with (possibly empty) geodesic

boundary. In [59, 60] Scott proved that π1(Σ) is subgroup separable or LERF. In this context, that would

mean that for every finitely generated subgroup K ≤ π1(Σ) and every g ∈ π1(Σ) such that g 6∈ K there

exists a subgroup H ≤ π1(Σ) of finite index in π1(Σ) such that K ≤ H but g 6∈ H. (Scott’s result dealt

with the case of a closed surface S since in the case ∂S 6= ∅, the group π1(S) is free and hence known to be

subgroup separable by a much older result of Hall [30]).

In the same work [59] Scott showed that if γ is a closed geodesic on (Σ, ρ) then there exists a finite cover

Σ̂→ Σ such that γ lifts to a simple closed geodesic in Σ̂, where Σ̂ is given the hyperbolic structure obtained

by the pull-back of ρ. As customary in the context of hyperbolic surfaces, the term “closed geodesic” here

assumes that the curve in question is not a proper power in the fundamental group of the surface. Figure 1

depicts Scott’s result in a picture:

Scott’s result raises lots of interesting questions. We are interested in quantifying the degree of this cover

in which a closed geodesic untangles in terms of the length of the geodesic, or in terms of its self-intersection

number.

Patel [51] obtained quantitative versions of Scott’s subgroup separability result and of his result about

lifting a closed geodesic to a simple one in a finite cover. She proved that for every Σ as above there exists

a hyperbolic metric ρ0 on Σ such that every closed geodesic of length L on (Σ, ρ0) lifts to a simple closed

geodesic in some finite cover of Σ of degree ≤ 16.2L. Since the length functions on π1(Σ) coming from any

two hyperbolic structures on Σ are bi-Lipschitz equivalent, it follows that for any hyperbolic structure ρ on
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Figure 1.1: A pictorial representation of Scott’s result

Σ there is some constant c > 0 such that every closed geodesic of length L on (Σ, ρ) lifts to a simple closed

geodesic in some finite cover of Σ of degree ≤ cL.

In order to quantify Scott’s result in terms of the length of the geodesic, we need some definitions. If

ρ is a hyperbolic structure on Σ, for every closed geodesic γ on (Σ, ρ) we denote by degΣ,ρ(γ) the smallest

degree of a finite cover of Σ such that γ lifts to a simple closed geodesic in that cover. For L ≥ sys(ρ)

(where sys(ρ) is the shortest length of a closed geodesic on (Σ, ρ)) we define fΣ,ρ(L) to be the maximum of

degΣ,ρ(γ) taken over all closed geodesics γ on (Σ, ρ) of length ≤ L. Patel’s result mentioned above implies

that for every hyperbolic structure ρ on Σ there is c > 0 such that fΣ,ρ(L) ≤ cL for all L ≥ sys(ρ).

Kasra Rafi observed that a simple closed geodesic on a hyperbolic surface is a particular example of a

non-filling curve. Thus for a hyperbolic surface (Σ, ρ) as above and for a closed geodesic γ on Σ we can

also define degnfillΣ,ρ (γ) to be the smallest degree of a finite cover of Σ such that γ lifts to a non-filling closed

geodesic in that cover. Again, we define fnfillΣ,ρ (L) to be the maximum of degnfillΣ,ρ (γ) taken over all closed

geodesics γ on (Σ, ρ) of length ≤ L. Thus, in view of Patel’s result, we have fnfillΣ,ρ (L) ≤ fΣ,ρ(L) ≤ cL for

all L ≥ sys(ρ).

However, up to now, nothing has been known about lower bounds for fΣ,ρ(L) or fnfillΣ,ρ (L). (Note that

the first place where the question about quantitative properties of fΣ,ρ(L) was raised, although somewhat
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indirectly, appears to have been the paper of Rivin [56]). In general, obtaining lower bounds for quantitative

results related to residual finiteness is quite difficult, and is often harder than obtaining upper bounds.

Recently there has been a significant amount of research regarding quantitative aspects of residual finiteness;

see, for example [8, 6, 11, 12, 13, 14, 10, 17, 24, 41, 42, 51, 56, 19, 9, 16, 18]. We will discuss some of these

results in more detail below.

Even though the question we are addressing here is a geometric one, our approach to answering it involves

translating this question to the algebraic setting of free groups. We define some “analogous functions” for

free groups, and find bounds for these free group functions (See Chapters 3, 4, 5). We then translate these

free group bounds to our original surface setting (See Chapter 6). All of this is joint work with Ilya Kapovich.

Let N ≥ 2 be an integer and let FN be the free group of rank N . If A is a free basis of FN , for an element

g ∈ FN we denote by |g|A the freely reduced length of g over A and we denote by ||g||A the cyclically reduced

length of g over A. A classic result of Marshall Hall [30] (see also [35] for a modern proof using Stallings

subgroup graphs), proves that finitely generated free groups are subgroup separable. More precisely, Hall

proved that if K ≤ FN is a finitely generated subgroup and g ∈ FN − K then there exists a subgroup

H ≤ FN of finite index such that g 6∈ H, K ≤ H, and, moreover, K is a free factor of H. It is not hard

to adapt the proof of this result to show that for every g ∈ FN , g 6= 1 there exists a subgroup H ≤ FN of

finite index such that g ∈ H and that g is a primitive element of H, that is, that g belongs to some free

basis of H. In fact, a simple argument using Stallings subgroup graphs (Proposition 3.1.5) shows that if A

is a free basis of FN and w is a nontrivial cyclically reduced word in F (A) of length n then there exists a

subgroup H ≤ FN with [FN : H] = n such that w ∈ H is a primitive element of H. For a nontrivial element

g ∈ FN we define the primitivity index dprim(g) = dprim(g;FN ) as the minimum of [FN : H] where H varies

over all subgroups of finite index in FN containing g as a primitive element. Given a free basis A of FN , for

n ≥ 1 we then define fprim(n) = fprim(n;FN ) as the maximum of dprim(g) where g varies over all nontrivial

freely reduced words of length ≤ n in FN = F (A) which are not proper powers in FN . It is not hard to

see that fprim(n) does not depend on the choice of a free basis A of FN ; we call fprim(n) the primitivity

index function for FN . Thus fprim(n) is the smallest monotone non-decreasing function such that for every

nontrivial root-free g ∈ FN we have dprim(g) ≤ fprim(|g|A).

A nontrivial element g ∈ FN is called simple in FN if g belongs to some proper free factor of FN . A

nontrivial element g ∈ FN is called filling in FN if g does not belong to a vertex group of a nontrivial splitting

of FN over the trivial or maximal infinite cyclic subgroup. See Chapter 2 for more precise definitions and a

discussion of these notions. Note that for 1 6= g ∈ FN , if g is primitive then g is simple, and if g is simple then

g is non-filling. For a nontrivial element g ∈ FN let dsimp(g) = dsimp(g;FN ) be the smallest index [FN : H]
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where H varies over all subgroups of finite index in FN such that g ∈ H and that g is simple in H. Finally, let

dnfill(g) = dnfill(g;FN ) be the smallest index [FN : H] whereH varies over all subgroups of finite index in FN

such that g ∈ H and that g is non-filling in H. Thus by definition, we have dnfill(g) ≤ dsimp(g) ≤ dprim(g).

For n ≥ 1 we then define the simplicity index function fsimp(n) = fsimp(n;FN ) as the maximum of dsimp(g)

where g varies over all nontrivial freely reduced words of length ≤ n in FN = F (A) that are not proper

powers in FN . Also, for n ≥ 1 we then define the non-filling index function fnfill(n) = fnfill(n;FN ) as the

maximum of dnfill(g) where g varies over all nontrivial freely reduced words of length ≤ n in FN = F (A)

that are not proper powers in FN .

In view of Proposition 3.1.5 mentioned above, for every nontrivial g ∈ FN we have dsimp(g) ≤ dprim(g) ≤

||g||A ≤ |g|A, and hence fnfill(n) ≤ fsimp(n) ≤ fprim(n) ≤ n (see Lemma 3.1.6 for details).

Note that in defining these functions, our analogies are clear. We have replaced the idea of a geodesic in

the surface setting with that of a group element becoming “nice” (non-filling/simple/primitive) in a finite

index subgroup of the group. Thus, in the free group setting, we want to quantify the index of a subgroup

in which a group element becomes “nice” (non-filling/simple/primitive) in terms of the word length of the

group element. In the surface setting, we want to quantify the degree of a cover in which a geodesic becomes

simple in terms of the length of the geodesic.

In general, we are interested in the following types of questions:

• Understand the actual asymptotics of the “worst-case” index functions fnfill(n), fsimp(n), fprim(n) for

free groups and of their geometric counterparts fΣ,ρ(L) or fnfillΣ,ρ (L).

• Find specific sequences of elements in free groups or curves on surfaces realizing this “worst-case”

behavior or at least exhibiting reasonably fast growth of the corresponding index and degree functions.

• Understand the asymptotics of the indexes dprim(gn), dsimp(gn), dnfill(gn) and of degΣ,ρ(γn), degnfillΣ,ρ (γn)

for various “natural” sequences of group elements gn ∈ FN or closed geodesics γn on (Σ, ρ).

• Understand the relationship between the index functions for free groups and the degree functions for

surfaces, and relate both to other functions measuring quantitative aspects of residual properties of

free and surface groups.

Our first main result provides a lower bound for fnfill(n;FN ):

Theorem A. Let N ≥ 2 and let FN = F (A) where A = a1, . . . , aN . Then there exists a constant c > 0 and

an integer M ≥ 1 such that for all n ≥M we have

fprim(n) ≥ fsimp(n) ≥ fnfill(n) ≥ c log n

log log n
.
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For a finitely generated group G equipped with a finite generating set A, the residual finiteness growth

function RFG(n) is defined as the smallest number d such that for every nontrivial element g ∈ G of

word-length ≤ n with respect to A there exists a subgroup of index at most d in G that does not contain g.

For a free group FN with a free basis A, Khalid Bou-Rabee relates fprim(n, FN ) to the residual finiteness

growth function RFFN (n). Namely, he shows (Theorem 4.3.1) that for n ≥ 1 one has fprim(4n + 4, FN ) ≥

RFFN (n). Using a recent result of Kozma and Thom [42] about lower bounds for RFFN (n), Bou-Rabee then

shows (Corollary 4.3.2) that for all sufficiently large n one has

fprim(4n+ 4) ≥ exp

((
log(n)

C log log(n)

)1/4
)
.

Note that this lower bound behaves almost like n1/4. Moreover, if we assume Babai’s Conjecture on the

diameter of Cayley graphs of permutation groups, then for all sufficiently large n we have an almost linear

lower bound:

fprim(4n+ 4) ≥ n
1

C log log(n) .

Bou-Rabee’s homological trick used in Theorem 4.3.1 does not work for the index functions fsimp(n) and

fnfill(n). Thus for these functions the lower bound given by Theorem A remains the best known bound.

We also obtain a lower bound on dsimp(wn) and dnfill(wn) where wn is a “random” freely reduced word

in F (A) of length n >> 1:

Theorem B. Let N ≥ 2 and let FN = F (A) where A = {a1, . . . , aN}.

Then there exist constants c > 0, D1 > 1, 1 > D2 > 0 such that for n ≥ 1 and for a freely reduced word

wn ∈ F (A) of length n chosen uniformly at random from the sphere S(n) of radius n in F (A) we have

Pµn

(
dsimp(wn) ≥ c log1/3 n

)
≥n→∞ 1−O

(
(D1)−n

D2
)

and

Pµn

(
dnfill(wn) ≥ c log1/5 n

)
≥n→∞ 1−O

(
(D1)−n

D2
)

so that

lim
n→∞

Pµn

(
dsimp(wn) ≥ c log1/3 n

)
= 1

and

lim
n→∞

Pµn

(
dnfill(wn) ≥ c log1/5 n

)
= 1

Here µn is the uniform probability distribution on the n-sphere S(n) ⊆ FN = F (A).
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It remains an interesting question to understand the actual behavior of dsimp(wn) and dnfill(wn) on

“random” elements wn ∈ FN and, in particular, to see if dsimp(wn) and dnfill(wn) admit sublinear upper

bounds.

Finally, in Chapter 6 we relate the above results for free groups to the original motivating questions

about the degree functions for hyperbolic surfaces. Thus, applying Theorem B suitably, we obtain:

Theorem C. Let (Σ, ρ) be a compact connected hyperbolic surface with b ≥ 1 geodesic boundary compo-

nents. Then there exists C ′ > 0 such that for all sufficiently large L we have

fΣ,ρ(L) ≥ fnfillΣ,ρ (L) ≥ C ′ logL

log logL
.

Similarly, using Theorem A, we obtain :

Theorem D. Let Σ be a compact connected surface with a hyperbolic structure ρ and with (possibly

empty) geodesic boundary. Let Σ1 ⊆ Σ be a compact connected subsurface with ≥ 3 boundary components,

each of which is a geodesic in (Σ, ρ). Let x ∈ Σ1 and let A be a free basis of π1(Σ1, x).

Let wn ∈ F (A) = π1(Σ1, x) be a freely reduced word of length n over A±1 generated by a simple non-

backtracking random walk on F (A) = π1(Σ1, x). Let γn be the closed geodesic on (Σ, ρ) in the free homotopy

class of wn.

Then there exist constants c > 0,K ′ ≥ 1 such that

lim
n→∞

Pr(degΣ,ρ(γn) ≥ c log1/3 n) = 1

and such that with probability tending to 1 as n → ∞ we have that wn ∈ π1(Σ, x) is not a proper power

and that n/K ′ ≤ `ρ(γn) ≤ K ′n.

Chapters 2-6 are in a joint paper with Kapovich on the ArXiv:1411.5523. In the original November 2014

version of the ArXiv paper we used Theorem D to obtain, for all sufficiently large L, a lower bound

fΣ,ρ(L) ≥ c log1/3 L,

where (Σ, ρ) is a closed hyperbolic surface. At the time this was the only known lower bound for fΣ,ρ(L).

Motivated by our work, Jonah Gaster [23] subsequently obtained a linear lower bound fΣ,ρ(L) ≥ cL and

exhibited a specific sequence of curves γn in Σ, living in a pair-of-pants subsurface of Σ, realizing this lower

bound. Thus, Gaster shows that for his sequence of curves, one needs a cover of degree at least cL to

untangle. He does not address what one needs for a random sequence of curves, which is what we work
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with. Further, since Gaster’s curves are already non-filling in Σ and have degnfillΣ,ρ (γn) = 1, his proof does

not provide any lower bounds for fnfillΣ,ρ (L). Thus, for the moment the lower bound for fnfillΣ,ρ (L) given by

Theorem C remains the best bound known.

In Section 6.3 we also relate our results to the versions of fΣ,ρ(L) and fnfillΣ,ρ (L) that do not involve a

hyperbolic metric and use the geometric intersection number i([γ], [γ]) instead of the hyperbolic length of

γ in their definitions. Also, in Section 3.2 we prove algorithmic computability of the indexes dprim(g, FN )

dsimp(g, FN ), dnfill(g, FN ) and of the corresponding index functions fprim(n), fsimp(n), fnfill(n); see Theo-

rem 3.2.14 and Theorem 3.2.18.

In Chapter 7 we discuss the question of establishing Nielsen equivalence classes of generating tuples in

a certain class of random groups. The precise meaning of what we mean by “random” here is addressed in

Section 7.2.2 of Chapter 7. Jakob Nielsen defined the notion of Nielsen Equivalence in the 1920s [49, 50].

If G is a group, n ≥ 1, and τ = (g1, . . . , gn) is an ordered n-tuple of elements in G, an elementary Nielsen

transformation on τ is one of the following three types of moves:

1. For some i ∈ {1, . . . , n} replace gi in τ by g−1
i

2. For some i 6= j, i, j ∈ {1, . . . , n} interchange gi and gj in τ

3. For some i 6= j, i, j ∈ {1, . . . , n} replace gi in τ by gig
±1
j

Two n-tuples τ = (g1, . . . , gn) and τ ′ = (g′1, . . . , g
′
n) are called Nielsen equivalent, denoted τ ∼NE τ

′, if there

exists a finite chain of elementary Nielsen transformations taking τ to τ ′.

In general, it is quite hard to distinguish between Nielsen equivalence classes of n-tuples that generate

the same group. Our specific goal in Chapter 7 is to extend a result of Kapovich and Weidmann [39]

which essentially shows that in a certain class of groups, there exist generating n-tuples (a1, . . . , an), and

(b1, . . . , bn) such that the (2n− 1)-tuples

(a1, . . . , an, 1, . . . , 1︸ ︷︷ ︸
n− 1 times

) and (b1, . . . , bn, 1, . . . , 1︸ ︷︷ ︸
n− 1 times

) are not Nielsen-equivalent. In particular, this group admits

at least 2 Nielsen equivalence classes of generating n-tuples. We show that in fact for any k ≥ 2, there exists

a class groups that admits precisely k Nielsen equivalence classes of generating n-tuples. More precisely, the

main result here is:

Theorem E. Let k ≥ 2, n ≥ 2 be arbitrary integers. Then there exists a generic set R of kn-tuples

τ = (u11, . . . , u1n, u21, . . . , u2n, . . . , uk1, . . . , ukn)

where for each τ ∈ R, i ∈ {1, . . . , k}, j ∈ {1, . . . , n}, uij is a cyclically reduced word in F (ai1, . . . , ain).
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Further, |u11| = . . . = |u1n| = . . . = |uk1| = . . . = |ukn| and such that the following holds for each

τ = (u11, . . . , u1n, u21, . . . , u2n, . . . , uk1, . . . , ukn) :

Let G be a group given by the presentation:

G =< a11, . . . , a1n, . . . , ak1, . . . , akn|a1j = u2j(a2), a2j = u3j(a3), . . . , a(k−1)j = ukj(ak),

akj = u1j(a1), for 1 ≤ j ≤ n >, (*)

where for i ∈ {1, . . . , k}, (ai) = (ai1, . . . , ain). Then G is a torsion-free word-hyperbolic one-ended group of

rank n admitting precisely k Nielsen equivalence classes of generating n-tuples.

We use “genericity” conditions and small cancellation conditions to obtain this result. As an immediate

corollary one gets that:

Corollary A. For all integers k ≥ 2, n ≥ 2 there exists a non-elementary torsion-free word-hyperbolic

one-ended group of rank n such that G has exactly k distinct Nielsen equivalence classes of n-tuples that

generate G.

It should be noted that for the case k = 1, the above result holds due to Kapovich and Schupp [37].

Finally, in Chapter 8 we discuss a short aside on the index of the image of a finite index subgroup of

F (a, b) in a quotient F (a, b)/N . We also discuss some interesting open questions with regards to the material

presented in Chapters 1-6.
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Chapter 2

Preliminaries

2.1 Graphs and Edge Paths

The exposition in this section follows that of [36].

Definition 2.1.1. A graph is a 1-dimensional cell-complex. The 0-cells of Γ are called vertices and we

denote the set of vertices of Γ by V Γ. The open 1-cells of Γ are called topological edges of Γ and the set of

topological edges are denoted by EtopΓ.

Every topological edge of Γ is homeomorphic to the open interval (0, 1) and thus, when viewed as a

1-manifold, admits two possible orientations. An oriented edge of Γ is a topological edge with a choice of

orientation on it. We denote by EΓ the set of all oriented edges of Γ. If e ∈ EΓ is an oriented edge, we

denote by ē the same underlying edge with the opposite orientation. Note that for every e ∈ EΓ we have

ē 6= e and ¯̄e = e; thus : EΓ→ EΓ is an involution with no fixed points.

Since Γ is a cell-complex, every oriented edge e ∈ EΓ comes equipped with the orientation-preserving

attaching map je : [0, 1]→ Γ such that je maps (0, 1) homeomorphically to e and such that je(0), je(1) ∈ V Γ

(though not necessarily distinct). For e ∈ EΓ we call je(0) the initial vertex of e, denoted o(e), and we call

je(1) the terminal vertex of e, denoted t(e). Thus, by definition, o(ē) = t(e) and t(ē) = o(e).

For any vertex x ∈ V Γ, the degree of x in Γ denoted by deg(x) is the cardinality of the set {e ∈ EΓ|o(e) =

x}.

An orientation on a graph Γ is a partition EΓ = E+Γ t E−Γ such that for an edge e ∈ EΓ we have

e ∈ E+Γ if and only if ē ∈ E−Γ.

An edge-path p in Γ is a sequence of edges e1, e2, . . . , ek with ei ∈ EΓ for all i and o(ej) = t(ej−1) for all

2 ≤ j ≤ k. The length |p|, of the path p is the number of edges in p, that is |p| = k. We put o(p) = o(e1),

and t(p) = t(ek). We define p−1 := ek, ek−1, . . . , e1. A path p in a graph Γ is reduced if it does not contain

any sub-paths of the form e, e−1 where e ∈ EΓ is an edge.

Definition 2.1.2. For two graphs Γ1 and Γ2, a morphism or a graph-map f : Γ1 → Γ2 is a continuous
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map f such that f(V Γ1) ⊆ V Γ2 and such that the restriction of f to any topological edge e ∈ Γ1 is a

homeomorphism between e and some topological edge e′ of Γ2. Thus a morphism f : Γ1 → Γ2 naturally

defines functions f : EΓ1 → EΓ2 and f : V Γ1 → V Γ2 such that for any e ∈ EΓ1 we have f(ē) = f(e) ∈ EΓ2,

o(f(e)) = f(o(e)) and t(f(e)) = f(t(e)).

Definition 2.1.3. Let Γ be a graph and x ∈ V Γ. Then the core of Γ at x is defined as:

Core(Γ, x) = ∪{p |where p is a reduced path in Γ fromx tox}

Note that Core(Γ, x) is a connected subgraph of Γ containing x. If Core(Γ, x) = Γ we say that Γ is a

core graph with respect to x. The graph Core(Γ, x) has no degree 1 vertices except possibly x itself.

Proposition-Definition 2.1.4. Let Γ be a graph, and x ∈ V Γ. Choose a maximal subtree T ⊆ Γ, and an

orientation EΓ = E+Γ t E−Γ. For e ∈ EΓ define [x, o(e)]T to be the unique reduced path in T from x to

o(e), and let se := [x, o(e)]T e [t(e), x]T . Let ST := {se | e ∈ E+Γ− T}. Then π1(Γ, x) is free and ST is a free

basis of π1(Γ, x).

We call ST the free basis of π1(Γ, x) dual to T .

