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Abstract

Let E denote a Morava E-theory at a prime p and height h. We characterize the power operations

on π0 of a K(h)-local E∞-E-algebra in terms of a small amount of algebraic data. This involves

only the E-cohomology of two groups, namely the symmetric groups on p and p2 letters. Along

the way, we also define and explore a notion of coquadratic comonad.
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Chapter 1

Introduction

We begin with a story about the Witt vectors. Let R be a Zp-algebra, though for some this, Z will

work perfectly well. Classically, the p-typical Witt vectors W(R) are defined as follows. As a set,

they are

W(R) =

∞∏
i=0

R.

The Zp-algebra structure is more complicated, but is usually given by declaring that a certain

map is a ring homomorphism. Define a map W(R)→
∏∞
i=0R whose component in the n-th entry

is Σn
i=0p

irp
n−i

i . There is a unique Zp-algebra structure on W(R) so that this map is a Zp-algebra

homomorphism. Now, a general element of W(R) will be quite complicated, as it’s specified by

infinitely much data. In addition, W admits the structure of a comonad on Zp-algebras, and

similarly, to specify W-coalgebra structure on R would require quite a lot of information. However,

it turns out that only a small piece of this data determines the rest. To that end, we make a

definition.

Definition 1.1. A θ-ring is a Zp algebra R, equipped with an operation θ : R→ R which satisfies

the following formulas.

• θ(1) = 0

• θ(a+ b) = θ(a) + θ(b)− 1
p

∑p−1
i=1

(
p
i

)
aibp−i

• θ(ab) = apθ(b) + bpθ(a) + pθ(a)θ(p).

We could also phrase this in more categorical language. Let V be the endofunctor on Zp-

algebras which, as a set is R×R. We endow this with a Zp-algebra structure much as we did with

the Witt vectors, but more explicitly, via the following formulas.
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(r, r′) + (s, s′) = (r + s, r′ + s′ − 1

p

p−1∑
i=1

(
p

i

)
risp−i)

(r, r′)(s, s′) = (rs, rps′ + spr′ + pr′s′)

a(r, r′) = (ar, ar′ + rp
(a− ap)

p
).

A coalgebra for the endofunctor V is a Zp-algebra equipped with a structure map R → V (R)

so that the composite R→ V (R)→ R is the identity.

It’s fairly clear from the definitions that a V -coalgebra structure on R is the same thing as a

θ-ring structure.

In the early 80’s, Joyal ([Joy85]) studied the relationship between these θ-