We need to explicitly say how to rewrite elements of π1(Γ, x) in terms of the basis ST , both as freely

reduced words and cyclically reduced words.

Proposition 2.1.5. Let γ ∈ π1(Γ, x) and T be as above. Suppose E+Γ − T = {e1, . . . , em}. Then ST =

{sei |1 ≤ i ≤ m}. Then:

1. Rewriting γ as a freely reduced word in ST : Delete from γ all edges of T and replace each e±1
i by s±1

ei .

The result is a freely reduced word over ST representing γ ∈ π1(Γ, x).

2. Rewriting γ as a cyclically reduced word in ST : First cyclically reduce the edge-path γ by removing the

maximal initial and terminal segments of γ that cancel in the concatenation γγ. The result is a subpath

γ1 of γ such that γ1 is a closed cyclically reduced path (though γ1 maybe based at a vertex different

from x). Now apply the previous procedure to γ1: delete all edges of T and replace each e±1
i by s±1

ei .

The result is the cyclically reduced form of γ ∈ π1(Γ, x) over ST .

2.2 Graphs and subgroups

In a seminal paper from 1983 Stallings [63] used labeled graphs to study subgroups of free groups. We give

a brief exposition of the relevant definitions and results below and refer the reader to[35] for details.
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Recall that we fix for the free group FN = F (A) = F (a1, . . . , aN ) (where N ≥ 2), a distinguished free

basis A = {a1, . . . , aN}. If w is a word in Υ = A t A−1, we will denote by w the freely reduced word in Υ

obtained from w by performing all possible (if any) free reductions.

Definition 2.2.1. An A-graph Γ consists of an oriented graph where every edge e ∈ EΓ is labeled by a

letter µ(e) ∈ A t A−1 in such a way that µ(ē) = (µ(e))−1. Multiple edges between vertices and loops at a

vertex are allowed. An A-graph Γ is said to be folded if there does not exist a vertex x and two distinct

edges e1, e2 with o(e1) = o(e2) = x such that µ(e1) = µ(e2). Otherwise Γ is said to be non-folded.

An A-graph Γ is said to be A-regular if for every vertex x ∈ V Γ and for every ai, there is precisely one

outgoing edge at x labeled by ai and precisely one incoming edge at x labeled by ai (thus, in particular, an

A-regular graph is folded).

If Γ is an A-graph and p = e1, . . . , ek is an edge-path in Γ, then p has a label which is a word in AtA−1

and we denote this label by µ(p) = µ(e1)µ(e2) . . . µ(ek). The definitions immediately imply:

Lemma 2.2.2. An A-graph Γ is folded if and only if the label of every reduced path in Γ is a freely reduced

word.

Definition 2.2.3. Let Γ be an A-graph. Suppose e1, e2 are distinct edges with a common initial vertex

o(e1) = o(e2) = x and with the same label µ(e1) = µ(e2) = a ∈ A t A−1. We fold the two edges e1 and e2

into a single edge e with µ(e) = a. The resulting A-graph Γ′ is said to have been obtained from Γ via a fold.

The following proposition is from [63] and immediately follows from definitions:

Proposition 2.2.4. Let Γ be a connected A-graph, and let Γ′ be obtained from Γ via a fold. Then

rank(π1(Γ′)) ≤ rank(π1(Γ)).

In this thesis, when we refer to the rank of a graph, we will always mean the rank of the fundamental

group of the graph.

Definition 2.2.5. For any two A-graphs Γ1 and Γ2, a map f : Γ1 → Γ2 is an A-morphism if f is a graph-map

such that µ(e) = µ(f(e)).

For FN = F (a1, . . . , aN ) we define the standard N -rose RN to be the wedge of N loop-edges each labeled

by a1, . . . , aN respectively, at a vertex x0. Then F (A) = π1(RN , x0).

For Γ an A-graph, x ∈ V Γ and µ as before, we can define a map µ# : π1(Γ, x) → F (A) as p 7→ µ(p).

This map is a group homomorphism.

Notation 2.2.6. For Γ an A-graph, x ∈ V Γ we say that (Γ, x) represents the subgroup H := µ#(π1(Γ, x)) ≤

F (A).
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Stallings also showed that any A-graph can be folded without changing the image of the induced homo-

morphism µ#.

Proposition-Definition 2.2.7. [63, 35] Let H ≤ F (A). Then there exists a connected, folded A-graph Γ

with x0 ∈ V Γ such that Γ = Core(Γ, x0) and (Γ, x0) represents

H = {µ(p) | p is a reduced path in Γ fromx0 tox0} ≤ F (A)

Moreover, such a (Γ, x0) is unique. This graph (Γ, x0) is called the Stallings subgroup graph of H with respect

to A.

If (Γ, x0) is the Stallings subgroup graph for H, then the labeling map µ : π1(Γ, x0) → H is a group

isomorphism. If T ⊆ Γ is a maximal tree and ST = {se|e ∈ E+(Γ − T )} is the dual free basis of π1(Γ, x0),

then µ(ST ) = {µ(se)|e ∈ E+(Γ− T )} is a free basis of H.

Given a tuple τ = (g1, . . . , gk) of elements from F (A), we can construct a graph Sτ with base vertex x0

such that µ#(π1(Sτ , x0)) =< g1, . . . , gk > as follows: for 1 ≤ i ≤ k, if gi 6= 1 draw a circle ci at vertex x0

such that the label of ci is the reduced word representing gi.

g1

g2

gs

µ

a1

a2

aN

Figure 2.1: The map µ from Sτ to RN

In particular since folding a graph does not change the image of the induced homomorphism, we have

that:

Lemma 2.2.8. Let Γ be an A-graph such that µ# : π1(Γ, x) → π1(RN , x0) is surjective. Then there exists

a finite sequence of A-graphs

Γ = Γ0,Γ1, . . . ,Γn = RN

such that Γi can be obtained from Γi−1 by a single fold for 1 ≤ i ≤ n.
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Remark 2.2.9. Note that by Proposition 2.2.4, in the above sequence if rank(Γ0) = N , then for every

1 ≤ i ≤ n, we have that rank(Γi) = N .

The remainder of this section is relevant for Chapter 7. We will now describe some transformations

of labeled graphs that were first described by Arzhantseva and Ol’shanskii [3]. Here we describe them as

defined in [37]. Let us fix a quotient group G = F (A)/N where N is a normal subgroup of F (A) for the

remaining part of this section.

An arc in a graph Γ is a simple path, possibly closed, where every intermediate vertex of the path has

degree two in Γ.

Definition 2.2.10. (Arzhantseva-Ol’shanskii “AO move”) Let p = p1p
′p2 be a reduced edge-path in an

A-graph Γ such that p′ is an arc of Γ and the paths p1, p2 do not overlap p′. Let p have initial vertex x,

terminal vertex y, and label µ(p) = v. Let z be a reduced word such that v =G z.

We now modify Γ by adding a new arc q from x to y with label z and removing all the edges of p′ from Γ.

We will say that the resulting A-graph Γ′ is obtained from Γ by an AO-move.

This move essentially “completes a relator cycle” by adding in the path q and then removing the arc

p′. Further note that the first part of the move (adding q) decreases the Euler characteristic by one while

the second part (removing p′) increases the Euler characteristic by one. Hence, the Euler characteristic is

unchanged by an AO-move.

The following two propositions are from [37].

Proposition-Definition 2.2.11. Let Γ be a connected A-graph with a base-vertex x. Then the labeling

of paths gives rise to a homomorphism

φ : π1(Γ, x)→ G

such that for every path p from x to x we have φ([p]) =G µ(p) in G where [p] stands for the equivalence

class of p in π1(Γ, x). We say that H = φ(π1(Γ, x)) ≤ G is the subgroup represented by π1(Γ, x).

Moreover the following is true:

(1) If Γ is finite then image(φ) is finitely generated. In addition, Γ has Euler characteristic 1 − k if and

only if the free group π1(Γ, x) has rank k and hence φ(π1(Γ, x)) can be generated by k elements.

(2) If x0 is another vertex of Γ then the pairs (Γ, x) and (Γ, x0) define conjugate subgroups of G.

(3) Every finitely generated subgroup of G can be represented in this fashion for some finite connected

Γ. Moreover, if H ≤ G is k-generated, then H can be represented by a connected A-graph of Euler

characteristic ≥ 1− k.
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Proposition 2.2.12. Let Γ be a connected A-graph with a base-vertex x. Suppose Γ′ is obtained from Γ

by a finite sequence of folds and AO- moves and that x′ is the image of x in Γ′. Then the pairs (Γ, x) and

(Γ′, x′) define the same subgroup of G.

Moreover, if Γ′ is obtained from Γ by removing a degree-one vertex, then for every pair of vertices y of Γ

and y′ of Γ′, the pairs (Γ, y) and (Γ′, y′) define conjugate subgroups of G.

2.3 Primitive, simple, and non-filling elements

Definition 2.3.1 (Primitive elements and simple elements). In the free group FN , a non-trivial element

g ∈ FN is called primitive in FN if g belongs to some free basis of FN .

In the free group FN , a non-trivial element g ∈ FN is called simple in FN if g belongs to a proper free

factor of FN . That is, there exist non-trivial subgroups H,K of FN such that g ∈ H and FN is the free

product FN = H ∗K.

Definition 2.3.2 (Non-filling elements). An element g ∈ FN is said to be non-filling in FN if there exists a

splitting of FN as an amalgamated free product FN = K ∗C L or as an HNN-extension FN = 〈K, t|t−1Ct =

C ′〉, such that C ≤ FN is either trivial or a maximal cyclic subgroup, such that in the FN = K ∗C L case

C 6= K,C 6= L, and such that g ∈ K.

An element g ∈ FN is said to be filling in FN if g is not non-filling.

Remark 2.3.3. Note that if g ∈ FN is primitive, then it is also simple. Similarly, if g ∈ FN is simple, then

g is non-filling.

Also, for elements of FN the properties of being primitive, being simple and being non-filling are preserved

under applying arbitrary automorphisms of FN .

2.3.1 Culler-Vogtmann Outer Space and Closure

There are multiple descriptions of Culler-Vogtmann Outer Space that exist. We will describe one in terms

of actions on trees. Please refer to [5, 22, 32, 34, 43] for details. An R-tree is a space T with metric d where

any two points P,Q ∈ T are joined by a unique arc and this arc is isometric to the interval [0, d(P,Q)] ⊂ R.

We’ll assume that an R-tree T always comes with a left action of FN on T by isometries. Any isometry w of

T is either elliptic, in which case it fixes at least one point of T , or else it is hyperbolic, in which case there

is an axis Ax(w) in T , isometric to R, which is w-invariant, and along which w acts as translation. A tree

action is called small [43] if any two group elements that fix pointwise a non-trivial arc in T commute. It is

called very small [43] if moreover:
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(i) the fixed set Fix(g) ⊂ T of any elliptic element 1 6= g ∈ FN is a segment or a single point (i.e., no

branching), and

(ii) Fix(g) = Fix(gm) for all g ∈ FN and m ≥ 1.

Let T, T ′ be R-trees; a map f : T → T ′ is called a homothety if f is FN -equivariant and bijective, and if

there is some positive real number λ such that for any x, y ∈ T , we have dT ′(f(x), f(y)) = λdT (x, y).

Let N ≥ 2. The unprojectivized Outer space cvN consists of all minimal free and discrete isometric

actions of FN on R-trees (where two such actions are considered equal if there exists an FN -equivariant

isometry between the corresponding trees). For each g ∈ FN and T ∈ cvN , we define translation length,

denoted ||g||T , by ||g||T = inf{d(x, gx)|x ∈ T}. Further, projectivized Culler-Vogtmann outer space is the

subset CVN ⊆ cvN which consists of those trees T for which the quotient metric graph T/FN has volume

1. The closed Outer space of rank N , denoted CVN , is the topological space whose underlying set consists

of homothety classes of very small isometric actions of FN on R-trees.

The following proposition relates the property of being filling in FN to CVN :

Proposition 2.3.4. [34, 62] Let 1 6= g ∈ FN . Then the following conditions are equivalent:

1. The element g is filling in FN .

2. For every minimal very small isometric action of FN on a nontrivial simplicial tree T we have ||g||T >

0.

3. For every minimal very small isometric action of FN on a nontrivial R-tree T we have ||g||T > 0.

Proof. The proof of this statement is implicit in [34, 62] but we sketch the argument for completeness.

Part (3) directly implies part (2). Since the simplicial splittings that appear in Definition 2.3.2 are very

small, part (2) also directly implies part (1).

To see that part (1) implies part (3), suppose that 1 6= g ∈ FN is filling but that there exists a minimal

very small isometric action of FN on a nontrivial R-tree T we have ||g||T = 0. Then a result of Guirardel [28]

implies that there exists a very small minimal simplicial FN -tree T ′ with ||g||T ′ = 0. Taking the quotient

graph of groups T ′/FN and collapsing all edges except one in this graph gives us a splitting of FN as in

Definition 2.3.2 such that g is conjugate to a vertex group element for that splitting. This contradicts the

assumption that g is filling in FN . Thus (1) implies (3), as required.
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2.4 Whitehead Graphs

We now describe the relationship between simple elements, primitive elements, and Whitehead graphs.

Definition 2.4.1. [Whitehead graph] Let FN = F (A) be as before and let w ∈ FN be a nontrivial cyclically

reduced word. Let c be the first letter of w. The word wc is then freely reduced.

The Whitehead graph of w with respect to A, denoted by WhA(w), is an undirected graph whose set of

vertices V (WhA(w)) = Υ. Edges are added as follows: For a, b ∈ V (WhA(w)), there is an undirected edge

joining a−1 and b if ab or b−1a−1 occurs as a subword of wc.

Example 2.4.2. For w = ab2 ∈ F (a, b) = F (A), wc = abba, and then WhA(w) is given by:

a b

a−1 b−1

Note that if w̃ is a cyclic permutation of w or of w−1 then WhA(w) = WhA(w̃).

For an arbitrary 1 6= g ∈ FN , we put WhA(g) := WhA(w), where w is the cyclically reduced form of g

in F (A).

Recall that a cut vertex in a graph ∆ is a vertex x such that ∆−{x} is disconnected. Note that if ∆ has

at least one edge and is disconnected, then Γ does possess a cut vertex; namely any end-vertex of an edge

of ∆ is a cut vertex in this case.

Example 2.4.3. Observe that the Whitehead graph in 2.4.2 has a cut vertex at the vertex b:

a b

a−1 b−1

n

Generalizing a result of Whitehead, Stallings established the relationship between simple elements and

Whitehead graphs [64]:

Proposition 2.4.4. [64] Let FN = F (A), where N ≥ 2 and let g ∈ F (A) be a cyclically reduced word. If g

is simple, then the Whitehead graph WhA(g) has a cut vertex.

Notice that Remark 2.3.3 implies that if g ∈ F (A) is primitive, then WhA(g) has a cut vertex.

Remark 2.4.5. Stallings’ definition of Whitehead graphs differs slightly from our definition. Assume the

same setting as in Definition 2.4.1. Stallings adds an edge from a−1 to b for each occurrence of a subword
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ab in wc. Let us call the Whitehead graph of a cyclically reduced word w under Stallings’ definition Γ, and

the corresponding graph under our definition Γ1. It is clear that V (Γ) = V (Γ1). Further it is easily checked

that x ∈ V (Γ) is a cut-vertex in Γ if and only if x ∈ V (Γ1) is a cut-vertex in Γ1. Thus Proposition 2.4.4

holds for our definition of Whitehead graphs just as well.

Finally, note that if the Whitehead graph of an element has a circuit that contains all the vertices, then

it can not have a cut vertex. This occurs, for instance, when the string a2
Na

2
1a

2
2 . . . a

2
N occurs as a subword

of a cyclically reduced form of g. In this case g is not simple (and hence not primitive) as its Whitehead

graph does not have a cut vertex. We state this explicitly as a corollary of Proposition 2.4.4:

Corollary 2.4.6. Let FN = F (A), where N ≥ 2 and A = {a1, . . . , aN}. If a cyclically reduced word

w ∈ F (A) contains the subword a2
Na

2
1a

2
2 . . . a

2
N then w is not simple (and hence not primitive) in F (A).

The Whitehead graph, as defined above, records the information about two-letter subwords in the cycli-

cally reduced form w of a nontrivial element g ∈ FN = F (A). There are also generalizations of the Whitehead

graph recording the information about k-letter subwords of w, where k ≥ 2 is a fixed integer. These gener-

alizations are commonly known as “Rauzy graphs” or “initial graphs” and naturally occur in the study of

geodesic currents on free groups [31, 32, 33].

We do not formally define these “level k” versions of the Whitehead graph here because we only need

the following specific statement related to the k = 3 case:

Proposition 2.4.7. [21] Let FN = F (A), where N ≥ 2 and A = {a1, . . . , aN}. Let w be a nontrivial

cyclically reduced word in F (A) such that for every freely reduced word v ∈ F (A) with |v| = 3 the word v

occurs a subword of a cyclic permutation of w or of w−1.

Then w is filling in FN (and, in particular, w is non-simple and non-primitive in FN ).
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Chapter 3

Primitivity, Simplicity, and
Non-Filling Index Functions

In this chapter we formally introduce the free group analogues of our surface group functions degΣ,ρ(γ), fΣ,ρ(L),

and degnfillΣ,ρ (γ), fnfillΣ,ρ (L) (see Chapter 1).

3.1 Analogous Functions in Free Groups

In 1949 Marshall Hall Jr. proved in [30] that any finitely generated subgroup of a free group FN is a free

factor of a finite index subgroup of FN . We state the result in a more precise form, as stated in [63]:

Proposition 3.1.1. [63] Let α1, . . . , αk, β1, . . . , βl be elements of a free group FN . Let S be a subgroup of

FN generated by {α1, . . . , αk}. Suppose βi /∈ S for i = 1, . . . , l. Then there exists a subgroup S′ of finite

index in FN , such that S ⊂ S′, βi /∈ S′ for i = 1, . . . , l, and there exists a free basis of S′ having a subset

that is a free basis of S.

If we pick g 6= 1 ∈ FN and apply the above result to the infinite cyclic subgroup S = 〈g〉, we get that

there must exist a finite index subgroup S′ of FN such that g is a primitive element in S′ (and hence g ∈ S′

is non-simple and non-filling in S′).

This fact motivates the following definition:

Definition 3.1.2. [Primitivity, simplicity and non-filling indexes]

Let N ≥ 2 be an integer and let FN be a free group of rank N . Let 1 6= g ∈ FN .

Define the primitivity index dprim(g) = dprim(g, FN ) of g in FN to be the smallest possible index for a

subgroup L ≤ FN containing g as a primitive element.

Define the simplicity index dsimp(g) = dsimp(g, FN ) to be the smallest possible index for a subgroup

L ≤ FN containing g as a simple element.

Finally, define the non-filling index dnfill(g) = dnfill(g, FN ) to be the smallest possible index for a

subgroup L ≤ FN containing g as a non-filling element.
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As noted above, Proposition 3.1.1 implies that for every nontrivial g ∈ FN we have dnfill(g) ≤ dsimp(g) ≤

dprim(g) <∞.

Definition 3.1.3 (Primitivity, simplicity and non-filling index functions). Let FN be a free group of rank

N ≥ 2 and let A be a free basis of FN . For any n ≥ 1 define the primitivity index function for FN as:

fprim(n) = fprim(n;FN ) := max
1≤|g|A≤n, g 6=1

g not a proper power in FN

dprim(g)

Similarly, for n ≥ 1 define the simplicity index function for FN as:

fsimp(n) = fsimp(n;FN ) := max
1≤|g|A≤n, g 6=1

g not a proper power in FN

dsimp(g)

Finally, for for n ≥ 1 define the non-filling index function for FN as:

fnfill(n) = fnfill(n;FN ) := max
1≤|g|A≤n, g 6=1

g not a proper power in FN

dnfill(g)

It is easy to see that the definitions of fprim(n;FN ), fsimp(n;FN ) and fnfill(n;FN ) do not depend on

the choice of a free basis A of FN . Note that fprim(n) is the smallest monotone non-decreasing function

such that for every non-trivial root-free g ∈ FN we have dprim(g) ≤ fprim(|g|A); similar reformulations hold

for fsimp(n) and fnfill(n).

Again, the purpose behind defining these free group functions is to find analogues for the corresponding

surface group functions. In the surface setting we are addressing the problem of “untangling” a closed

geodesic in a finite cover, and we wish to quantify the degree of that cover in terms of the length of the

geodesic. In free groups our notion of “untangling” is to make a group element primitive or simple or non-

filling. We then want to quantify the smallest index of a subgroup in which our group element “untangles”

in terms of the word length of our group element. So now, we will quantify these free group functions.

It turns out that finding upper bounds in this setting is quite straightforward. We recall the following

well-known fact, which is Lemma 8.10 in [35]:

Lemma 3.1.4. Let Γ be a finite folded A-graph. Then there exists a finite folded A-regular graph Γ′ such

that Γ is a subgraph of Γ′ and such that V Γ = V Γ′.

Proposition 3.1.5. For every non-trivial cyclically reduced word w ∈ F (A) of length n, there exists a finite

index subgroup H ≤ F (A) of index n such that w ∈ H is primitive in H.
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Proof. Take the word w of length n and write it on a circle of simplicial length n. Pick a vertex x as the

base vertex. Call this graph (Γw, x). By Lemma 3.1.4 we can complete this graph to a finite cover (Γ′w, x) of

the N -rose without adding any extra vertices. Thus (Γ′w, x) has n vertices and represents a subgroup H of

FN of index precisely n. The fact that w is realized as the label of a simple closed curve in (Γ′w, x) implies

that w is a primitive element in H. It is clear that w ∈ H by definition of H. Note that since (Γ′, x) has no

extra vertices, a maximal tree T of (Γ, x) consists of all but one edge of the simple closed curve representing

w. Let e ∈ E+Γ′ − T . Then µ(se) = w and hence w is primitive. See Figure 3.1 for a pictorial proof.

Figure 3.1: Proof by Picture for Proposition 3.1.5

Proposition 3.1.5, together with the definitions, directly implies:

Lemma 3.1.6. Let N ≥ 2 and let FN be free of rank N . Then the following hold:

1. If 1 6= g ∈ FN = F (A) then

dnfill(g) ≤ dsimp(g) ≤ dprim(g) ≤ ||g||A ≤ |g|A = n.

2. For every n ≥ 1 we have

fnfill(n) ≤ fsimp(n) ≤ fprim(n) ≤ n.
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3. Let 1 6= g ∈ FN and let α ∈ Aut(FN ). Then dprim(g) = dprim(α(g)), dsimp(g) = dsimp(α(g)) and

dnfill(g) = dnfill(α(g)).

4. If 1 6= g ∈ FN and k ≥ 1 is an integer, then dsimp(g
k) ≤ dsimp(g) and dnfill(g

k) ≤ dnfill(g).

In particular, part (3) of the above lemma shows that for g1, g2 conjugate non-trivial elements of FN , we

have dprim(g1) = dprim(g2), dsimp(g1) = dsimp(g2) and dnfill(g1) = dnfill(g2).

As noted above, if 1 6= g ∈ FN and k ≥ 1 is an integer, then dsimp(g
k) ≤ dsimp(g) and dnfill(g

k) ≤

dnfill(g). However, the function dprim(g) does not behave well under taking powers, as demonstrated by the

following lemma:

Lemma 3.1.7. For any ai ∈ {a1, . . . , aN}, and any positive integer n, dprim(ani ) = n.

Proof. As noted above, for every nontrivial g ∈ FN we have dsimp(g) ≤ dprim(g) ≤ ||g||A. Thus dprim(ani ) ≤

||ani ||A = n. We need to show that dprim(ani ) ≥ n.

Let d = dprim(ani ) and let H ≤ FN be a subgroup of index d such that ani ∈ H and that ani is a

primitive element of H. Let (Γ, ∗) be the d-fold cover of RN corresponding to H, so that for the covering

map p : Γ→ RN have π1(Γ, ∗) ∼= H and p# = µ : π1(Γ, ∗)→ H ≤ FN = π1(RN , x0) is an isomorphism.

The fact that ani ∈ H implies that there exists a reduced closed path γ from ∗ to ∗ in Γ with µ(γ) = ani .

Since ani is primitive in H, the element γ is primitive in π1(Γ, ∗).

Since ani is cyclically reduced, the closed path γ is also cyclically reduced. We claim that γ is a simple

closed path in Γ. Indeed, suppose not. Then γ = γk1 where k ≥ 2 and where γ1 is a simple closed path at ∗

in Γ with label a
n/k
i . Therefore γ is a proper power in π1(Γ, ∗), which contradicts the fact that γ is primitive

in π1(Γ, ∗). Thus indeed γ is a simple closed path in Γ with label ani . This means that the full p-preimage

of the i-th petal of RN , labeled ai, in Γ consists of ≥ n distinct topological edges. Therefore the degree d of

the cover p : Γ→ RN satisfies d ≥ n.

Thus d = dprim(ani ) ≥ n. Since we already know that dprim(ani ) ≤ n, it follows that dprim(ani ) = n, as

required.

Avoiding the bad behavior of dprim(g) under taking powers of g, demonstrated by Lemma 3.1.7, is the

main reason why in Definition 3.1.2 we take the maximum over all root-free nontrivial elements g ∈ FN with

|g|A ≤ n rather than over all nontrivial g ∈ FN with |g|A ≤ n.
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3.2 Algorithmic computability of dprim(g), dsimp(g), and dnfill(g)

In this section we will establish algorithmic computability of dprim(g), dsimp(g), and dnfill(g). Consequently,

we will also establish the algorithmic computability of fprim(n), fsimp(n), and fnfill(n).

We first need to recall some basic definitions and facts related to Whitehead automorphisms and White-

head’s algorithm. We only briefly cover this topic here and refer the reader for further details to [45, pp.

30-35] and to [48, 38, 33, 57] for some of the recent developments. As before, FN = F (A) = F (a1, . . . , aN )

is the free group of rank N ≥ 2 with a free basis A = {a1, . . . , aN}.

Definition 3.2.1 (Whitehead automorphisms). A Whitehead automorphism τ of FN = F (A) with respect

to A is an automorphism τ of F (A) of one of the following types:

1. There exists a permutation t of Υ = A t A−1 such that τ |Υ = t. In this case τ is called a relabeling

automorphism or a Whitehead automorphism of the first kind.

2. There exists an element a ∈ Υ which we call the multiplier such that for any x ∈ Υ, τ(x) ∈

{x, xa, a−1x, a−1xa}. In this case τ is called a Whitehead automorphism of the second kind.

Note that since τ ∈ Aut(F (A)), if τ is a Whitehead automorphism of the second kind with multiplier

a, then τ(a) = a. Also for any a ∈ Υ, the inner automorphism corresponding to conjugation by a is a

Whitehead automorphism of the second kind.

Definition 3.2.2 (Automorphically minimal and Whitehead minimal elements). An element g ∈ F (A) =

FN is automorphically minimal in F (A) with respect to a basis A of FN if, for every φ ∈ Aut(F (A)) we

have ||g||A ≤ ||φ(g)||A.

An element g ∈ F (A) is Whitehead minimal in F (A) with respect to a free basis A if, for every Whitehead

automorphism τ of F (A) we have ||g||A ≤ ||τ(g)||A.

Note that neither Whitehead automorphisms of the first kind nor inner automorphisms change the

cyclically reduced length of an element.

The following proposition summarizes the key known facts regarding Whitehead’s algorithm (see [68] for

the original proof by Whitehead and see [45, Proposition 4.17] for a modern exposition):

Proposition 3.2.3 (Whitehead’s Theorem). Let N ≥ 2 and let FN = F (A) be free of rank N with a free

basis A. Then:

1. An element g ∈ F (A) is automorphically minimal in F (A) with respect to a basis A if and only if g is

Whitehead minimal in F (A) with respect to A. (Hence g ∈ F (A) is not automorphically minimal with

respect to A if and only if there exists a Whitehead automorphism τ such that ||τ(g)||A < ||g||A).
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2. Whenever u, v ∈ F (A) are Whitehead minimal with respect to A such that the orbits Aut(F (A))u =

Aut(F (A))v (so that, in particular, ||u||A = ||v||A), then there exists a sequence of Whitehead automor-

phisms τ1, . . . , τm of F (A) with respect to A such that τm...τ1(u) = v and that ||τi...τ1(u)||A = ||u||A

for i = 1, ...,m.

Note that part (2) of Proposition 3.2.3 holds even if u, v are conjugate in F (A) since conjugation by an

element of A±1 is a Whitehead automorphism.

3.2.1 Algorithmic computability of dprim(g) and dsimp(g)

The following useful lemma explicitly states the relationship between primitivity, simplicity and Whitehead

minimality:

Lemma 3.2.4. Let 1 6= w ∈ F (A) = FN .

1. w primitive in F (A) if and only if every (equivalently, some) Whitehead minimal form w̃ of w has

||w̃||A = 1.

2. w is simple in F (A) if and only if some Whitehead minimal form w̃ of w misses an a±1
i .

3. w is simple in F (A) if and only if every Whitehead minimal cyclically reduced form w̃ of w misses an

a±1
i .

Proof. Part (1) of the lemma is well-known and follows directly from Proposition 3.2.3.

If some Whitehead minimal form w̃ of w misses an a±1
i , then w is simple in F (A) as w ∈ F (B) where

B = A− {ai} and F (B) is a proper free factor of F (A).

Conversely, suppose that w is simple in F (A). Then there exists an automorphism φ of F (A) such that

the cyclically reduced form ŵ of φ(w) misses a±1
N .

Claim 1. We claim that some Whitehead minimal form of ŵ also misses a±1
N .

We prove this claim by induction on ||ŵ||A. If ||ŵ||A = 1, then the claim clearly holds. Suppose now

that ||ŵ||A = m > 1 and that the claim has been established for all nontrivial cyclically reduced words in

F (a1, . . . , aN−1) of length ≤ m− 1.

If ŵ is already Whitehead minimal in F (A) then we are done as the claim holds in this case.

If ŵ is not Whitehead minimal in F (A) then there exists a Whitehead automorphism τ of F (A) such

that ||τ(ŵ)||A < ||ŵ||A. Note first that since the cyclically reduced length of ŵ changes under τ , we must

have that τ is a Whitehead automorphisms of the second kind that is not an inner automorphism.
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Let a ∈ Υ = A t A−1 be the multiplier of τ . If a = a±1
N , since ŵ is a cyclically reduced word in

F (A) that misses the letter a±1
N , the definition of a Whitehead automorphism implies that there can be no

cancellation in τ(ŵ) between the letters {a1, . . . , aN−1} when a cyclically reduced form of τ(ŵ) is computed.

Hence ||τ(ŵ)||A ≥ ||ŵ||A, contrary to the fact that ||τ(ŵ)||A < ||ŵ||A. Therefore a ∈ {a1, . . . , aN−1}±1.

We then define a Whitehead automorphism τ ′ of F (a1, . . . , aN−1) with respect to {a1, . . . , aN−1} as τ ′ =

τ |{a1,...,aN−1}. Hence τ(ŵ) = τ ′(ŵ). Thus τ(ŵ) still misses a±1
N and ||τ(ŵ)||A < ||ŵ||A = m. Applying the

inductive hypothesis to τ(ŵ), we conclude that some Whitehead minimal form w̃ of τ(ŵ) in F (A) misses

a±1
N . Then w̃ is also a Whitehead minimal form of ŵ, and Claim 1 is verified.

Thus we have established part (2) of the lemma.

To see that part (3) holds, note that if every Whitehead minimal cyclically reduced form w̃ of w misses

an a±1
i then w is simple in F (A).

Now suppose w is simple in F (A). From (2) we know that there is a w̃ Whitehead minimal cyclically

reduced form of w that misses a±1
N . Let w′ be another Whitehead minimal cyclically reduced form of w in

F (A). Then Aut(F (A))w′ = Aut(F (A))w̃, and so by part (2) of Proposition 3.2.3, there exists a sequence

of Whitehead automorphisms τ1, . . . , τm of F (A) with respect to A such that τm...τ1(w̃) = w′ and that

||τi...τ1(w̃)||A = ||w′||A for i = 1, ...,m.

For j = 0, 1, . . . ,m denote wj = τj ...τ1(w̃), where w0 = w̃.

Claim 2. We claim that for each j = 0, . . . ,m the cyclically reduced form of wj misses some a±1
i .

We will establish Claim 2 by induction on j.

If j = 0 then w0 = w and there is nothing to prove. Suppose now that j ≥ 1 and that the claim has been

verified for wj−1.

Thus the cyclically reduced form of wj−1 misses some a±1
i . If τj is a Whitehead automorphism of

the first kind, it is clear that the cyclically reduced form of τj(wj−1) = wj still misses some a±1
k (this

a±1
k is not necessarily a±1

i ). Suppose now that τj is a Whitehead automorphism of the second kind. The

restriction that ||τj(wj−1)||A = ||wj−1|| forces the condition that either τj(wj−1) is equal to wj−1 after cyclic

reduction, or else τj is a Whitehead automorphism of the second kind with multiplier a ∈ B t B−1 where

B = {x ∈ A t A−1|x occurs in the cyclically reduced form ofwj−1} (in particular a 6= a±1
i ). In both cases

we see that the cyclically reduced form of wj still misses a±1
i , as required. This completes the inductive step

and the proof of Claim 2.

Applying Claim 2 with j = m shows that the cyclically reduced form of w′ = wm misses some a±1
i , and

part (3) of the lemma is proved.

24



Proposition 3.2.5. Let 1 6= g ∈ H ≤ F (A), where H is a proper free factor of F (A). Then the following

hold:

1. The element g is primitive in H if and only if g is primitive in FN .

2. There is an algorithm which decides, given g ∈ F (A), whether or not g ∈ F (A) is primitive.

3. There is an algorithm which given g ∈ F (A), whether or not g ∈ F (A) is simple.

Proof. We first prove part (1). The “only if” direction is obvious. Thus we assume that g ∈ H is primitive

in FN .

Let K ≤ FN be such that FN = H ∗ K. Let BH = {h1, . . . , hl} be a free basis for H, and BK =

{k1, . . . , km} be a free basis for K. Then BF = {h1, . . . , hl, k1, . . . , km} is a free basis for FN (here l+m = n).

Since g ∈ H, then g is a freely reduced word over BH , with cyclically reduced form w. We prove that g

is primitive in H by induction on the length m of w.

If w has length 1, then g is primitive in H, as required. If w has length m > 1, then the fact that w is

primitive in FN implies that w is not Whitehead minimal in FN with respect to the free basis BF of FN .

Hence there exists a Whitehead automorphism τ of FN with respect to BF such that ||τ(w)||BF < m. By

the same argument as in the proof of Lemma 3.2.4, we see that there exists a Whitehead automorphism τ ′

of H = F (BH) such that τ ′(w) = τ(w). Then τ(w) = τ ′(w) ∈ H is primitive in FN with ||τ(w)||BF < m.

Therefore by the inductive hypothesis the element τ(w) = τ ′(w) is primitive in H. Since τ ′ ∈ Aut(H), it

follows that w is also primitive in H, as required. Thus part (1) of the proposition holds.

To prove parts (2) and (3) for g ∈ F (A) = F (a1, . . . , FN ), we find a Whitehead minimal form g̃ in F (A).

By part (1) of Lemma 3.2.4, ||g̃||A = 1 if and only if g is primitive in F (A). By part (3) of Lemma 3.2.4, g̃

misses some a±1
i if and only if w is simple in F (A).

Remark 3.2.6. The algorithm described in part (2) of Proposition 3.2.5 is due to Whitehead [68]. The

first algorithms for deciding whether an element of FN is simple in FN were provided by Stallings [64]

and Stong [65] in 1990s. Their algorithms are somewhat different from the algorithm given in part (3) of

Proposition 3.2.5 above, but they are also based on using Whitehead’s algorithm.

Definition 3.2.7 (Principal quotient). Following the terminology of [35], for a finite connected A-graph Γ1

and a folded A-graph Γ2, we say that Γ2 is a principal quotient of Γ1 if there exists a surjective A-morphism

Γ1 → Γ2.

Definition 3.2.8. Let w ∈ FN = F (A) be a nontrivial cyclically reduced word. We denote by Cw the

A-graph which is a simplicial circle subdivided into n = ||w||A topological edges, such that the label of the
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closed path of length n corresponding to going around this circle once from some vertex ∗ to ∗ is the word

w.

By definition, the graph Cw has a distinguished base-vertex ∗. Thus a principal quotient of Cw also come

equipped with a distinguished base-vertex. We say that (Γ, x) is a principal quotient of Cw if Γ is a finite

connected folded A-graph, if x ∈ V Γ and if there exists a surjective A-morphism f : Cw → Γ such that

f(∗) = x.

Note that if (Γ, x) is a principal quotient of Cw, then there exists a unique path γw,x in Γ starting with

x and with label w, and, moreover, this path is closed and passes through every topological edge of Γ.

The following lemma is an immediate corollary of the definitions:

Lemma 3.2.9. The following hold:

1. Let Γ1 be a finite connected A-graph and Γ2 be a finite folded A-graph. Then Γ2 is a principal quotient

of Γ1 if and only if Γ2 can be obtained from Γ1 by the following procedure: choose some partition

V Γ1 = V1 t · · · t Vm (with all Vi 6= ∅), then for each i = 1, . . . ,m collapse Vi to a single vertex to get

an A-graph Γ′1, and then fold the graph Γ′1 to obtain Γ2.

2. If w ∈ FN = F (A) is a nontrivial cyclically reduced word and Γ is a finite connected folded A-graph,

then Γ is a principal quotient of Cw if and only if Γ′ is a core graph and there exists a closed path γw

in Γ with label w such that γw passes through every topological edge of Γ′.

A priori it is unclear that the functions fprim(n) and fsimp(n) are even computable for a given FN . We

now give an algorithm that calculates dprim(g) and dsimp(g) for any non-trivial g. This would then show

that the functions fprim(n) and fsimp(n) are indeed algorithmically computable.

Definition 3.2.10. Let 1 6= g ∈ FN = F (A) and let w ∈ F (A) be the cyclically reduced form of g. We

denote by G0(w) the set of all finite connected folded basepointed A-graphs (Γ, x) such that there exists a

closed path γ from x to x labeled w with the property that γ passes through every topological edge of Γ at

least once and such that either the labeling map Γ → RN is not a covering (that is, there exists a vertex

of Γ of degree < 2N), or the labeling map Γ → RN is a covering and the element γ ∈ π1(Γ, x) is simple in

π1(Γ, x).

We denote by G(w) the set of all finite connected folded basepointed A-graphs (Γ, x) such that there

exists a closed path γ from x to x labeled w with the property that γ passes through every topological edge

of Γ at least once and such that the element γ ∈ π1(Γ, x) is primitive in π1(Γ, x).

Let (Γ, x) ∈ G(w) or (Γ, x) ∈ G0(w). Since w is cyclically reduced and γ passes through every topological

edge of Γ at least once, every vertex of Γ has degree ≥ 2, so that Γ is a core graph.
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Note further that the condition that γ is simple in π1(Γ, x) is equivalent to the condition that w is simple

in the subgroup H ≤ FN represented by (Γ, x). This follows from the fact that the labeling map gives an

isomorphism µ : π1(Γ, x)→ H, with µ(γ) = w.

We recall the following basic fact:

Lemma 3.2.11 ([35], p.13). Let Γ be a folded connected A-graph and let Γ′ be a connected subgraph of Γ.

Let ∗ be a vertex of Γ′. If H ′ ≤ F (A) is the subgroup represented by (Γ′, ∗) and H is the subgroup represented

by (Γ, ∗), then H ′ is a free factor of H.

Remark 3.2.12. In the setting of Lemma 3.2.11, π1(Γ′, ∗) is a free factor of π1(Γ, ∗).

Proposition 3.2.13. Let 1 6= g ∈ FN = F (A) and let w ∈ F (A) be the cyclically reduced form of g. Then

the following hold:

1. The number dprim(g) equals to the minimum of #V Γ, taken over all (Γ, x) ∈ G(w).

2. The number dsimp(g) equals to the minimum of #V Γ, taken over all (Γ, x) ∈ G0(w).

Proof. We give a proof of part (2). The proof of part (1) is very similar in nature. However, it additionally

involves using part (1) of Proposition 3.2.5 to prove one of the inequalities. For 1 6= g ∈ FN = F (A) and

w ∈ F (A) the cyclically reduced form of g, let dsimp(g) = min
(Γ,x)∈G0(w)

#V Γ. First suppose that H ≤ FN such

that [FN : H] = dsimp(g) = dsimp(w), and that w ∈ H is simple in H. Let (Γ, x) be the graph representing

H as in Proposition-Definition 2.2.7. We have that #V Γ = dsimp(w). Since w ∈ H, there exists a path γ

from x to x in Γ with label w. Also since w ∈ H is simple in H, γ ∈ π1(Γ, x) is simple in π1(Γ, x). Let Γ′ ⊆ Γ

be the subgraph spanned by γ. Then γ is a path from x to x in Γ′ that passes through every topological

edge in Γ′ at least once. If Γ′ = Γ, then the labeling map Γ′ → RN is a covering. Since γ is simple in Γ = Γ′,

we have (Γ′, x) ∈ G0(w). Since #V Γ′ = #V Γ = dsimp(g), we have that dsimp(g) ≤ dsimp(g). If Γ′ 6= Γ, then

#V Γ′ ≤ #V Γ and #EΓ−#EΓ′ ≥ 1. From Remark 3.2.12, (Γ′, x) is a proper free factor of (Γ, x). In this

case the labeling map Γ′ → RN is not a covering and (Γ′, x) ∈ G0(w). Thus dsimp(g) ≤ dsimp(g).

Conversely suppose that (Γ, x) ∈ G0(w) with #V Γ = dsimp(g). Let γ be the closed path from x to x

labeled by w such that γ passes through every topological edge of Γ at least once. If the labeling map

Γ→ RN is a covering then γ ∈ π1(Γ, x) is simple in π1(Γ, x) by definition of G0(w). Let H be the subgroup

represented by (Γ, x). H is then a subgroup of FN of index dsimp(g) with w ∈ H and w simple in H. Hence

dsimp(g) = dsimp(w) ≤ dsimp(g). If the labeling map Γ → RN is not a covering, we use Lemma 3.1.4 to

complete (Γ, x) to a finite cover (Γ̂, x) of RN without adding any extra vertices and by adding at least one

edge. Again from Remark 3.2.12, (Γ, x) is a proper free factor of (Γ̂, x). Hence γ ∈ π1(Γ̂, x) is simple in

27



π1(Γ̂, x). Let H be the subgroup represented by (Γ̂, x). We have shown that w ∈ H is simple in H. Since

#V Γ̂ = #V Γ = dsimp(g), we see that dsimp(g) ≤ dsimp(g).

We can now prove:

Theorem 3.2.14. Let FN = F (A), where N ≥ 2 and where A = {a1, . . . , aN} is a free basis of FN . Then:

1. There exists an algorithm that, given 1 6= g ∈ FN , computes dprim(g) and dsimp(g).

2. There exists an algorithm that, for every n ≥ 1 computes fprim(n) and fsimp(n)

Proof. Let 1 6= g ∈ FN and let w be the cyclically reduced form of g. Note that a finite connected folded base-

pointed A-graph (Γ, x) admits a closed path γ from x to x labeled w and passing through every topological

edge of Γ at least once if and only if (Γ, x) is a principal quotient of Cw with x being the image of the

base-vertex ∗ of Cw.

Therefore we can algorithmically find all the graphs in G0(w) as follows: List all partitions on V Cw.

For each partition of V Cw as a disjoint union of nonempty subsets V1, . . . Vm, collapse Vi to a single vertex

for i = 1, . . . ,m, and fold the resulting graph to obtain a principal quotient (Γ, x) of Cw, with x being the

image of the base-vertex ∗ of Cw. Let γ be the path from x to x in Γ labeled w (so that, by construction,

γ passes through every topological edge of Γ at least once). Then check whether the labeling map Γ→ RN

is a covering, that is, whether it is true that every vertex of Γ has degree 2N . If Γ→ RN is not a covering,

the graph (Γ, x) belongs to G0(w). If Γ → RN is a covering, check, using the algorithm from part (3) of

Proposition 3.2.5, whether or not γ ∈ π1(Γ, x) is simple in the finite rank free group π1(Γ, x). If γ ∈ π1(Γ, x)

is simple in π1(Γ, x), we conclude that the graph (Γ, x) belongs to G0(w), and γ ∈ π1(Γ, x) is not simple in

π1(Γ, x), we conclude that he graph (Γ, x) does not belong to G0(w). Performing this procedure for each

partition of V Cw as a disjoint union of nonempty subsets produces the finite set G0(w). Proposition 3.2.13

then implies that dsimp(g) = dsimp(w) = min{#V Γ : (Γ, x) ∈ G0(w)}.

The algorithm for computing dprim(g) = dprim(w) is similar. We first find all the graphs in G(w) as

follows. Enumerate all partitions of V Cw as a disjoint union of nonempty subsets. For each such partition

V1, . . . Vm collapse each Vi, i = 1, . . . ,m, to a vertex and then fold the result to get a principal quotient

(Γ, x) of Cw. There is a path γ from x to x in Γ labeled w. Then check, using the algorithm from part (2)

of Proposition 3.2.5,, whether or not γ ∈ π1(Γ, x) is primitive in the free group π1(Γ, x). If yes, we conclude

that (Γ, x) ∈ G(w) and if not, we conclude that (Γ, x) 6∈ G(w). This procedure algorithmically computes the

set G(w).

Proposition 3.2.13 then implies that dprim(g) = dprim(w) = min{#V Γ : (Γ, x) ∈ G(w)}. Thus part (1)

of the theorem is verified.
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Part (2) now follows directly from part (1) using the definitions of fprim(n) and fsimp(n).

Remark 3.2.15. The complexity of the algorithms for computing dsimp(g) and dprim(g) given in part (1)

of Theorem 3.2.14 is super-exponential in n = ||g||A. The reason is that enumerating all principal quotients

of the graph Cw requires listing all partitions of the n-element set V Cw. The Bell number Bn, which is the

number of all partitions of an n-element set, grows roughly as nn.

3.2.2 Algorithmic computability of dnfill(g)

We now want to give an algorithm for computing dnfill(g). Computationally this algorithm is not nearly as

nice as the algorithms for computing dsimp(g) and dprim(g) described above.

The following result provides a useful characterization of filling elements:

Proposition 3.2.16. Let 1 6= g ∈ FN . Then g ∈ FN is filling if and only if StabOut(FN )([g]) is finite.

Proof. Solie [61, Lemma 2.42, Lemma 2.44] proves that if g ∈ FN is non-filling then StabOut(FN )([g]) is

infinite. Thus the the “if” direction of Proposition 3.2.16 holds.

Let us now prove the “only if” direction. Suppose StabOut(FN )([g]) is infinite. Choose a basepoint [T0] ∈

CVN . Since the action of Out(FN ) on CVN is properly discontinuous and since CVN is compact, it follows

that there exist an infinite sequence of distinct elements φn ∈ StabOut(FN )([g]) and a point [T ] ∈ CVN−CVN

such that lim
n→∞

[T0]φn = [T ]. Then for some sequence of scalars cn ≥ 0 with cn → 0 as n → ∞ we have

lim
n→∞

cnT0φn = T in cvN . Since φn([g]) = [g], it follows that ||g||T = lim
n→∞

cn||φn(g)||T0
= 0. Then by

Proposition 2.3.4 the element g is not filling in FN , as required.

Proposition 3.2.17. Let FN = F (A), where N ≥ 2 and where A = {a1, . . . , aN} is a free basis of FN .

Then there exists an algorithm that, given a nontrivial element g ∈ FN , decides whether or not g is filling

in FN .

Proof. Let g ∈ FN = F (A) be a nontrivial freely reduced word. By a result of McCool [46] the group

StabOut(FN )([g]) is finitely generated and, moreover, we can algorithmically compute a finite generating set

Y = {ψ1, . . . , ψk} of StabOut(FN )([g]).

In view of Proposition 3.2.16 we next need to determine if H := 〈Y 〉 ≤ Out(FN ) is finite. Wang and

Zimmermann [67] prove that for N > 2, the maximum order of a finite subgroup of Out(FN ) is 2NN !.

Also, the word problem for Out(FN ) is solvable (even solvable in polynomial time [58]). Thus we then start

building the Cayley graph Cay(H;Y ) of H with respect to Y . Using solvability of the word problem in
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Out(FN ), for any finite m we can algorithmically construct the ball B(m) of radius m cantered at identity

in Cay(H;Y ). We construct the balls B(2NN !) and B(1 + 2NN !). By the result of Wang and Zimmermann

mentioned above, the group H is finite if and only if B(2NN !) = B(1 + 2NN !).

Thus we can algorithmically decide whether or not StabOut(FN )([g]) is finite, and hence, by Proposi-

tion 3.2.16, whether or not g is filling in FN .

Theorem 3.2.18. Let FN = F (A), where N ≥ 2 and where A = {a1, . . . , aN} is a free basis of FN . Then:

1. There exists an algorithm that, given 1 6= g ∈ FN , computes dnfill(g).

2. There exists an algorithm that, for every n ≥ 1 computes fnfill(n)

Proof. Part (2) follows directly from part (1) and from the definition of fnfill(n). Thus we only need to

establish part (1).

Given g ∈ FN , let w be the cyclically reduced form of g. Let Cw and its principle quotients be as in

Definitions 3.2.8, 3.2.7. Enumerate all principle quotients of Cw as {Γ1, . . . ,Γk}. For each Γi with 1 ≤ i ≤ k,

two possibilities arise:

Case (i) (Γi is not a finite cover of RN ): In this case, we call Γi a “success”. In this case we can complete

Γi to a finite cover Γ′i of RN and now π1(Γi) is a free factor of π1(Γ′i). Hence w is simple in in the subgroup

represented by Γ′i i.e. w is not filling in the subgroup represented by Γ′i.

Case (ii) (Γi is a finite cover of RN ): In this case there is a closed loop γi in Γi with label w. We then use

the algorithm from Proposition 3.2.17 to check whether γi is filling in π1(Γi). If γi is not filling in π1(Γi),

and we call Γi a success.

Finally, observe that dnfill(g) = min{V Γi |Γi is a “success”} where this equality is established in a manner

similar to that in Proposition 3.2.13. Thus part (1) of the theorem is proved.
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Chapter 4

A Lower Bound for the Free Group
Index Functions

In this Chapter we will prove Theorem A.

4.1 Special words and finite covers

The main goal of this section is to find a suitable sufficient condition implying that a given freely reduced

word is filling in a given finite index subgroup of FN represented by a finite cover of the rose RN . Similarly

we find a suitable sufficient condition implying that a given freely reduced word is not simple in a subgroup

of FN represented by a given finite cover of the rose RN .

These goals are accomplished by constructing “simplicity blocking” and “filling forcing” words in FN

of controlled length, provided by Proposition 4.1.12 and Proposition 4.1.7 below. Since the proofs of these

Propositions are somewhat technical, we first illustrate the idea of their proof by obtaining a related simpler

statement, given in Lemma 4.1.1 below. The proof of Lemma 4.1.1 is due to Yuliy Baryshnikov. We then

adapt the idea of this proof to obtain Proposition 4.1.7 and Proposition 4.1.12.

Lemma 4.1.1. Let N ≥ 2. Then there exists a constant c0 = c0(N) > 0 with the following property. Let

(Γ, ∗) be a connected d-fold cover of the N -rose RN , where d ≥ 1. Then there exists a freely reduced word

v = v(Γ) with |v| ≤ c0d
2 such that for every vertex x ∈ V Γ the path p(x, v) from x labeled by v in Γ passes

through every topological edge of Γ at least once.

Proof. The graph Γ is a connected 2N -regular graph with d vertices and Nd topological edges. We can view

Γ as a directed graph where the directed edges are labeled by elements of A (and without using A−1). Then

Γ is a connected directed graph where the in-degree of every vertex is equal to N , which is also equal to the

out-degree of every vertex. Hence there exists an Euler circuit in Γ beginning and ending at ∗ consisting of

edges labeled by elements of A that transverses each topological edge exactly once. Let v1 be the label of

this Euler circuit. Then v1 is freely reduced and no a−1
i occurs in v1 for i = 1, . . . , N . Enumerate the vertices

as V Γ = {x1, x2, . . . , xd} with ∗ = x1. Starting at the vertex x2 follow a path p1 with label v1. Denote the

terminal vertex of p1 by z1. Let p′1 be an Euler circuit in Γ starting and ending at z1 and consisting only
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of edges labeled by elements of A. Let v2 be the label of this path p′1. Note that since we only consider

positively labeled edges, the path p2 = p1p
′
1 is reduced and its label v1v2 is a positive (and hence freely

reduced) word over A. We now inductively define a positive word vi over A given that the positive words

v1, . . . , vi−1 where i ∈ {1, . . . , d} have already been defined. Starting at vertex xi we follow a path pi−1

with label v1 . . . vi−1. Denote the terminal vertex of the path pi−1 by zi−1. Let p′i−1 be an Euler circuit at

zi−1 that transverses every positively labeled edge exactly once. Let vi be the label of this path p′i−1. This

process is illustrated below:

x2
Path p1with label v1// z1

EC with label v2

XX x3
Path p2with label v1v2// z2

EC with label v3

XX . . . . . . xi
Path pi−1with label v1...vi−1// zi−1

EC with label vi

WW

We define our word v := v1v2 . . . vd. Since following a path with label v1 . . . vi at any vertex vi already passes

through every topological edge of Γ at least once, so does following a path with label v. Since each |vi| = Nd

for 1 = 1, . . . , d, we have that |v| = Nd2.

4.1.1 Simplicity blocking words and finite covers

In the above proof the concatenation argument always produces reduced edge-paths because we only deal

with edges and paths labeled by positive words over A. By contrast, in proving Proposition 4.1.7 simple

concatenation does not always work as it may result in paths that are not reduced. Also, instead of paths

labeled by v passing through every edge of Γ, we need to ensure a more complicated condition which implies

that all paths labeled by v in Γ pass through a certain “simplicity-blocking” path α(Γ, T ), which is defined

below.

Definition 4.1.2. Let Γ be a finite connected folded A-graph, let T ⊆ Γ be a maximal tree in Γ and let ST

be the corresponding basis of π1(Γ, ∗). Let u = y1 . . . yn be a nontrivial freely reduced word over S±1
T . Thus

each yi corresponds to an edge ei ∈ E(Γ− T ). We define a reduced path δ(u) in Γ as

δ(u) := [∗, o(e1)]T e1[t(e1), o(e2)]T e2 . . . . . . en[t(en), ∗]T .

Note that if d = #V Γ then T has ≤ d − 1 topological edges and hence |δ(u)| ≤ n + (n + 1)(d − 1) =

nd+ d− 1 = d(n+ 1)− 1.

Definition 4.1.3. Let (Γ, ∗) be a finite folded core graph with a base-vertex ∗. Let T ⊆ Γ be a maximal

subtree in Γ. Let ST = {b1, . . . , br} be the basis of π1(Γ, ∗) dual to T .
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Define a reduced edge-path α(Γ, T ) from ∗ to ∗ in Γ as

α(Γ, T ) := δ(b2rb
2
1 . . . b

2
r).

Remark 4.1.4. Note that the path α(Γ, T ) is reduced and represents the element b2rb
2
1 . . . b

2
r in π1(Γ, ∗).

The following proposition demonstrates the “simplicity-blocking” property of α(Γ, T ). The word b2rb
2
1 . . . b

2
r

has length 2r + 2 and hence |α(Γ, T )| ≤ d(2r + 3)− 1 where d = #V Γ. In particular, if Γ is a d-fold cover

of the rose RN , then r = d(N − 1) + 1 and

|α(Γ, T )| ≤ d(2d(N − 1) + 3)− 1 ≤ 2d2(N − 1) + 4d.

Proposition 4.1.5. Let Γ be as in Definition 4.1.3 with T a maximal tree in Γ. Let ST and α(Γ, T ) be as

before. Let γ ∈ π1(Γ, ∗) be such that γ is represented by a cyclically reduced circuit in Γ containing α(Γ, T )

as a subpath. Then γ is not simple in π1(Γ, ∗).

Proof. We first use Proposition 2.1.5 to rewrite γ as a cyclically reduced word w in ST = {b1, . . . , br}.

Then the occurrence of α(Γ, T ) in γ produces an occurrence of the reduced word b2rb
2
1 . . . b

2
r in w. Hence, by

Corollary 2.4.6, in this case γ is not simple in F (b1, . . . , br) = π1(Γ, ∗).

Lemma 4.1.6. Let Γ be a finite connected core graph with d vertices. Suppose that π1(Γ) has rank ≥ 2.

Then for any any two edges e1, e2 ∈ E(Γ), there exists a reduced path p(e1, e2) starting at e1, ending at e2,

and with |p(e1, e2)| ≤ 3d.

Proof. Pick a graph Γ′ ⊆ Γ such that Γ′ is a finite, connected, core graph with π1(Γ′) of rank 2 and

e1, e2 ∈ EΓ′. Then there are precisely three possibilities for Γ′. It can be the wedge of two circles, or a

theta-graph (a circle with a line segment joining two points on the circle), or a barbell graph (two circles

attached to two ends of a line segment). We will show that the result holds for the graph Γ′, and hence

holds for our graph Γ. Our proof is essentially going to be a proof by picture for each of these three cases. In

Figure 4.1, green edges (or arrows) indicate e1 and blue edges (or arrows) indicate e2. We indicate the path

p(e1, e2) in red with the • representing the starting point of p(e1, e2) and the → representing the direction.

The path p(e1, e2) starts at o(e1) and ends at t(v1). We call a “cusp” any vertex that is at the intersection

of maximal arcs. The idea behind finding this path p(e1, e2) is always to travel along e1 to the nearest cusp.

Then if one is required to go back on the same path one has already been on to get to e2, one instead travels

along a disjoint loop at the cusp. Now one can go back to e2 and the path p(e1, e2) will be reduced. If after
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traveling from e1 to the cusp one can get to e2 without compromising the fact that the path p(e1, e2) is

reduced, then one simply goes to e2 and the path p(e1, e2) so obtained is reduced. From Figure 4.1 we see

that the result holds.

Figure 4.1: Proof by picture for Lemma 4.1.6

The following fact plays a key role in the proof of Theorem B:

Proposition 4.1.7. Let N ≥ 2. Then there exists a constant c0 = c0(N) > 0 with the following property:

Let (Γ, ∗) be a connected d-fold cover of the N -rose RN , where d ≥ 1 and let T ⊆ Γ be a maximal subtree of

Γ. Then there exists a freely reduced word v = v(Γ, T ) with |v| ≤ c0d3 such that for every vertex x ∈ V Γ the

path p(x, v) from x labeled by v in Γ contains α(Γ, T ) as a subpath.

Proof. Let us begin by enumerating the vertices of V Γ = x1, x2, . . . , xd. Let H ≤ FN be the subgroup of

index d that is represented by (Γ, ∗). For a maximal tree T in (Γ, ∗) and let ST = {b1, b2, . . . , br} be the

corresponding basis of π1(Γ, ∗). By Remark 4.1.4, we have |α(Γ, T )| ≤ 2d2(N − 1) + 4d.

Let e be the first edge of the path α(Γ, T ). Starting at the vertex x1 ∈ V Γ, there exists a unique

path [x1, ∗]T of length ≤ d − 1 with terminal edge e1 (say). Lemma 4.1.6 then gives us a reduced path

p(e1, e) = e1p
′e of length ≤ 3d. Let the word v1 be the label of the path p1 = [x1, ∗]T p′α(Γ, T ). Note that

|v1| = |p1| ≤ 2d2(N − 1) + 8d− 3.

Starting at the vertex x2 we follow a path p′1 that has label v1. Let e2 be the terminal edge of the path p′1.

Then from Lemma 4.1.6, the path p(e2, e) = e2p
′′
1e is reduced with |p(e2, e)| ≤ 3d, and hence |p′′1 | ≤ 3d− 2.

Let the word v2 be the label of the path p2 = p′′1α(Γ, T ). Now the path p′1p2 = p′1p
′′
1α(Γ, T ) is reduced.
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Notice that |v2| = |p2| ≤ 2d2(N − 1) + 7d − 1. We now define inductively a sequence of words and paths

as follows: Suppose we have already defined our words v1, v2, . . . , vi−1 which are respectively the labels of

reduced paths p1, . . . , pi−1. Starting at vertex xi we follow the path p′i−1 labeled by the word v1v2 . . . vi−1.

Let ei be the terminal edge of the path p′i−1. Then the path p(ei, e) = eip
′′
i−1e is reduced with |p′′i−1| ≤ 3d−2.

Let the word vi be the label of the reduced path pi = p′′i−1α(Γ, T ). Now the path p′i−1pi = p′i−1p
′′
i−1α(Γ, T )

is reduced. Let the word v := v1v2 . . . vd. Then notice that at any vertex xi with 1 ≤ i ≤ d, the path p′i−1pi

is a reduced path labeled by v1 . . . vi that already contains the subpath α(Γ, T ). Thus for i = 1, . . . , d the

path starting at xi labeled by the word v1 . . . vd also contains the subpath α(Γ, T ). Since for all 2 ≤ i ≤ d,

|vi| ≤ 2d2(N − 1) + 7d− 1, we have that |v| ≤ 2d3(N − 1) + 7d2 − 2 ≤ (2N + 5)d3. Thus with c0 = 2N + 5,

we are done.

The freely reduced word v = v(Γ, T ) in F (A) can be viewed as a “simplicity blocking” word for the

elements of the fundamental group of a d-fold cover Γ of RN .

Corollary 4.1.8. Let N ≥ 2 and let c0 = c0(N) > 0 be the constant provided by Proposition 4.1.7.

Let d ≥ 1, let Γ be a connected d-fold cover of the N -rose RN and let T ⊆ Γ be a maximal tree in Γ. Let

∗ ∈ V Γ, let γ be a reduced edge-path from ∗ to ∗ in Γ and let γ′ be the cyclically reduced form of the path

γ (so that the label of γ′ is a cyclically reduced word in F (A)). Suppose that the label of γ′ contains as a

subword the word v = v(Γ, T ) with |v| ≤ c0d3 provided by Proposition 4.1.7.

Then γ ∈ π1(Γ, ∗) does not belong to a proper free factor of π1(Γ, ∗).

Proof. From definitions γ ∈ π1(Γ, ∗). Using the tree T we can obtain a free basis ST = {b1, . . . , br} of

π1(Γ, T ). Then Proposition 2.1.5 tells us how to rewrite γ in terms of the basis ST , both as freely reduced

word and as a cyclically reduced word. Let α(Γ, T ) be as before. Then for the label of γ′ to contain the word

v, we must have that the cyclically reduced form of γ′ in terms of ST contains b2rb
2
1 . . . b

2
r as a subword. Now

from Corollary 2.4.6 we know that γ′ is not simple in π1(Γ, T ). Finally from Lemma 3.1.6 γ is not simple in

πi(Γ, T ), that is, γ ∈ π1(Γ, ∗) does not belong to a proper free factor of π1(Γ, ∗).

4.1.2 Filling forcing words and finite covers

To proceed further we will once again adapt the idea of proof of Lemma 4.1.1 to produce a “filling-forcing”

path β(Γ, T ) of controlled length.
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Convention 4.1.9. If F (B) is a free group with |B| = r ≥ 2, then the total number of freely reduced words

of length 3 in F (B) are L = 2r(2r − 1)2. Let {u1, . . . , uL} be the set of all freely reduced words of length

3 in B±1. Define a freely reduced word uB := u1y1u2y2u3y3 . . . yL−1uL where each yi is either the empty

word, or yi ∈ B±1. Namely, whenever the concatenation ujuj+1 is reduced to begin with, we define yj to be

the empty word. If this concatenation is not reduced, then we can always choose yj ∈ B±1 so that ujyjuj+1

is reduced in F (B). Note that the |u|B ≤ 3L+ L− 1 = 4L− 1.

We now define the path β(Γ, T ) as follows:

Definition 4.1.10. Let (Γ, ∗) be a finite connected folded core graph with a base-vertex ∗. Let T ⊆ Γ be a

maximal subtree in Γ with E+(Γ− T ) = {e1, . . . , er}, and let ST = {b1, . . . , br} be the basis of π1(Γ, ∗) dual

to T . We put

β(Γ, T ) := δ(uST ).

Thus β(Γ, T ) is a reduced edge-path from ∗ to ∗ in Γ representing the element uST in π1(Γ, ∗). Recall that

uST has length 4L− 1 = 8r(2r − 1)2 − 1. Therefore

|β(Γ, T )| ≤ 8rd(2r − 1)2 − 1

where d = #V Γ. In particular, if Γ is a d-fold cover of RN then r = d(N − 1) + 1 and

|β(Γ, T )| ≤ 8d(d(N − 1) + 1)(2d(N − 1) + 1)2 − 1 ≤ 500d4N3.

The following proposition demonstrates the a “filling-forcing” property of the path β(Γ, T )

Proposition 4.1.11. Let Γ be as in Definition 4.1.10 with T a maximal tree. Let ST and β(Γ, T ) be as

before. Let γ ∈ π1(Γ, ∗) be such that γ is represented by a cyclically reduced circuit in Γ containing β(Γ, T )

as a subpath. Then γ is filling in π1(Γ, ∗).

Proof. We first use Proposition 2.1.5 to rewrite γ as a cyclically reduced word w in ST = {b1, . . . , br}. Then

the occurrence of β(Γ, T ) in γ produces an occurrence of the reduced word u1y1u2y2u3y3 . . . yl−1ul in w. Since

every reduced word of length 3 now occurs in w, by Proposition 2.4.7 γ is filling in F (b1, . . . , br) = π1(Γ, ∗).

We are now in a position to prove a key proposition that is used in the proofs of Theorem A and

Theorem B:
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Proposition 4.1.12. Let N ≥ 2. Then there exists a constant c1 = c1(N) > 0 with the following property.

Let (Γ, ∗) be a connected d-fold cover of the N -rose RN , where d ≥ 1 and let T ⊆ Γ be a maximal subtree of

Γ. Then there exists a freely reduced word w = w(Γ, T ) with |w| ≤ c1d
5 such that for every vertex x ∈ V Γ

the path p(x,w) from x labeled by w in Γ contains β(Γ, T ) as a subpath.

Proof. Let us begin by enumerating the vertices of V Γ = {x1, x2, . . . , xd}. Let H ≤ FN be the subgroup of

index d that is represented by (Γ, ∗). We have seen above that |β(Γ, T )| ≤ 500d4N3.

Let e be the first edge of the path β(Γ, T ). Starting at the vertex x1 ∈ V Γ, there exists a unique

path [x1, ∗]T of length ≤ d − 1 with terminal edge e1 (say). Lemma 4.1.6 then gives us a reduced path

p(e1, e) = e1p
′e of length ≤ 3d. Let the word w1 be the label of the path p1 = [x1, ∗]T p′β(Γ, T ). Note that

|w1| ≤ 500d4N3 + 3d.

Starting at the vertex x2 we follow a path p′1 that has label w1. Let e2 be the terminal edge of the path

p′1. Then from Lemma 4.1.6, there is a reduced path p(e2, e) = e2p
′′
1e with |p(e2, e)| ≤ 3d and |p′′1 | ≤ 3d− 2.

Let the word w2 be the label of the path p2 = p′′1β(Γ, T ). Thus |w2| = |p2| ≤ 500d4N3 + 3d.

Now the path p′1p2 = p′1p
′′
1β(Γ, T ) is reduced, starts at x2, ends in β(Γ, T ), has label w1w2 and has length

|p′1p2| = |w1w2| ≤ 2(500d4N3 + 3d).

We proceed inductively as follows.

For 2 ≤ i ≤ d suppose that we have already constructed freely reduced words w1, . . . , wi−1 ∈ FN = F (A)

of length |wj | ≤ 500d4N3 + 3d such that the word w1 . . . wi−1 is freely reduced and such that reading

w1 . . . wi−1 from the vertex xi−1 gives a reduced path in Γ ending in β(Γ, T ).

Starting at vertex xi we follow the path p′i−1 labeled by the word w1w2 . . . wi−1. Let ei be the terminal

edge of the path p′i−1. Then the path p(ei, e) = eip
′′
i−1e is reduced with |p′′i−1| ≤ 3d − 2. Let the word wi

be the label of the reduced path pi = p′′i−1β(Γ, T ). We again have |wi| ≤ 500d4N3 + 3d. Now the path

p′i−1pi = p′i−1p
′′
i−1β(Γ, T ) is reduced, starts with xi and ends in β(Γ, T ), completing the inductive step.

Finally let w := w1w2 . . . wd. Then w is freely reduced, has |w| ≤ 500d5N3 + 3d2 ≤ 1000N3d5. By

construction w has the property that for i = 1, . . . , d reading w from xi gives a path in Γ that contains

β(Γ, T ) as a subpath.

We put w(Γ, T ) := w and c1 = 1000N3. The conclusion of the proposition now holds.

The freely reduced word w = w(Γ, T ) in F (A) can be viewed as a “fulling forcing” word for the elements

of the fundamental group of a d-fold cover Γ of RN .
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4.2 A lower bound for the non-filling index function fnfill(n)

Let FN = F (a1, . . . , aN ) be free of rank N ≥ 2, as before. It is well-known (see, for example, [44]) that for

an integer d ≥ 1 there are ≤ (d!)N subgroups of index d in FN . Indeed, every subgroup of index d in FN

can be uniquely represented by a finite connected folded 2N -regular A-graph on vertices 1, . . . , d, where 1

is viewed as a base-vertex. Every such graph Γ is uniquely specified by choosing an ordered N -tuples of

permutations in Sd. Indeed, if σ1, . . . , σN ∈ Sd, we construct Γ with V Γ = {1, . . . , d} by putting an edge

from j to σi(j) labeled by ai for 1 ≤ i ≤ N , and 1 ≤ j ≤ d.

Thus indeed FN has ≤ (d!)N subgroups of index d and it has ≤ d(d!)N subgroups of index ≤ d.

Theorem A . Let N ≥ 2 and let FN = F (A) where A = a1, . . . , aN . Then there exists a constant c > 0

and an integer M ≥ 1 such that for all n ≥M we have

fprim(n) ≥ fsimp(n) ≥ fnfill(n) ≥ c log n

log log n
.

Proof. Let d ≥ 1 be an integer. Denote m(d) = m := d(d)!N . Enumerate all the subgroups of FN of index

≤ d as H1, . . . ,Hm (we do allow repetitions in this list since the actual number of such distinct subgroups

is < m(d). Let Γ1, . . . ,Γm be the base-pointed finite covers of the rose RN representing the subgroups

H1, . . . ,Hm.

For i = 1, . . . ,m let wi ∈ F (A) be the freely reduced “filling forcing” word with |wi| ≤ c1d5 corresponding

to Γi as provided by Proposition 4.1.12. We can now construct a freely reduced and cyclically reduced word

zd := w1u1w2u2 . . . um−1wmum

where each ui is either the empty word or ui ∈ {a1, . . . , aN}±1. Then

||zd|| ≤ c1md5 = c1d
6(d!)N .

We claim that dnfill(zd) > d. Indeed, suppose not, that is suppose that dnfill(zd) ≤ d. Then there exists

1 ≤ i ≤ m such that zd ∈ Hi and that zd is a non-filling element of Hi = π1(Γi, ∗). Let γ be the path in Γi

from ∗ to ∗ labeled by zd. By Proposition 4.1.12 the fact that zd is cyclically reduced and contains wi as

subword implies that γ contains the path β(Γi, T ) as a subword. Hence, by Proposition 4.1.11, γ is a filling

element in π1(Γi, ∗), yielding a contradiction. Thus indeed dnfill(zd) > d.

Now for d ≥ 1 let nd := c1d
6(d!)N . We also put n0 = 1. Then for every integer d ≥ 0 we have
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fnfill(nd) > d. By Stirling’s formula, there is C > 0 such that for all sufficiently large d ≥ 1 we have

d ≥ C log nd
log log nd

(†)

Similarly, using a standard calculus argument we see that for all sufficiently large d we have

log(nd−1)

log log(nd−1)
≥ 1

2

log(nd)

log log(nd)
. (‡)

Let d0 ≥ 2 be such that for all d ≥ d0 the inequalities (†) and (‡) hold and that the function the function

log x

log log x
is monotone increasing on the interval [nd0−1,∞).

Now let n ≥ nd0+1 be an arbitrary integer. There exists a unique d ≥ 0 such that nd−1 < n ≤ nd. Since

fnfill(n) is a non-decreasing function, we get that fnfill(n) ≥ fnfill(nd−1) > d− 1 and d− 1 ≥ d0.

Then

fnfill(n) ≥ fnfill(nd−1) > d− 1 ≥ C log(nd−1)

log log(nd−1)
≥ C

2

log(nd)

log log(nd)
≥ C

2

log n

log log n
,

and the conclusion of the theorem follows.

4.3 Estimating the primitivity index function fprim(n) from below

by the residual finiteness growth function

This section follows the appendix to [29] by Khalid Bou-Rabee. In the appendix to our paper [29], Bou-

Rabee relates the primitivity index function fprim(n) to the residual finiteness growth function introduced

in [8]. He applies some results of Kozma and Thom [42] to improve the lower bounds for the primitivity

index function to almost linear.

Let G be a finitely generated, residually finite group. The divisibility function DG(g) = D(g;G) is the

minimum [G : H] where H varies over all subgroups of finite index in G with g /∈ H. For a fixed finite

generating set A ⊂ G the residual finiteness growth function is RFG,A(n) := max{D(g;G) : g ∈ G, |g|A ≤

n, g 6= 1}. Here |g|A is the word-length of g with respect to the word metric on G corresponding to A. In

the case where G is a nonabelian free group FN with word-length | · |A given by a free basis A, we simply

use this basis and denote the function by RFG(n). We state and prove Bou-Rabee’s result for completeness:

Theorem 4.3.1. Let G = FN be a free group of finite rank N ≥ 2. Then RFG(n) ≤ fprim(4n + 4) for all

n ≥ 1.

39



Proof. For each n ≥ 1 let wn be an element in FN with |wn|A ≤ n such that DG(wn) = RFG(n). In the free

group FN commutativity is a transitive relation on the set of all nontrivial elements, and therefore there

exists a ∈ A such that [wn, a] 6= 1. Also, in a free group any two non-commuting elements freely generate

a free subgroup of rank two. Thus the elements wn and a freely generate a free subgroup of rank 2 in FN ,

and hence γn := [wn, w
a
n] 6= 1. (In [13, 15] the property, that for every nontrivial w ∈ FN there exists a ∈ A

such that [w,wa] 6= 1, is referred to as FN being 1-malabelian). Note that |[wn, wan]|A ≤ 4n+ 4. Since γn is

a nontrivial commutator in FN , a result of Schützenberger [66] then implies that γn is not a proper power

in FN .

Let H be a finite-index subgroup of G with γn primitive in H. If wn ∈ H and wan ∈ H, then [wn, w
a
n] ∈

[H,H], and thus [wn, w
a
n] cannot be primitive in H. Hence, wn or wan is not in H. In either case, it follows

that [G : H] ≥ DG(wn) = RFG(n). Since H was an arbitrary finite-index subgroup for which [wn, w
a
n] is

primitive, it follows that RFG(n) ≤ fprim(4n+ 4), as desired.

Bou-Rabee then uses a result of Kozma and Thom [42] about lower bounds for RFFN (n) to directly

imply:

Corollary 4.3.2. Let G = FN be free of finite rank N ≥ 2. There exists a constant C > 0 such that for all

sufficiently large n we have

fprim(4n+ 4) ≥ exp

((
log(n)

C log log(n)

)1/4
)
.

If we assume Babai’s Conjecture on the diameter of Cayley graphs of permutation groups, then for all

sufficiently large n we have fprim(4n+ 4) ≥ n
1

C log log(n) .

As mentioned in Chapter 1, Bou-Rabee’s methods for the proof of Theorem 4.3.1 do not work for the

index functions fsimp(n) and fnfill(n). Thus for these functions the lower bound given by Theorem A

remains the best known bound.
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Chapter 5

Lower bounds for Simplicity Index
and Non-filling Index

In this chapter we prove Theorem B. Observe that Theorem B is a probabilistic result which essentially says

that there exists a constant c > 0 such that for “long enough” random words wn ∈ F (A) = FN (for N ≥ 2)

of length n, the simplicity index dsimp(wn) is at least c log1/3 n, and the non-filling index dnfill(wn) is at

least c log1/5 n. In the first section, we establish exactly what we mean by “random words”, and chalk out

some results that we need.

5.1 Non-backtracking simple random walk on FN

Recall that we set for the free group FN = F (A) = F (a1, . . . , aN ) (where N ≥ 2) a distinguished free basis

A = {a1, . . . , aN}. Put Υ = A ∪A−1.

Definition 5.1.1. We consider the following finite-state Markov chain X . The set of states for X is Υ. For

x, y ∈ Υ, the transition probability Px,y from x to y is defined as:

Px,y :=


1

2N−1 , if y 6= x−1

0, if y = x−1

.

Let M be the transition matrix of X . That is, M is a 2N × 2N matrix with columns and rows indexed

by Υ where for x, y ∈ Υ the entry mx,y in M is equal to 1 if y 6= x−1 and is equal to 0 if y = x−1.

We summarize the following elementary properties of X , which easily follow from the definitions:

Lemma 5.1.2. Let N ≥ 2 and X be as in Definition 5.1.1. Then:

1. X is an irreducible aperiodic finite-state Markov chain.

2. The uniform probability distribution µ1 on Υ is stationary for X .

3. The matrix M is an irreducible aperiodic nonnegative matrix with the Perron-Frobenius eigenvalue

λ = 2N − 1.

41



Proof. For any x, y ∈ Υ there exists z ∈ Υ such that xzy is a freely reduced word. Hence Px,zPz,y > 0,

which means that X is an irreducible Markov chain. The fact that for every x ∈ Υ, we have Px,x > 0 implies

that X is aperiodic. Thus (1) is verified.

Part (2) easily follows from the definition of X by direct verification.

Part (1) implies that M is an irreducible aperiodic nonnegative matrix. Therefore, by the basic Perron-

Frobenius theory, the spectral radius λ := max{|λ∗| : λ∗ ∈ C is an eigenvalue of M} is a positive real

number which is itself an eigenvalue of M called the Perron-Frobenius eigenvalue of M . It is also known

that λ admits an eigenvector with strictly positive coordinates, and that any other eigenvalue of M admitting

such an eigenvector is equal to λ. It is easy to see from the definition of M that for the vector v with all

entries equal to 1 we have Mv = (2N − 1)v. Therefore λ = 2N − 1, as claimed.

Let Ω = ΥN = {ω = x1, x2, . . . |xi ∈ Υ}. We put the discrete topology on Υ and the product topology

on Ω so that Ω becomes a compact Hausdorff space. For every finite word σ ∈ Υ∗ the cylinder Cyl(σ) ⊆ Ω

consists of all sequences ω ∈ Ω with σ as the initial segment. For each σ ∈ Υ∗ the set Cyl(σ) is compact

and open in Ω and the sets {Cyl(σ)|σ ∈ Υ∗} provide a basis for the product topology on Ω.

By using the uniform distribution µ1 on Υ as the initial distribution for X , the Markov chain X defines

a Borel probability measure µ on Ω via the standard convolution formula:

For σ = x1 . . . xn ∈ Υ∗,

µ(Cyl(σ)) = µ1(x1)Px1,x2 . . . Pxn−1,xn .

Note that the support of µ is exactly ∂FN , that is, the set of all semi-infinite freely reduced words

ω = x1, x2, . . . over Υ.

Convention 5.1.3. For σ ∈ Υ∗ we denote µ(σ) := µ(Cyl(σ)). Also, for the remainder of this section we

denote λ := 2N − 1.

The following is a direct corollary of the definitions:

Lemma 5.1.4. Let σ = x1 . . . xn ∈ Υ∗, where n ≥ 1. Then

µ(σ) =


1

2N(2N−1)n−1 , if σ is freely reduced,

0, if σ is not freely reduced.

Notation 5.1.5. Let v, w ∈ Υ∗. We denote by 〈v, w〉 the number of times the word v occurs as a subword

of w.
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For n ≥ 1 let S(n) be the set of all freely reduced words of length n in Υ∗ (so that #(S(n)) = 2N(2N −

1)n−1 = 2N
2N−1λ

n), and let µn be the uniform probability distribution on S(n).

The following statement is a special case, when applied to X , of Proposition 3.13 in [20].

Proposition 5.1.6. Let ε > 0 and 0 < ` < 1. Then there exist constants C1 > 1 and C2 > 0 with the

following property. Let n ≥ 1 and σ ∈ Υ∗ be a freely reduced word be such that |σ| = ` logλ n = ` log n/ log λ.

Then for wn ∈ S(n) we have

Pµn(|〈σ,wn〉 − nµ(σ)| < nε+(1−`)/2) = 1−O(C−n
C2

1 ),

and therefore, since λ = 2N − 1 and µ(σ) = 2N−1
2N λ−|σ| = 2N−1

2N n−`,

Pµn(

∣∣∣∣〈σ,wn〉 − 2N − 1

2N
n1−`

∣∣∣∣ < nε+(1−`)/2) = 1−O(C−n
C2

1 ),

Corollary 5.1.7. Let ε > 0 and 0 < ` < 1. Let constants C1 > 1 and C2 > 0 be the constants provided by

Proposition 5.1.6.

1. Let n ≥ 1 and let En ⊆ S(n) consist of those wn ∈ S(n) such that for every freely reduced σ ∈ Υ∗ with

|σ| = ` logλ n = ` log n/ log λ we have

∣∣∣∣〈σ,wn〉 − 2N − 1

2N
n1−`

∣∣∣∣ < nε+(1−`)/2,

Then

Pµn(En) ≥ 1−O
(
n`C−n

C2

1

)
.

2. Suppose that ε > 0, 0 < ` < 1 are chosen so that ` < 1 − 2ε, and thus 1 − ` > ε + (1 − `)/2. Let

Hn ⊆ S(n) consist of all wn ∈ S(n) such that for every freely reduced σ with |σ| = ` logλ n we have

〈σ,wn〉 ≥
2N − 1

4N
n1−`.

Let n0 ≥ 1 be such that for all n ≥ n0 we have 2N−1
4N n1−` ≥ nε+(1−`)/2. Then for n ≥ n0 we have

Pµn(Hn) ≥ 1−O(n`C−n
C2

1 ).

Proof. For every freely reduced σ with |σ| = ` logλ n let E′n,σ consist of all wn ∈ S(n) such that |〈σ,wn〉 − nµ(σ)| ≥
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nε+(1−`)/2. Thus, by Proposition 5.1.6, for every such σ we have Pµn(E′n,σ) ≤ O(C−n
C2

1 ).

Suppose wn 6∈ En. Then there exists freely reduced σ ∈ Υ∗ with |σ| = ` logλ n such that wn ∈ E′n,σ. Since

there are O(n`) freely reduced words σ with |σ| = ` logλ n, it follows that Pµn(S(n) \ En) ≤ O
(
n`C−n

C2

1

)
.

Hence Pµn(En) ≥ 1−O
(
n`C−n

C2

1

)
, as required, and part (1) of Corollary 5.1.7 is verified.

Part (2) now directly follows from part (1).

Notation 5.1.8. For a freely reduced word w ∈ Υ∗ let ι(w) be the maximal initial segment of w such

that (ι(w))−1 is a terminal segment of w. Let w̃ be the word obtained by removing the initial and terminal

segments of w of length |ι(w)|. Thus w̃ is the cyclically reduced form of w.

The following facts are well-known and easy to check by a direct counting argument; see [3] for details:

Lemma 5.1.9. The following hold:

1. For every 0 < ε0 < 1 there exists C0 > 1 such that for wn ∈ S(n)

Pµn(|ι(wn)| ≤ ε0n) ≥ 1−O(C−n0 ).

2. There is C > 1 such that for wn ∈ S(n)

Pµn(wn is not a proper power in FN ) ≥ 1−O(C−n).

5.2 Bounding below the simplicity index dsimp(g) and the

non-filling index dnfill(g) for random elements

Recall that for a non-trivial element g ∈ FN we denote by dprim(g) the smallest d ≥ 1 such that there exists

a subgroup H ≤ FN with [FN : H] ≤ d such that g ∈ H and, moreover, that g is primitive in H. Similarly,

for g 6= 1 ∈ FN we denote by dsimp(g) the smallest d ≥ 1 such that there exists a subgroup H ≤ FN

with [FN : H] ≤ d such that g ∈ H and, moreover, that g belongs to a proper free factor of H. Finally,

for g ∈ FN − {1} we denote by dnfill(g) the smallest d ≥ 1 such that there exists a subgroup H ≤ FN

with [FN : H] ≤ d such that g ∈ H and, moreover, that g is not filling in H. As we have seen, for every

g ∈ FN −{1} we have dnfill(g) ≤ dsimp(g) ≤ dprim(g) ≤ ||g||A, where A = {a1, . . . , an} is a free basis of FN .

Recall that for n ≥ 1 we denote by µn the uniform probability distribution on the sphere S(n) ⊆ F (A) =

FN . We can now prove Theorem B and re-state it here for convenience:
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Theorem B . Let N ≥ 2 and let FN = F (A) where A = {a1, . . . , aN}.

Then there exist constants c > 0, D1 > 1, 1 > D2 > 0 such that for n ≥ 1 and for a freely reduced word

wn ∈ F (A) of length n chosen uniformly at random from the sphere S(n) of radius n in F (A) we have

Pµn

(
dsimp(wn) ≥ c log1/3 n

)
≥n→∞ 1−O

(
(D1)−n

D2
)

and

Pµn

(
dnfill(wn) ≥ c log1/5 n

)
≥n→∞ 1−O

(
(D1)−n

D2
)

so that

lim
n→∞

Pµn

(
dsimp(wn) ≥ c log1/3 n

)
= 1

and

lim
n→∞

Pµn

(
dnfill(wn) ≥ c log1/5 n

)
= 1

Proof. Choose ε > 0 and 0 < ` < 1 such that ` < 1− 2ε (for concreteness we can take ` = 1/2 and ε = 1/5).

Thus 1− ` > ε+ (1− `)/2 > 0. Let n0 ≥ 1 be such that for all n ≥ n0 we have

2N − 1

4N
(0.99n)1−` ≥ (0.99n)ε+(1−`)/2 ≥ 1.

Let C1 > 1 and C2 > 0 be the constants provided by Corollary 5.1.7. Note that we can assume that

0 < C2 < 1 since decreasing C2 preserves the validity of the conclusion of Corollary 5.1.7.

For wn ∈ S(n) denote by w′n the subword of wn obtained by removing the initial and terminal segments

of length 0.005n from wn. Then |w′n| = 0.99n so that w′n ∈ S(0.99n). Since the uniform distribution on

A±1 is stationary for the Markov chain X , it follows that under the map S(n) → S(0.99n), wn 7→ w′n the

uniform distribution µn on S(n) projects to the uniform distribution µ0.99n on S(0.99n).

Let H ′n be the event that for wn ∈ S(n) the word w′n satisfies the property that for every freely reduced

word σ ∈ F (A) with |σ| = ` logλ(0.99n) we have

〈σ,w′n〉 ≥ 1.

Since for n ≥ n0 we have 2N−1
4N (0.99n)1−` ≥ (0.99n)ε+(1−`)/2 ≥ 1, Corollary 5.1.7 implies that

Pµn(H ′n) ≥ 1−O((0.99n)`C
−(0.99n)C2

1 ) = 1−O
(
n`(C1)−0.99C2nC2

)
≥ 1−O

(
(C ′1)−n

C′2
)
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where C ′1 = (C1 + 1)/2 and C ′2 = C2/2 (for the last inequality we use the fact that 0 < C2 < 1). Note that

C ′1 > 1 and 1 > C ′2 > 0.

Let Qn ⊆ S(n) be the event that for wn ∈ S(n) we have ι(wn) ≤ 0.001n. Lemma 5.1.9 implies that

Pµn(Qn) ≥ 1 − O(C−n0 ) for some constant C0 > 1. Now let H ′′n be the set of all wn ∈ H ′n such that

ι(wn) ≤ 0.001n, that is, H ′′n = H ′n ∩Qn.

Then

Pµn(H ′′n) ≥ 1−O
(

(C ′1)−n
C′2
)
−O(C−n0 ) ≥n→∞ 1−O

(
(D1)−n

D2
)

where D1 = min{C0, C
′
1} and D2 = min{C ′2, 1} = C ′2, so that D1 > 1 and 1 > D2 > 0.

We choose c > 0 such that c0c
3 ≤ `

2 log(2N−1) , where c0 > 0 is the constant provided by Proposition 4.1.7.

Let n ≥ n0 and let wn ∈ S(n) be such that wn ∈ H ′′n .

Since ι(wn) ≤ 0.001n and since w′n is the subword of wn obtained by removing the initial and terminal

segments of length 0.005n from wn, it follows that w′n is a subword of the cyclically reduced form w̃n of wn.

Let d = dsimp(wn) = dsimp(w̃n). We claim that d ≥ c log1/3 n.

Indeed, suppose not, that is, suppose that d < c log1/3 n. Let (Γ, x0) be a d-fold cover of the N -rose

(RN , ∗) such that w̃n lifts to a loop γn from x0 to x0 in Γ such that γn belongs to a proper free factor of

π1(Γ, x0). Note that since w̃n is cyclically reduced, the closed path γn is also cyclically reduced.

Let T be a maximal subtree of Γ and let v = v(Γ, T ) be the freely reduced word in F (A) with |v| ≤ c0d3

provided by Proposition 4.1.7. Thus |v| ≤ c0d3 ≤ c0c3 log n.

By definition of H ′′n , the fact that wn ∈ H ′′n implies that the word w′n contains as subwords all freely

reduced words in F (A) of length

` logλ(0.99n) =
`

log(2N − 1)
(log n− | log 0.99|)

There is n1 ≥ n0 such that for all n ≥ n1 we have

`

log(2N − 1)
(log n− | log 0.99|) ≥ `

2 log(2N − 1)
log n.

Hence for n ≥ n1 the word w′n contains as subwords all freely reduced words of length `
2 log(2N−1) log n. Since

|v| ≤ c0c3 log n ≤ `
2 log(2N−1) log n, it follows that w′n contains v as a subword.

Recall that w′n is a subword of the cyclically reduced form w̃n of wn.

Therefore, by Proposition 4.1.7, the path γn in Γ, labeled by w̃n, contains α(Γ, T ) as a subpath. By
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Corollary 4.1.8 this implies that γn does not belong to a proper free factor of π1(Γ, x0), yielding a contra-

diction.

Thus d = dsimp(wn) ≥ c log1/3 n, as claimed.

We have verified that for every wn ∈ H ′′n , where n ≥ n1, we have dsimp(wn) ≥ c log1/3 n, and we also

know that

Pµn(H ′′n) ≥ 1−O
(

(D1)−n
D2
)
.

The conclusion of Theorem B regarding dsimp(wn) is established.

The proof of the conclusion of Theorem B regarding dnfill(wn) is identical, with Proposition 4.1.11 and

Proposition 4.1.12 used instead of Proposition 4.1.7 and Corollary 4.1.8.
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Chapter 6

Untangling closed geodesics on
hyperbolic surfaces

Having established lower bounds for our free group functions, we can now focus on our motivating problem

relating to untangling closed curves on surfaces. In this chapter we will apply the free group bounds to the

surface functions defined in Chapter 1, and thereby prove Theorem C and Theorem D.

6.1 Lower bounds for degΣ,ρ and fΣ,ρ for hyperbolic surfaces.

We need the following well-known fact:

Lemma 6.1.1. Let S be a compact connected surface with b ≥ 2 boundary components such that π1(S) is

free of rank ≥ 2. Let γ be an essential simple closed curve (possible peripheral) on S and let x ∈ S be a

base-point for S. Then the loop at x corresponding to γ belongs to a proper free factor of π1(S, x).

Proof. Without loss of generality we may assume that x ∈ γ.

By assumption, we have π1(S, x) = Fm with m ≥ 2. Since S has b ≥ 2 boundary components, it follows

that every boundary component (when realized as a loop at x) represents a primitive element of Fm.

Let γ be an essential simple closed curve on S. If γ is peripheral, then γ is a primitive element of Fm

and thus belongs to a proper free factor of Fm.

Suppose now that γ is non-peripheral. Then cutting S along γ yields a nontrivial splitting of Fm = π1(S)

as an amalgamated product (if γ is separating) or as an HNN-extension (if γ is non-separating) over 〈γ〉 = Z.

Suppose that γ is separating, and it cuts S into two compact surfaces S1 and S2 with S1 ∩ S2 = γ and

S1 ∪ S2 = S, each of π1(S1), π1(S2) is free of rank ≥ 2. Thus Fm = π1(S, x) = π1(S1, x) ∗γ π1(S2, x). The

fact that b ≥ 2 means that at least one of S1, S2 has ≥ 2 boundary components. Assume for concreteness that

S1 has ≥ 2 boundary components. Then γ is primitive in π1(S1, x). Thus we can find a free basis a1, . . . , am

of π1(S1, x) such that m ≥ 2 and γ = am. Also choose a free basis b1, . . . , bk of π1(S2, x), where k ≥ 2. Let

v ∈ F (b1, . . . , bk) = π1(S2, x) be the freely reduced word equal to γ in π1(S2, x). Then the above splitting

of π1(S, x) can be written as π1(S, x) = F (a1, . . . , am) ∗am=v F (b1, . . . , bk). By eliminating the generator am
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from this presentation, we see that π1(S, x) = F (a1, . . . , am−1, b1, . . . , bk). Thus γ = v(b1, . . . , bk) belongs to

a proper free factor F (b1, . . . , bk) of π1(S, x), as required. The case where γ is non-separating is similar.

Note that there is a general result (see, for example, [5, Lemma 4.1] and [62, Proposition 5.1]) which says

that whenever the free group FN (with N ≥ 2) splits nontrivially as an amalgamated free product or an

HNN-extension over a maximal infinite cyclic subgroup 〈g〉, then g belongs to a proper free factor of FN .

The following proposition relates the degree function degΣ,ρ(γ) for curves in hyperbolic surfaces discussed

in Chapter 1, with the simplicity index dsimp in free groups for curves contained in suitable subsurfaces:

Proposition 6.1.2. Let (Σ, ρ) be a compact connected hyperbolic surface with (possibly empty) geodesic

boundary. Let Σ1 ⊆ Σ be a compact connected subsurface with ≥ 3 boundary components, each of which is a

geodesic in (Σ, ρ). Let x ∈ Σ1 be a base-point. Then for every nontrivial element g ∈ π1(Σ1, x) represented

by a closed geodesic γg on Σ we have

degΣ,ρ(γg) ≥ dsimp(g;π1(Σ1, x)).

Proof. By assumption π1(Σ1, x) ∼= Fm is free of rank m ≥ 2. The fact that Σ1 is a subsurface of Σ with

geodesic boundary implies that if g ∈ π1(Σ1, x) is a nontrivial element, then the shortest geodesic in Σ in the

free homotopy class of g is contained in Σ1. Indeed, the universal cover X := (̃Σ1, x) is a convex π1(Σ1, ∗)-

invariant subset of (̃Σ, x) = H2. Therefore for every nontrivial element g ∈ π1(Σ1, x) the axis Axis(g) of g

in H2 is contained in X. The image of Axis(g) in Σ is the unique closed geodesic in the free homotopy class

of g; the fact that Axis(g) ⊆ X implies that this closed geodesic is contained in Σ1, as claimed.

Now let 1 6= g ∈ π1(Σ′, x) and γg be as in the assumptions of the proposition. Thus γg is contained in

Σ1.

Let d = degΣ,ρ(γg). Let p : Σ̂ → Σ be a d-fold cover of Σ such that γg lifts to a simple closed geodesic

γ̂g in Σ̂. Let Σ̂1 ⊆ Σ̂ be the connected component of the full preimage p−1(Σ1) of Σ1 containing γ̂g. Then

p : Σ̂1 → Σ1 is a d′-fold cover of Σ1 with d′ ≤ d. Pick a base-point x′ ∈ Σ̂1 such that p(x′) = x.

The cover p : (Σ̂1, x
′) → (Σ1, x) corresponds to a subgroup H ≤ π1(Σ1, x) of index d′, such that

p#(π1(Σ̂1, x)) = H, and that p# maps π1(Σ̂1, x
′) isomorphically to H.

Since Σ̂1 is a cover of Σ1, the surface Σ̂1 has ≥ 2 boundary components and π1(Σ̂1) is free of rank ≥ 2.

By Lemma 6.1.1, the fact that γ̂g is an essential simple closed curve on Σ̂1 implies that γ̂g corresponds

an element w ∈ π1(Σ̂1, x
′) which belongs to a proper free factor of π1(Σ̂1, x

′). Since p(γ̂g) = γg, we have

p#(w) = g ∈ H. Since p# maps π1(Σ̂1, x
′) isomorphically to H, we conclude that g belongs to a proper free

factor of H. Thus H ≤ π1(Σ1, x), [π1(Σ1, x) : H] = d′ and g belongs to a proper free factor of H. Therefore
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d′ ≥ dsimp(g;π1(Σ1, x)). Therefore

degΣ,ρ(γg) = d ≥ d′ ≥ dsimp(g;π1(Σ1, x)),

as required.

We now prove Theorem D which we re-state here for completeness:

Theorem D . Let Σ be a compact connected surface with a hyperbolic structure ρ and with (possibly

empty) geodesic boundary. Let Σ1 ⊆ Σ be a compact connected subsurface with ≥ 3 boundary components,

each of which is a geodesic in (Σ, ρ). Let x ∈ Σ1 and let A be a free basis of π1(Σ1, x).

Let wn ∈ F (A) = π1(Σ1, x) be a freely reduced word of length n over A±1 generated by a simple non-

backtracking random walk on F (A) = π1(Σ1, x). Let γn be the closed geodesic on (Σ, ρ) in the free homotopy

class of wn.

Then there exist constants c > 0,K ′ ≥ 1 such that

lim
n→∞

Pr(degΣ,ρ(γn) ≥ c log1/3 n) = 1

and such that with probability tending to 1 as n → ∞ we have that wn ∈ π1(Σ, x) is not a proper power

and that n/K ′ ≤ `ρ(γn) ≤ K ′n.

Proof. As we have seen in the proof of Proposition 6.1.2, the fact that Σ1 is a subsurface of Σ with geodesic

boundary implies that if g ∈ π1(Σ1, ∗) is a nontrivial element, then the shortest geodesic in Σ in the free

homotopy class of g is contained in Σ1.

By Theorem B and Lemma 5.1.9, there exist an integer n0 ≥ 1 such that for n ≥ n0, with probability

tending to 1 as n → ∞ we have that wn is not a proper power in F (A), that 0.99n ≤ ||wn||A ≤ n = |wn|A

and dsimp(wn;F (A)) ≥ c log1/3 n, where c = c(A) > 0 is the constant provided by Theorem B for the free

group Fm = F (A).

Proposition 6.1.2 now implies that with probability tending to 1 as n→∞ we have

degΣ,ρ(γn) ≥ dsimp(wn;F (A)) ≥ c log1/3 n.

Finally, the fact that Σ1 has geodesic boundary in (Σ, ρ) also implies that there exists a constant K ≥ 1

such that for every nontrivial element g ∈ π1(Σ1, x) represented by a closed geodesic γ on (Σ, ρ) we have
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||g||A/K ≤ `ρ(γ) ≤ K||g||A. Since with probability tending to 1 as n → ∞ we have 0.99n ≤ ||wn||A ≤

n = |wn|A, it follows that for all sufficiently large n with with probability tending to 1 as n → ∞ we have

0.99n/K ≤ `ρ(γn) ≤ Kn, as required.

Remark 6.1.3. Theorem D directly implies (e.g. by taking Σ1 to be a suitable pair-of-pants subsurface) that

if (Σ, ρ) is a compact connected hyperbolic surface of genus ≥ 2 with (possibly empty) geodesic boundary,

then there exists c′ = c′(Σ) > 0 such that for every L ≥ sys(ρ) we have fρ(L) ≥ c′(logL)1/3.

6.2 Lower bounds for degnfillΣ,ρ and fnfillΣ,ρ for hyperbolic surfaces.

Our results about the behavior of dnfill in free groups can also be used to obtain information about degnfillΣ,ρ

for compact hyperbolic surfaces.

Lemma 6.2.1. Let (Σ, ρ) be a compact connected hyperbolic surface with b ≥ 1 geodesic boundary compo-

nents. Then the following hold:

1. If γ is a non-filling closed geodesic on (Σ, ρ) , then γ represents a non-filling element of the free group

π1(Σ).

2. For any closed geodesic γ on (Σ, ρ) we have degnfillΣ,ρ (γ) ≥ dnfill(γ, π1(Σ)).

Proof. To see that (1) holds, let γ be a non-filling closed geodesic on (Σ, ρ). Then γ is contained in a proper

compact connected subsurface Σ1 of (Σ, ρ) with geodesic boundary. Cutting Σ open along the boundary of

Σ1 provides a nontrivial graph-of-groups decomposition of π1(Σ) with maximal cyclic edge groups and such

that γ belongs to a vertex group of this decomposition. Hence γ is non-filling in π1(Σ). Thus (1) holds.

For (2), let γ be a closed geodesic on (Σ, ρ). Let d = degnfillΣ,ρ (γ) and let Σ̂→ Σ be a degree-d cover such

that γ lifts to a closed non-filling geodesic γ̂ on Σ̂. This cover corresponds to a subgroup H = π1(Σ1) ≤ π1(Σ)

of index d containing the element γ. The fact that γ̂ is a non-filling curve in Σ1 implies, by part (1) of this

lemma, that γ is a non-filling element of H = π1(Σ1). Therefore, by definition, dnfill(γ, π1(Σ)) ≤ d =

degnfillΣ,ρ (γ), as required.

We can now prove Theorem C which we re-state here for convenience:

Theorem C . Let (Σ, ρ) be a compact connected hyperbolic surface with b ≥ 1 geodesic boundary compo-

nents. Then there exists C ′ > 0 such that for all sufficiently large L we have

fΣ,ρ(L) ≥ fnfillΣ,ρ (L) ≥ C ′ logL

log logL
.
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Proof. Let π1(Σ) = FN = F (A) where A = {a1, . . . , aN} with N ≥ 2. The universal cover X = (Σ̃, ρ̃) is

a convex π1(Σ)-invariant subset of H2. Therefore the orbit map F (A) → H2, w 7→ w∗ (where ∗ ∈ H2 is

some basepoint) is a π1(Σ)-equivariant quasi-isometry. Hence there exists K ≥ 1 such that for every closed

geodesic γ on (Σ, ρ) representing an element w ∈ π1(Σ) we have ||w||A/K ≤ `ρ(γ) ≤ K||w||A.

By Theorem A there exists a sequence of nontrivial cyclically reduced elements wn ∈ F (A) such that

||wn||A = n and that for all sufficiently large n we have

dnfill(wn, F (A)) ≥ C log n

log log n
,

where C > 0 is the constant provided by Theorem A. By Lemma 6.2.1, it follows that for all sufficiently

large n we have

degnfillΣ,ρ (γ) ≥ dnfill(wn, F (A)) ≥ C log n

log logn
.

Since ||w||A/K ≤ `ρ(γ) ≤ K||w||A, the statement of the theorem now follows.

Theorem 6.2.2. Let (Σ, ρ) be a compact connected hyperbolic surface with b ≥ 1 geodesic boundary compo-

nents. Let A = {a1, . . . , aN} be a free basis of π1(Σ, x), so that π1(Σ) = F (A). Let wn ∈ F (A) = π1(Σ, x)

be a freely reduced word of length n over A±1 generated by a simple non-backtracking random walk on F (A).

Let γn be the closed geodesic on (Σ, ρ) in the free homotopy class of wn.

Then there exist constants c1 > 0,K1 ≥ 1 such that

lim
n→∞

Pr(degnfillΣ,ρ (γn) ≥ c1 log1/5 n) = 1

and such that with probability tending to 1 as n→∞ we have that wn ∈ π1(Σ, x) is not a proper power and

that n/K1 ≤ `ρ(γn) ≤ K1n.

Proof. The proof is essentially identical to the proof of Theorem D.

6.3 Degree and index functions based on the geometric

intersection number

Let Σ be a compact connected surface admitting some hyperbolic structure (so that π1(Σ) is free of rank

≥ 2). Denote by CΣ the set of free homotopy classes of essential closed curves on Σ that are not proper

powers in π1(Σ). For [γ] ∈ CΣ denote by dΣ([γ]) the smallest degree of a finite cover of Σ such that a

representative of [γ] lifts to a simple closed curve in that cover. Note that if ρ is a hyperbolic metric on Σ,

52



then for every [γ] ∈ CΣ there exists a unique closed ρ-geodesic γ ∈ [γ] and dρ(γ) = dΣ([γ]). Moreover, in this

case i([γ], [γ]) = i(γ, γ), where i(−,−) is the geometric intersection number. For an integer m ≥ 1 we define

fΣ(m) as the maximum of dΣ([γ]) where [γ] varies over all elements of CΣ with i([γ], [γ]) ≤ m. Similarly,

for [γ] ∈ CΣ denote by dnfillΣ ([γ]) the smallest degree of a finite cover of Σ such that a representative of [γ]

lifts to a non-filling closed curve in that cover. Then define fnfillΣ (m) as the maximum of dnfillΣ ([γ]) where

[γ] varies over all elements of CΣ with i([γ], [γ]) ≤ m. Since simple curves are non-filling, we always have

dΣ([γ]) ≥ dnfillΣ ([γ]) and hence fΣ(m) ≥ fnfillΣ (m).

A result of Basmajian [4, Theorem 1.1] (which also can be derived from the results of Bonahon about

geodesic currents [7]) states that:

Proposition 6.3.1. Let (Σ, ρ) be a connected compact hyperbolic surface with a (possibly empty) geodesic

boundary. Then there exists a constant K = K(Σ, ρ) ≥ 1 such that for every closed geodesic γ on (Σ, ρ) we

have

i([γ], [γ]) ≤ K`ρ(γ)2.

Theorem C can be used to derive a lower bound for fΣ:

Theorem 6.3.2. Let Σ be a compact connected surface admitting some hyperbolic structure. Then there

exist a constant c = c(Σ) > 0 and an integer m0 ≥ 1 such that for all m ≥ m0 we have

fΣ(m) ≥ fnfillΣ (m) ≥ c logm

log logm
.

Proof. Fix a hyperbolic metric ρ on Σ. By Proposition 6.3.1, there exists a constant K = K(ρ) > 0 such

that for every [γ] ∈ CΣ we have i([γ], [γ]) ≤ K`ρ([γ])2. Let C ′ = C ′(Σ, ρ) > 0 be the constant provided

by Theorem C. Then Theorem C implies that there exist a sequence of closed geodesics γn on (Σ, ρ) and

an integer n0 ≥ 1 such that for every n ≥ n0 we have `ρ(γn) ≤ n and dnfillΣ ([γn]) ≥ C ′ logn
log logn . Therefore

i(γn, γn) ≤ K`ρ(γn)2 ≤ Kn2 for all n ≥ n0.

Fix an integer n1 ≥ n0 such that for all integers n ≥ n1 we have (n+ 1)2 ≤ 2n2.

Let m ≥ Kn2
1 be an integer. Choose an integer n ≥ n1 such that Kn2 ≤ m ≤ K(n+ 1)2. Then

i([γn], [γn]) = i(γn, γn) ≤ Kn2 ≤ m ≤ K(n+ 1)2 ≤ 2Kn2

and n ≥
√
m√
2K

.
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Therefore i([γn], [γn]) ≤ m and

dnfillΣ ([γn]) ≥ C ′ log n

log log n
≥ C ′

log
√
m√
2K

log log
√
m√
2K

= C ′
1
2 logm− log

√
2K

log
(

1
2 logm− log

√
2K
) ,

and the statement of Theorem 6.3.2 follows.

Remark 6.3.3. Although upper bounds for the various degree and under functions are usually easier to

obtain than the lower bounds, for the moment no upper bounds for fΣ(m) are available. The reason is

that on a fixed hyperbolic surface there are arbitrarily long simple closed geodesics (which thus have self-

intersection number 0). Thus the linear upper bound for fΣ,ρ(m), obtained by Patel [51] does not directly

imply any upper bound for fΣ(m). However, we conjecture that the following statement should be true:

Let (Σ, ρ) be a connected compact hyperbolic surface with a (possibly empty) geodesic boundary. Then

there exists a constant B ≥ 1 with the following property. Whenever γ is a closed geodesic on (Σ, ρ) such

that `ρ([γ] ≤ `ρ(g([γ])) for every g ∈Mod(Σ), then `ρ(γ) ≤ Bi([γ], [γ]) +B.

If true, this statement, together with Patel’s theorem, would imply that fΣ(m) has a linear upper bound

for all sufficiently large m.
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Chapter 7

Nielsen Equivalence Classes in a Class
of Random Groups

In this chapter we discuss Nielsen Equivalence Classes in random groups. We show that for every k ≥ 2 and

every n ≥ 2 there exists a torsion free, one ended, word hyperbolic group G of rank n with exactly k Nielsen

equivalence classes of generating n- tuples.

7.1 Introduction

Jakob Nielsen defined the notion of Nielsen Equivalence in the 1920s [49, 50]. The following definition is as

in [39].

Definition 7.1.1. If G is a group, n ≥ 1, and τ = (g1, . . . , gn) is an ordered n-tuple of elements in G, an

elementary Nielsen transformation on τ is one of the following three types of moves:

1. For some i ∈ {1, . . . , n} replace gi in τ by g−1
i

2. For some i 6= j, i, j ∈ {1, . . . , n} interchange gi and gj in τ

3. For some i 6= j, i, j ∈ {1, . . . , n} replace gi in τ by gig
±1
j

Two n-tuples τ = (g1, . . . , gn) and τ ′ = (g′1, . . . , g
′
n) are called Nielsen equivalent, denoted τ ∼NE τ

′, if there

exists a finite chain of elementary Nielsen transformations taking τ to τ ′.

Since elementary Nielsen transformations are invertible it follows that Nielsen equivalence is an equiva-

lence relation on the set Gn of ordered n-tuples of elements in G for every n ≥ 1.

Let Fn be a free group of rank n ≥ 1 with a distinguished free basis (x1, . . . , xn). Nielsen showed that an n-

tuple (y1, . . . , yn) of elements in Fn is a free basis of Fn if and only if (x1, . . . , xn) ∼NE (y1, . . . , yn) in Fn. Note

also that the definition of Nielsen equivalence directly implies that if (x1, . . . , xn) ∼NE (y1, . . . , yn) in G, then

< x1, . . . , xn >=< y1, . . . , yn >≤ G; that is, if two n-tuples are Nielsen equivalent, they generate the same

subgroup of G. This also shows that if G is a group with (g1, . . . , gn), (g′1, . . . , g
′
n) ∈ Gn, then (g1, . . . , gn) ∼NE

(g′1, . . . , g
′
n) if and only if there exists an automorphism φ ∈ Aut(Fn) with φ(xi) = wi(x1, . . . , xn) such that

g′i =G wi(g1, . . . , gn) for each i ∈ {1, . . . , n}.
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In general, it is quite hard to distinguish Nielsen equivalence classes of n-tuples that generate the

same subgroup. The only exception is the case n = 2. Here, a classic result due to Nielsen says that if

(g1, g2) ∼NE (h1, h2) in G, then [g1, g2] is conjugate to [h1, h2] or [h1, h2]−1 in G. The result uses the fact

that primitive elements in F2 are well understood. However very few results exist for n ≥ 3. In fact, even in

the algorithmically nice setting of torsion-free, word hyperbolic groups the problem of deciding if two tuples

are Nielsen equivalent is algorithmically undecidable.

Further observe that the subgroup membership problem is a special case of this problem since two tuples

(g1, ..., gn, h) and (g1, ..., gn, 1) are Nielsen equivalent if and only if h ∈< g1, ..., gn >. In particular, this

implies that Nielsen equivalence is not decidable for finitely presented torsion-free small cancellation groups

as they do not have decidable subgroup membership problem as shown by Rips [55].

In [39] Kapovich and Weidmann use very sophisticated methods to show that:

Theorem 7.1.2. [39] Let n ≥ 2 be arbitrary integer. There exists a torsion-free word-hyperbolic one-ended

group G of rank n admitting generating n-tuples (a1, . . . , an), and (b1, . . . , bn) such that the (2n− 1)-tuples

(a1, . . . , an, 1, . . . , 1︸ ︷︷ ︸
n− 1 times

) and (b1, . . . , bn, 1, . . . , 1︸ ︷︷ ︸
n− 1 times

) are not Nielsen-equivalent.

The operation of making an n-tuple of elements of G into an (n+ 1)-tuple by appending the (n+ 1)-st

entry equal to 1 ∈ G is sometimes called a stabilization move. In the result above (n − 1) stabilizations

are done. Note that since (a1, . . . , an), and (b1, . . . , bn) are generating n-tuples, if we had instead done

n stabilizations, then (a1, . . . , an, 1, . . . , 1︸ ︷︷ ︸
n times

) ∼NE (b1, . . . , bn, 1, . . . , 1︸ ︷︷ ︸
n times

) in G since we could express each ai in

terms of {b1, . . . , bn} for instance. It is also clear from the result that the n-tuples (a1, . . . , an) and (b1, . . . , bn)

are not Nielsen equivalent in G since if they were, doing the stabilizations would not have mattered. Hence,

the result shows that one needs n stabilizations in order to make the tuples (a1, . . . , an), and (b1, . . . , bn)

Nielsen equivalent.

On the other hand the above result implies that there are at least 2 Nielsen equivalence classes of

generating n-tuples in G. Using much simpler methods we can say more about the number of Nielsen

equivalence classes in G. We can show that in the case above there are in fact precisely two Nielsen

equivalence classes of generating n-tuples. Further we can generalize to show the existence of groups G

with precisely k Nielsen equivalence classes of generating n-tuples where k ≥ 2 is also an arbitrary integer.

We should observe here that even though our methods are simpler than those employed by Kapovich and

Weidmann in [39], our goals are different. They wanted to show that the two generating n-tuples above

were as “far from each other” as possible in terms of Nielsen equivalence, whereas our goal is to consider the

precise number of Nielsen equivalence classes.
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We can essentially say that for every k ≥ 2, n ≥ 2 there exists a torsion free, one-ended, word hyperbolic

group G of rank n with exactly k Nielsen equivalence classes of generating n-tuples. More precisely:

Theorem E . Let k ≥ 2, n ≥ 2 be arbitrary integers. Then there exists a generic set R of kn-tuples

τ = (u11, . . . , u1n, u21, . . . , u2n, . . . , uk1, . . . , ukn)

where for each τ ∈ R, i ∈ {1, . . . , k}, j ∈ {1, . . . , n}, uij is a cyclically reduced word in F (ai1, . . . , ain).

Further, |u11| = . . . = |u1n| = . . . = |uk1| = . . . = |ukn| and such that the following holds for each

τ = (u11, . . . , u1n, u21, . . . , u2n, . . . , uk1, . . . , ukn) :

Let G be a group given by the presentation:

G =< a11, . . . , a1n, . . . , ak1, . . . , akn|a1j = u2j(a2), a2j = u3j(a3), . . . , a(k−1)j = ukj(ak),

akj = u1j(a1), for 1 ≤ j ≤ n >, (*)

where for i ∈ {1, . . . , k}, (ai) = (ai1, . . . , ain). Then G is a torsion-free word-hyperbolic one-ended group of

rank n admitting precisely k Nielsen equivalence classes of generating n-tuples.

The precise meaning of R being generic is explained in Section 7.2.2. There are essentially two parts to

the proof of Theorem E: first showing that our group G is torsion-free word-hyperbolic one-ended of rank n;

and second showing that G admits precisely k Nielsen equivalence classes of generating n-tuples. The proofs

for the first part are more or less identical to the proofs presented in [39]. We will now give a sketch for the

proof of the second part. Observe that each of the tuples (a11, . . . , a1n), . . . , (ak1, . . . , akn) are generating

n-tuples for G since we can see for example

G =< a11, . . . , a1n|U1, . . . , Un > (**)

where each Uj is obtained by freely and cyclically reducing the word formed by modifying the relation

a−1
1j u2j(a2) as follows: for j ∈ {1, . . . , n}, each u2j ∈ F (a21, . . . , a2n) but each a2j = u3j(a3). Hence

we replace each occurrence of a2j by u3j ∈ F (a31, . . . , a3n). Proceeding in a this manner by successively

replacing aij by u(i+1)j for i ∈ {1, . . . , k− 1}, and finally replacing each akj by u1j ∈ F (a11, . . . , a1n) we get

that each a−1
1j u2j(a2) can be replaced by a word in F (a11, . . . , a1n).

It is easily shown using Tietze transformations that the presentations (*) and (**) represent the same

group G. The genericity of (*) shows that the presentation (**) satisfies arbitrarily strong small cancellation

condition C ′(λ) where 0 < λ < 1 is an arbitrarily small fixed number. We show that the k Nielsen equivalence

57



classes of generating n-tuples are precisely the classes of the n-tuples (a11, . . . , a1n), . . . , (ak1, . . . , akn). We

first show that no two of these are Nielsen equivalent to each other, and then that any other generating n-tuple

must be Nielsen equivalent to one of these. We start by picking two n-tuples (al1, . . . , aln), (am1, . . . , amn)

with m 6= l, and m, l ∈ {1, . . . , k}. Suppose (al1, . . . , aln) ∼NE (am1, . . . , amn) in Gn. Then (al1, . . . , aln) ∼NE

(w1, . . . , wn) in F (al1, . . . , aln) with wj = amj in G for all 1 ≤ j ≤ n. We show that, in fact, even w1 6= am1

in G. We use properties of primitive words and the results of Schupp on conjugacy diagrams [45] to note

that w1 must contain a large part of some relator. Since w1 ∈ F (al1, . . . , aln), the relator would have to be

some a−1
(l−1)julj (for l 6= 1). Using genericity we will show that this must imply that w1 contains all freely

reduced words of length 2 in F (al1, . . . , aln). We will construct a sequence of graphs and use the notion of

Stallings foldings to show that this leads to a contradiction.

Now suppose (g1, . . . , gn) ∈ Gn is a generating n-tuple. We will show that (g1, . . . , gn) must be Nielsen

equivalent of one of the n-tuples (a11, . . . , a1n), . . . , (ak1, . . . , akn). We construct a sequence of graphs using

essentially folds. We then use the Arzhantseva-Ol’shanskii “surgery trick” in the form described in [37] to

show that the sequence eventually terminates in an n-rose. We then once again use a condition imposed on

the generic set R to conclude that this n-rose must be one consisting of some (ap1, . . . , apn), p ∈ {1, . . . , k}

with ap1, . . . , apn respectively labeling the n-petals.

7.2 Preliminaries

7.2.1 Small Cancellation Theory

Within group theory, small cancellation theory studies group presentations where relators have “small over-

laps”. It was the thought child of Martin Greendlinger [25, 26, 27] who developed it in its most commonly

used form. See Chapter V of [45] for details.

Recall that a set R of cyclically reduced words in F = F (a1, . . . , an) is called symmetrized if for every

r ∈ R all cyclic permutations of r±1 belong to R. For a symmetrized set R ⊆ F (a1, . . . , an), a freely reduced

word v is called a piece with respect to R if there exist r1, r2 ∈ R such that r1 6= r2 and v is an initial

segment of both r1 and r2.

Definition 7.2.1. (Small Cancellation Condition) Let R ⊆ F (a1, . . . , an) be a symmetrized set of cyclically

reduced words. Let 0 < λ < 1. We say that R is a C ′(λ)- set if, whenever v is a piece with respect

to R and r ∈ R is such that r contains v as a subword, then |v| < λ|r|. We say that the presentation

G =< a1, . . . , an|R > satisfies the C ′(λ)- small cancellation condition if R ⊆ F (a1, . . . , an) is a C ′(λ) set.

The following proposition is a well-know property of small cancellation groups [45]:
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Proposition 7.2.2. (Greendlinger’s Lemma) Let G =< a1, . . . , an|R > be a C ′(λ)-presentation with λ ≤

1/6. Let w ∈ F (a1, . . . , an) be a freely reduced word such that w =G 1. Then w contains a subword v such

that v is also a subword of some r ∈ R satisfying |v| > (1− 3λ)|r| ≥ |r|/2.

Definition 7.2.3. Let G =< a1, . . . , an|R > be a C ′(λ)-presentation with λ ≤ 1/100. For a freely reduced

word w ∈ F (a1, . . . , an) we say that w is Dehn reduced with respect to R if w does not contain a subword v

such that v is also a subword of some r ∈ R with |v| > |r|/2.

We say that a freely reduced word w is λ-reduced with respect to R if w does not contain a subword v

such that v is also a subword of some r ∈ R with |v| > (1− 3λ)|r|.

Similarly, we say that a cyclically reduced word w ∈ F (a1, . . . , an) is λ- cyclically reduced with respect

to R if every cyclic permutation of w is λ-reduced with respect to R. We also say that a cyclically reduced

word w ∈ F (a1, . . . , an) is cyclically Dehn-reduced with respect to R if every cyclic permutation of w is

Dehn-reduced with respect to R.

Observe that for λ ≤ 1/6, Dehn-reduced words are also λ-reduced.

The following is a consequence of studying Conjugacy diagrams in C ′(λ) groups that arise from results

in Chapter V of [45]. It is Corollary 2.6 in [40]:

Lemma 7.2.4. Let G =< a1, . . . , an|R > be a C ′(λ) presentation with λ ≤ 1/100. Suppose that for every

r ∈ R we have |r| ≥ 2/λ+ 1. Then if w is a cyclically reduced word in F (a1, . . . , an) that is conjugate to a1

in G, we must have that either w = a1 in F (a1, . . . , an) or that w is not λ-cyclically reduced with respect to

R.

7.2.2 Genericity

Roughly speaking a property P for groups is generic if a “random” group satisfies P. There are plenty of

different models. See [37, 39, 40] for details.

For n ≥ 2, Ai = {ai1, . . . , ain}, we say Fi = F (Ai) is the set of freely reduced words in A±i . Let s ≥ 1

and let U ⊆ F si be some set of s-tuples with entries from F (Ai). Thus for l ≥ 0 we denote by γAi(l, U)

the number of all s-tuples (u1, . . . , us) ∈ U such that |u1| = . . . = |us| = l. Thus for l ≥ 1, we have that

γAi(l, F
s
i ) = (2n(2n− 1)l−1)s.

Definition 7.2.5. A subset S ⊆ F (Ai) is generic in F (Ai) if

lim
N→∞

#{v ∈ S : |v| = N}
#{v ∈ F (Ai) : |v| = N}

= lim
N→∞

#{v ∈ S : |v| = N}
2n(2n− 1)N−1

= 1
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If in addition, the convergence to 1 in the above limit is exponentially fast, we say that S is exponentially

generic in F (Ai).

Definition 7.2.6. Let U ⊆ F si be some set of s-tuples with entries from Ai such that for every (u1, . . . , us) ∈

U we have that |u1| = . . . = |us|. Let U ′ ⊆ U . We say that U ′ is generic in U if

lim
l→∞

γAi(l, U
′)

γAi(l, U)
= 1.

If in addition, the convergence to 1 is exponentially fast, we say that U ′ is exponentially generic in U .

Let Ci = CAi be the set of cyclically reduced words in F (Ai). Let C(i) = {(u1, . . . , us) ∈ Csi ||u1| = . . . =

|us|}. Then the definitions immediately show that:

Lemma 7.2.7. For any i: The intersection of a finite number of (exponentially) generic subsets of C(i) is

(exponentially) generic in C(i).

The following properties of s-tuples of cyclically reduced elements in a free group are well known to be

exponentially generic:

Lemma 7.2.8. For n ≥ 2, for any i:

(1) The property that no element of an s-tuple is a proper power in F (Ai) is exponentially generic in C(i).

(2) Let 0 < λ < 1 be arbitrary. Then the property that an s-tuple (u1, . . . , us) after cyclic reduction and

symmetrization satisfies the C ′(λ) small cancellation condition is exponentially generic in C(i).

(3) The property that for an s-tuple (u1, . . . , us) for every i 6= j the element ui is not conjugate to u±1
j in

F (Ai), is exponentially generic in C(i).

(4) Let K ≥ 1 be an integer and let 0 < λ < 1. Then the property of as s-tuple (u1, . . . , us) that every

subword v of some uj of length ≥ λ|uj | contains as a subword every freely reduced word of length ≤ K

in F (Ai), is exponentially generic in C(i).

7.2.3 The Genericity Condition

This subsection largely follows [37]. Recall that 1 ≤ i ≤ k, and that for n ≥ 2, we have fixed the sets

Ai = (ai1, . . . , ain). The following definition is from [3].

Definition 7.2.9. [3] (µi-readable) Let 0 < µ < 1 be a real number. A reduced word w in F (Ai) =

F (ai1, . . . , ain) of length p > 0 is called µi-readable if there exists a connected folded Ai-graph Γ where every

edge is labeled by a letter of Ai such that:
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(1) The number of edges in Γ is ≤ µp

(2) The free group π1(Γ) has rank ≤ n− 1.

(3) There is a reduced path in Γ with label w.

The following is a specific version of a definition from [1]

Definition 7.2.10. [1] ((µ, n)i-readable) Let 0 < µ < 1 be a real number. A reduced word w in F (Ai) =

F (ai1, . . . , ain) of length p > 0 is called (µ, n)i-readable if there exists a connected folded Ai-graph Γ such

that:

(1) The number of edges in Γ is ≤ µp

(2) The free group π1(Γ) has rank ≤ n.

(3) There is a reduced path in Γ with label w.

(4) The graph Γ has at least one vertex of degree < 2n.

It is not too difficult to see that words with no long “readable” subwords are generic i.e. non-(µ, n)i-

readability is generic. Consider what happens when n = 3, and take F = F (a, b, c). Look at the picture

below:

a

b c

a

b

c

b
c

Figure 7.1: Why non-readability is generic

On the left part of Figure 7.1, the graph has rank 3, and the only vertex has degree 6. In this graph, all

reduced words of length p can be obtained as labels of reduced paths. On the other hand for the graph on

the right side of Figure 7.1, while the rank is still 3, there exists a vertex of degree 2 < 6. One can see that

in this case, the ratio of the number of reduced words that are labels of reduced paths of length p over the

total number of reduced words of length p goes to 0 as p→∞.

The following is an appropriate “small-cancellation condition” that exploits the above:
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Definition 7.2.11. [37] ((λ, µ, n)i-condition) Let 0 < µ < 1 be a real number, let n ≥ 2, s ≥ 2 be integers,

and let λ > 0 be a real number such that

λ ≤ µ

15n+ 3µ
< 1/6.

We’ll say that a tuple of nontrivial cyclically reduced words (r1, . . . , rs) in F (Ai) = F (ai1, . . . , ain) satisfies

the (λ, µ, n)i-condition if:

(1) The tuple (r1, . . . , rs) satisfies the C ′(λ) small cancellation condition.

(2) The words rj are not proper powers in F (Ai).

(3) If w is a subword of a cyclic permutation of some rj and |w| ≥ |rj |/2 then w is not (µ, n)i-readable

and is not µi-readable.

The following follows from results of Arzhantseva and Ol’shanskii [1, 3]:

Theorem 7.2.12. [37] For any n ≥ 2, s ≥ 2 and for any λ, µ as in Definition 7.2.11, let Ui consist of the

set of all s-tuples of nontrivial cyclically reduced words (r1, . . . , rs) in F (Ai) = F (ai1, . . . , ain) that satisfy

the (λ, µ, n)i-condition. Then Ui is exponentially generic in C(i).

We now construct a generic set R that we need in the construction of the group G in our main result

Theorem E.

Proposition 7.2.13. Let k ≥ 2, n ≥ 2 be arbitrary integers. Then there exists an exponentially generic set

R of kn-tuples

τ = (u11, . . . , u1n, u21, . . . , u2n, . . . , uk1, . . . , ukn)

where for each τ ∈ R, i ∈ {1, . . . , k}, j ∈ {1, . . . , n}, uij is a cyclically reduced word in F (ai1, . . . , ain).

Further, |u11| = . . . = |u1n| = . . . = |uk1| = . . . = |ukn| and such that:

(1) For every (u11, . . . , u1n) ∈ C(1), (u21, . . . , u2n) ∈ C(2), . . . and (uk1, . . . , ukn) ∈ C(k), the presentation

(*) that defines the group G in Theorem E satisfies C ′(1/100)-small cancellation condition.

(2) For every (u11, . . . , u1n) ∈ C(1), (u21, . . . , u2n) ∈ C(2), . . . and (uk1, . . . , ukn) ∈ C(k), |uij |Ai ≥ 1010

(3) For every (u11, . . . , u1n) ∈ C(1), (u21, . . . , u2n) ∈ C(2), . . . and (uk1, . . . , ukn) ∈ C(k), every subword

v of some uij of length ≥ |uij |/100 contains as a subword every freely reduced word of length 2 in

F (ai1, . . . , ain).
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(4) For every (u11, . . . , u1n) ∈ C(1), (u21, . . . , u2n) ∈ C(2), . . . and (uk1, . . . , ukn) ∈ C(k), we have that the

n-tuple (ui1, . . . , uin) satisfies the (λ, µ, n)i-condition for the same µ, λ.

Proof. The proof follows directly from Lemma 7.2.7, Theorem 7.2.12, and Lemma 7.2.8.

7.3 Proof of Theorem E

In our quest to prove Theorem E we want to start by showing that in the terminology of Theorem E no two

n-tuples amongst (a11, . . . , a1n), . . . , (ak1, . . . , akn) are Nielsen equivalent to each other. The following is a

slightly more technical version of the proof in Theorem 4.4 in [40].

Theorem 7.3.1. Let k ≥ 2, n ≥ 2 be arbitrary integers. Then there exists a generic set R of kn-tuples

τ = (u11, . . . , u1n, u21, . . . , u2n, . . . , uk1, . . . , ukn)

where for each τ ∈ R, i ∈ {1, . . . , k}, j ∈ {1, . . . , n}, uij is a cyclically reduced word in F (ai1, . . . , ain).

Further, |u11| = . . . = |u1n| = . . . = |uk1| = . . . = |ukn| and such that the following holds for each

τ = (u11, . . . , u1n, u21, . . . , u2n, . . . , uk1, . . . , ukn) :

Let G be a group given by the presentation:

G =< a11, . . . , a1n, . . . , ak1, . . . , akn|a1j = u2j(a2), a2j = u3j(a3), . . . , a(k−1)j = ukj(ak),

akj = u1j(a1), for 1 ≤ j ≤ n >, (*)

where for i ∈ {1, . . . , k}, (ai) = (ai1, . . . , ain). For some m, l ∈ {1, . . . , k} with m 6= l, consider the tuples

(al1, . . . , aln), (am1, . . . , amn). Then (al1, . . . , aln) �NE (am1, . . . , amn) in Gn.

Proof. We construct an exponentially generic set R as in Proposition 7.2.13. Let τ ∈ R be an kn-tuple

τ = (u11, . . . , u1n, u21, . . . , u2n, . . . , uk1, . . . , ukn), and G be the group described above using τ . Now we want

to show that no two n-tuples amongst (a11, . . . , a1n), . . . , (ak1, . . . , akn) are Nielsen equivalent to each other.

For some m, l ∈ {1, . . . , k} with m 6= l, consider the tuples (al1, . . . , aln), (am1, . . . , amn).

We proceed by contradiction. Suppose (al1, . . . , aln) ∼NE (am1, . . . , amn) in Gn. Then (al1, . . . , aln) ∼NE

(w1, . . . , wn) in F (al1, . . . , aln) with wj = amj in G for all 1 ≤ j ≤ n. In particular w1 = am1 in G.

Note that it may well be that w1 6= ul1 in F (al1, . . . , aln). After a possible conjugation of (w1, . . . , wn) in

F (al1, . . . , aln) = F (Al), we may assume that w1 is cyclically reduced in F (Al) and conjugate to am1 in G.

By Lemma 7.2.4, we observe that w1(al) must contain at-least a fourth of a cyclic permutation of some
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relator (ulj(al)a
−1
(l−1)j)

±1 (note that this is true if l 6= 1; the case l = 1 is similar). Now using condition

(3) in Proposition 7.2.13, we conclude that w1 contains every freely reduced word of length 2 in F (Al) as a

subword.

Now as in Figure 2.2 and Section 2.2, we construct the wedge of circles graph Sσ for σ = (w1, . . . , wn).

Observe that since (al1, . . . , aln) ∼NE (w1, . . . , wn), we have that F (Al) =< w1, . . . , wn >. Hence the map

µ# : π1(Sσ, x)→ π1(Rn, x0) is surjective. Thus by Lemma 2.2.8, we get a sequence of Al-graphs

Sσ = Γ0,Γ1, . . . ,Γp = Rn

such that Γi can be obtained from Γi−1 by a single fold for 1 ≤ i ≤ p. Note that each Γi is a core graph.

This holds as Γi is the image of loops labeled with freely reduced words and the base point must lie in the

core as the cyclically reduced word wi can be read in each Γi by a closed path based at the base vertex.

Thus Γp−1 is a core graph that folds onto Rn with a single fold and w1 can be read by a closed path in Γp−1.

The following claim will give us our contradiction:

Claim 1. We claim that since Γp−1 is a core graph that folds onto Rn with a single fold, there exists a

reduced word of length 2 that cannot be read as the label of an edge-path in Γp−1.

Observe that by Remark 2.2.9 the graphs Γ0,Γ1, . . . ,Γp are all of rank n. Thus the fold to get from Γp−1 to

Rn must identify a loop edge with a non-loop edge. This is because identifying two loop edges decreases the

rank and identifying two non-loop edges yields a graph with a non-loop edge. Hence w.l.o.g. we can assume

that Γp−1 has two vertices x and y and the fold identifies a loop edge at x and an edge from x to y both

with label al1. Γp−1 has n − 1 more edges that are labeled by al2, . . . , aln. led by al2, . . . , aln. Since Γp−1

is a core graph, we must have that there exists either a loop edge at y or a second edge between x and y.

Thus the graph Γp−1 which is one fold away from Rn will look something like the following with possibly

more loops at x or y or more edges between x and y:

al1

al4

al2

al1

al5

al3

Figure 7.2: An example of the graph Γp−1
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From Figure 7.2 we see that there will always be a two letter word that we can not read on this graph

Γp−1. For instance, on the graph above, we can not read al3al1. Thus the claim holds.

However, we observed that w1 can be read by a closed path in Γp−1, and since we saw above that

w1 contains every freely reduced word of length 2 in F (Al) as a subword, the above claim gives us our

contradiction. Hence, (al1, . . . , aln) �NE (am1, . . . , amn) in Gn.

Observe that thus far we have only used conditions (1)-(3) from our generic set R. Recall that our goal to

show that there are precisely k Nielsen equivalence classes of generating n-tuples in our group G as defined

in the above theorem. The next step will be to show that any generating n-tuple must be Nielsen equivalent

to one of the n-tuples between (a11, . . . , a1n), . . . , (ak1, . . . , akn). To do this, we will construct a sequence

of graphs that ends with a Rose. However, for this we need the following Lemma. This Lemma is due to

Arzhantseva[1]. We state it as a slightly modified version of how it appears in [37]:

Lemma 7.3.2. Let R, τ, G be as defined in the above theorem. Let A = {a11, . . . , a1n, . . . , ak1, . . . , akn}. Let

Γ be a finite connected folded A-graph with a base vertex x0 with rank(π1(Γ, x0)) ≤ n < kn. Then either

φ : π1(Γ, x0) → G is injective and hence the subgroup H of G represented by Γ is free or there exists an

AO-move on Γ that reduces the number of edges of Γ.

Proof. A version of the argument appears in the paper of Arzhantseva and Olshanskii[3] and also in a paper

of Kapovich and Schupp [37] but we give it here for completeness. Suppose φ is not injective then there is a

nontrivial reduced loop at x0 in Γ whose label is equal to 1 in G. Since Γ is folded, by Lemma 2.2.2 the label

of this loop is a reduced word. By Greendlingers Lemma since G satisfies the small cancellation condition

C ′(λ) for λ ≤ 1/6, we have that the label of this loop must contain a subword v which is a subword of a

cyclic permutation r of a defining relator r′ from the given presentation of G. Further |v| > (1 − 3λ)|r|.

Let p be the path in Γ whose label is v. Since rank(π1(Γ, x0)) ≤ n, a counting argument implies that Γ

contains at most 3n− 1 maximal arcs. We can then write p = p1 . . . ps where p2, . . . , pk−1 are maximal arcs

while p1, pk lie on some maximal arcs. Let v1, . . . , vs be the labels of p1, . . . , ps so that v = v1 . . . vs. We now

consider the different possibilities for the length of these arcs.

Case 1. Suppose that for some q, |pq| ≥ 5λ|r|.

Now suppose that 1 < q < k so that pq is actually a maximal arc. By the C ′(λ) condition and since there

are no proper powers amongst our relators, we see that the arc pq can not overlap with the other arcs pt

(1 < t < s, t 6= q). For the same reasons the overlap of pq with either p1 or ps has length less than λ|r|. Thus

there is a subpath of pq of length ≥ 3λ|r| that does not overlap the rest of the path p. Suppose now that

q = 1 (the case q = s is symmetric) and so |p1| ≥ 5λ|r|. This immediately says that p1 can not overlap any
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of pt for 1 < t < s as otherwise we would be in the case above. Finally, with the same reasoning as before

the overlap between p1 and ps is < λ|r|. Thus, if for any 1 ≤ q ≤ s we have that |pq| ≥ 5λ|r|, we must also

have that there is a subpath p′q of pq of length ≥ 3λ|r| that does not overlap the rest of the path p.

Now we do the following AO-move on Γ. First we add an arc from t(ps) = t(p) to o(p1) = o(p) labeled

by the part of the relator r (of length < 3λ|r|) which is missing in v. Next remove the arc p′q (of length

≥ 3λ|r|) that does not intersect with anything else in p. Clearly this AO-move has reduced the number of

edges in Γ and so in this case, we are done.

Case 2. Suppose that |pq| < 5λ|r| for all 1 ≤ q ≤ s.

Then we can read the word v as the label of a path in some connected subgraph Γ′ of Γ where rank(π1(Γ′)) ≤

n. Take Γ′ to consist of the union of all the edges in p. Let us estimate the number of edges in Γ′. Recall

that Γ has ≤ 3n− 1 distinct maximal arcs and each pq either is or is contained in a maximal arc of Γ. Since

|pq| < 5λ|r| for all 1 ≤ q ≤ s, we then have that the number of edges in Γ′ is ≤ (3n − 1)5λ|r| ≤ 3n5λ|r|.

But the conditions on µ show that then the number of edges in Γ′ is ≤ µ(1− 3λ)|r| ≤ µ|v|. This contradicts

condition (4) of R.

Thus in particular, in the case above, one can also do an AO-move on the graph and reduce the number

of edges in the graph. Note also that for the proof above, we only used condition (4) of our generic set R.

We need one more lemma for our purposes. This is Lemma 2 in [2], and Lemma 3.1 in [37]. The lemma

holds in a more general setting than it is stated here.

Lemma 7.3.3. [2, 37] Let Γ be a finite connected A-graph with base vertex x0 and fundamental group being

free of rank n. Let Γ′ be obtained from Γ by a fold preserving the Euler characteristic, or by an AO-move.

Let x′0 be the image of x0 under the fold or AO-move. Let φ : π1(Γ, x0)→ G and φ′ : π1(Γ′, x′0)→ G be the

label maps for Γ and Γ′ respectively. For any l-tuple ρ freely generating π1(Γ, x0), let ρ′ be the l-tuple that

is the image of ρ under the map induced at the level of fundamental groups by the fold or by the AO-move.

Then φ(ρ) ∼NE φ
′(ρ′) in G.

The proof is quite straightforward and is given in [37]. However, exactly what this induced map at the

level of fundamental groups is merits some explanation. Suppose first that Γ′ is obtained from Γ by a fold

P that preserves the Euler characteristic. Here P : Γ→ Γ′ is a homotopy equivalence and x′0 = P (x0). The

induced map then is just the natural map P# : π1(Γ, x0) → π1(Γ′, x′0) which incidentally happens to be an

isomorphism in this case.

On the other hand suppose Γ′ is obtained from Γ by an AO-move. Using the notation of Definition 2.2.10,

we see that Γ′ is obtained from Γ by removing an arc p′ and adding an arc q. We define a map P : Γ→ Γ′
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to be identity on all edges and vertices of Γ that are unchanged by the AO-move. Note that in particular P

acts as identity on the end-points of the arc p′. We define P to push p′ to the path p−1
1 qp−1

2 . Once again

the map P : Γ→ Γ′ is a homotopy equivalence, and induces a natural map P# : π1(Γ, x0)→ π1(Γ′, x′0).

Now we can show that in fact there are exactly k Nielsen equivalence classes of generating n-tuples in G.

Theorem 7.3.4. Let R, τ, G be as defined in the above theorem. Let (w1, . . . , wn) be an n-tuple such that

< w1, . . . , wn >= G. Then (w1, . . . , wn) ∼NE (am1, . . . , amn) for some 1 ≤ m ≤ k.

Proof. Let us assume for now that G is not free and has rank n. Call σ = (w1, . . . , wn) and let Sσ be the

wedge of circles graph as above, and x0 be the base vertex. Note that the rank of Sσ is n since if not, then G

could have been generated by < n elements. We now inductively define a sequence of graphs with Γ0 = Sσ.

Starting with the graph Γs, we fold till we can not any more to obtain the graph Γ′s. Note that since the

image under µ# does not change on folding a graph, we know that the rank of Γ′s is still n. If Γ′s is a n-rose,

we stop and set Γs+1 = Γ′s. However, if Γ′s is not a rose, then observe first that µ# : π1(Γ′s) → G is not

injective because G is not free. Thus by Theorem 7.3.2 we can do an AO-move on Γ′s to get a graph Γ′′s and

we set Γs+1 = Γ′′s . Note that in this case also the rank of Γs+1 is n as an AO-move does not change the

Euler characteristic of a graph.

Since in the process described above, we decrease the number of edges, this sequence will terminate

in a rose whose base vertex x′0 is the image of x0 after the various folds or AO-moves. Since the rank

of the graphs described above remains n throughout, we will thus end up with an n-rose. If the n labels

of this rose are the set Ai for any 1 ≤ i ≤ k, we are done. Suppose not. Let the labels be e1, . . . , en ∈

{a11, . . . , a1n, . . . , ak1, . . . , akn}. Note of course that for any p 6= q, we have that e±1
p 6= e±1

q . Now there must

exist an aij for some 1 ≤ i ≤ k, 1 ≤ j ≤ n which is not the label of a petal in our n-rose. But by Lemma 7.3.3,

we have (w1, . . . , wn) ∼NE (e1, . . . , en), and thus G =< e1, . . . , en >. In particular aij ∈ G =< e1, . . . , en >

and so aij = w(e1, . . . , en). However this then yields a contradiction in a manner similar to Theorem 7.3.1

and so we are done.

All that remains to show is that the group G has all the nice qualities described in the main result. This

has already been shown in its entirely by Kapovich and Weidmann in [39]. Hence we will only sketch the

proof, and will refer the reader to [39] for details.

Theorem 7.3.5. [39] Let R, τ, G be as defined in the above theorem. Then G is a torsion-free word-hyperbolic

one-ended group of rank n

Proof. Part (1) We show that all subgroups of G generated by ≤ n− 1 elements are free.

Let H =< g1, . . . , gk >≤ G with k < n. We pick a graph Γ that represents H with minimal number
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of edges of rank ≤ k. For instance, we could pick Γ = Sσ where Sσ is the wedge of circles graph and

σ = (g1, . . . , gk). If the labeling map φ : π1(Γ) → G is injective, then H is free and we are done. Suppose

then that this map is not injective. Then as before, there exists a non-trivial loop in Γ whose label is 1 in G.

By Greendlinger’s Lemma the label of this path contains a subword v which is also the subword of a cyclic

permutation of a defining relator r and |v| > (1− 3λ)|r|. Let p = p1 . . . ps be a concatenation of paths in Γ

such that p2, . . . , pk−1 are maximal arcs, and the label of p is v. Then as in the proof of Lemma 7.3.2, we

consider various possibilities for the lengths of pq for 1 ≤ q ≤ s, and we see that we can either contradict the

fact that the graph Γ was minimal in terms of edges, or contradict one of the genericity conditions. Thus

φ : π1(Γ)→ G is injective and H ∼= π1(Γ).

Part (2) We show that rank(G) = n

As we saw earlier in this chapter, G =< a11, . . . , a1n > for instance, and hence rank(G) ≤ n. Suppose

s = rank(G) < n. Then by Part (1) G is free. Hence there exists a graph Γ with edges labeled by elements

of A = A1 ∪ . . .∪Ak with rank(Γ) ≤ n such that the image of the labeling homomorphism φ : π1(Γ)→ G is

G. Since the rank of Γ is < n, there must exist an element y ∈ {a11, . . . , a1n, . . . , ak1, . . . , akn} such that Γ

has no loop labeled by y. W.l.o.g assume that y = a11. However, the image of φ is all of G and thus there

is a path in Γ of length > 1 whose label z is equal to a11 in G. Thus za−1
11 =G 1. Then once again by using

Greendlinger’s lemma and small cancellation, we get a contradiction in exactly the same way as Part (1).

Thus rank(G) = n.

Part (3) We show that G is not free.

We saw earlier that the presentation (**) which was G =< a11, . . . , a1n|U1, . . . , Un > represented the same

group G as in presentation (*). However (**) is a proper quotient of Fn. Since Fn is not isomorphic to any

of its proper quotients, Fn is not isomorphic to G. But by Part (2) since rank(G) = n, we have that G is

not isomorphic to any Fs for 1 ≤ s < n. Thus G is not free.

Part (4) We show that G is torsion free, word-hyperbolic, and one-ended.

Since (*) is a C ′(1/6) small cancellation presentation where the defining relators are not proper powers,

results from [45] show that G is torsion free, non-elementary, and word-hyperbolic.

It remains to show that G is one-ended. Suppose not. Then G is free product G = A ∗B with A,B both

non-trivial. Now by Grushko’s Theorem, n = rank(A) + rank(B) where 1 ≤ rank(A), rank(B) ≤ n − 1.

Now by Part (1) we get that A,B are both free. Hence G = A ∗ B is also free. This contradicts Part (4).

Hence, G is one-ended.

Now Theorem E is a direct consequence of Theorem 7.3.1, Theorem 7.3.4, and Theorem 7.3.5.
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Chapter 8

Asides and Open Questions

We start with a brief aside regarding the index of the image of a finite index subgroup of a free group in a

proper quotient of the free group. We end by discussing some questions with regards to Chapters 1-6.

8.1 Finite Index Subgroups of Proper Quotients of F (a, b)

Let F2 = F (a, b) be the free group of rank 2. Let r ∈ F (a, b) be a random word as obtained using the

methods of Section 5.1. Consider the quotient G =< a, b|r >= F (a, b)/N . Let β : F (a, b)→ G = F (a, b)/N

be the natural surjective group homomorphism that takes any g ∈ F (a, b) to Ng ∈ G. Let H ≤ F (a, b) be

a finite index subgroup with index [F (a, b) : H] = j < ∞. Then it is clear that K := β(H) ≤ G is a finite

index subgroup of G with 1 ≤ [G : K] ≤ j. Let [G : K] = k. We want to investigate if in fact we can say

more about k.

For the remainder of this section, when we refer to a graph Bm, we will mean the graph in Figure 8.1 on

2m vertices for any m ≥ 2.

a

a

b

b

a

a

b
b

a

a

1

2m

Figure 8.1: The graph Bm

Currently, we can show that:
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Proposition 8.1.1. With terminology as above,

(1) k 6= j − 1.

(2) if r ∈ N ′ ≤ H where N ′ ≤ F (a, b) is a finite-index normal subgroup of F (a, b), then k = j.

(3) if H 6= Bm for any m, then with some positive probability k = 1.

Proof. Let Γ be a graph representing H. Then |V Γ| = j. Observe first that checking for possibilities of the

index [G : K] amounts to checking for the number of vertices in principal quotients of Gamma (see Definition

d:pq). In the proof below by an x-edge we mean an edge of the graph labeled by x.

Part (1) The index in G falling by exactly 1 would mean that we consider the principal quotient obtained

by identifying precisely two vertices of Γ. Further even after folding in this case, the number of vertices

should remain j − 1. Let vertex u, v be identified to a vertex w. This gives us the Figure 8.1. Observe

that since the number of vertices can not decrease on folding, we must have that for instance, the terminal

vertex of the outgoing b-edge from u must coincide with the terminal vertex of the outgoing b-edge from

v. However, in this case since u 6= v, we get that Γ had a vertex with two incoming b-edges. This can not

happen as Γ is folded. Hence the k 6= j − 1.

a

a

a

a

b bb b

a
a

b

b

a

b

b

a

Figure 8.2: Identifying two vertices in Γ

Part (2) Suppose that H and Hx are distinct cosets. If we can show that β(H) and β(H)β(x) are distinct

then we are done as in this case [G : K] ≥ j ⇒ [G : K] = j. Suppose instead that β(H) = β(H)β(x).

Then there exists an h ∈ H such that hx−1 =G 1. That is, hx−1 lies in the normal closure of r in F (a, b),

and hence, hx−1 = u1r1u
−1
1 . . . umrmu

−1
m where m ≥ 1, and for each 1 ≤ i ≤ m, we have ri ∈ {r, r−1},

ui ∈ F (a, b). Since r ∈ N ′ and since N ′ is normal, we have that uiriu
−1
i ∈ N ′ for each i. Hence we get

that hx−1 ∈ N ′ ⊆ H. This then shows that x ∈ H which contradicts the fact that H and Hx were distinct

cosets.
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It merits to say that this case occurs with a finite positive probability. Observe first that since H is

a finite index subgroup of F (a, b), we have that r ∈ H with probability 1/k. Further, since H is finite

index, there exists a subgroup N ′ ≤ H ≤ F (a, b) where N ′ is a finite-index normal subgroup of F (a, b). For

instance, here we could take N ′ to be the normal core of H. Now once again since N ′ has finite index, with

a finite probability, r ∈ N ′.

Part (3) Observe that for j to equal k, we must identify all the vertices in Γ. If Γ has a loop edge labeled

by a (or b) at a vertex v, we may simply identify the vertices v and v′ where there is an edge labeled by b

(or a) from vertex v to v′. In this case, the graph will fold to the rose, and we will be done. On the other

hand, if there exist vertices v, v′ ∈ Γ such that there is an edge between v and v′ labeled by a and another

edge between v and v′ labeled by b, then identifying again on identifying v and v′, the graph will fold to a

rose and we are done. In case neither of the these two conditions hold, then in fact H = Bm for some m.

Note that in particular, if k is odd, then certainly with some probability, j = 1.

We can actually say some pretty interesting things in a rather specific case. For any n ≥ 2, let Hn be

the normal subgroup represented by the graph Cn on n vertices shown in Figure 8.1.

1
a a

a

a

a

b

b

b

b

n

Figure 8.3: The graph Cn

In this case, the distinct cosets of H = Hn in F (a, b) are H,Ha,Ha2, . . . ,Han−1. Also, if Hr = H i.e.

if r ∈ H, then by Proposition 8.1.1 Part (2), we get that in this case j = n. If Hr 6= H, then β(H) = β(Hr)

since in this case for h = 1, we get that hr−1 =G 1 and so β(r) ∈ β(H). Thus once you make the identification

of joining the base vertex to the vertex where r terminates, you get a normal subgroup H ′ where H ′r = H ′

and thus the index does not fall any further after this identification (and folding).
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For any n ≥ 2, and m a factor of n, let pn(m) denote the probability that [G : β(Hn)] = m. Let

n = pα1
1 pα2

2 . . . pαss be the prime decomposition of n. Let m = pβ1

1 pβ1

1 . . . pβtt be a factor of n such that

αi > βi strictly for all 1 ≤ i ≤ s. Then using number theory and studying the “figure 8” diagrams we

achieve after doing this identification, we get that

pn(m) =
φ(n)

nm

where φ(n) is the Euler phi function. That is φ(n) counts the number of positive integers ≤ n that are

relatively prime to n. Further, if n = ql where q is a prime, then we have: pn(ql) = 1
ql

and

pn(qα) =
(q − 1)

qα+1

for 0 ≤ α ≤ l − 1. Alternatively, if n = ql where q is a prime, then we have: pn(ql) = 1
ql

and

pn(qα) =
φ(ql)

ql+α

for 0 ≤ α ≤ l− 1. If we enumerate the vertices of Hn as {1, . . . , n}, and if r terminates at the vertex j then

we get that:

[G : β(Hn)] =

 gcd(n, j − 1), 2 ≤ j ≤ bn2 c+ 1

gcd(n, n− j + 1), bn2 c+ 2 ≤ j ≤ n

There are a couple of questions that are raised by this:

Q1 Fix a prime q. For j ∈ {0, 1, . . . , l − 1}, let pql(
j
l ) = (q−1)

qj+1 , and let pql(
l
l ) = 1

ql
. Then as l → ∞ does

this distribution approach a continuous distribution?

Q2 For n = ql where q is a prime, would a generating function like
∑
α,l

xq
α

yq
l q − 1

qα+1
or
∑
α,l

xαyl
q − 1

qα+1
tell

us anything interesting?

We now discuss some interesting questions that remain open with regards to Chapters 1-6 in this thesis.

8.2 True Behavior and Asymptotics of Our Functions

As we have seen, while upper bounds for the functions we considered in Chapter 1 are roughly linear, lower

bounds remain roughly logarithmic. This then raises the following two questions:
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Q1 What are the true asymptotics of the functions fnfillΣ,ρ , fΣ,ρ(L), fnfill(n), fsimp(n), fprim(n)?

Q2 How do we understand the true behavior of degnfillΣ,ρ (γn),degΣ,ρ(γn), dnfill(wn), dsimp(wn), dprim(wn)

for “natural sequences” of curves/elements? For instance, nothing is known even about the behavior

of dprim(anbn) in the free group F (a, b).

On a different note, a recent paper of Puder [52] (see also [53, 54] for related work) introduces the notion

of a primitivity rank π(g) for an element g ∈ FN . Namely, π(g) is defined as the smallest rank of a subgroup

H ≤ FN such that g ∈ H but g is not primitive in H. Puder proves in [52, Corollary 4.2] that for an

element g ∈ FN one has either π(g) = ∞ or 0 ≤ π(g) ≤ N , and that every integer between 0 and N does

occur as a value of π(g) for some g. He also defines and studies the primitivity rank π(H) for a finitely

generated subgroup H ≤ FN , where π(H) is defined as the minimum rank of J such that H ≤ J ≤ FN

and that H is not a proper free factor of J . These notions are related to and in some sense dual to our

definitions of dprim(g) and dsimp(g), but the precise connection of our results with Puder’s work remains to

be understood. Malestein and Putman [47] obtained a number of lower bound results (in terms of k) for

the minimal self-intersection number of nontrivial elements of the k-term of the lower central series and the

derived series of a surface group. It would be interesting to see if their methods can be used to obtain lower

bounds for the function fΣ,ρ. It would also be interesting to investigate if looking inside the lower central

series and the derived series of FN may produce new lower bounds for fprim(n) and fsimp(n). Finally, Bou-

Rabee raised the important point that currently for a nonabelian free group G, the best upper and lower

bounds for fprim(n) and RFG(n) have the same asymptotic behavior. It remains to be seen if fprim(n) and

RFG(n) also have the same asymptotic behavior.
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Editors), Trends in Mathematics, Birkhäuser Verlag Basel/Switzerland, 2007, pp. 197224

[44] A. Lubotzky, and D. Segal, Subgroup growth, Progress in Mathematics, 212. Birkhäuser Verlag, Basel,
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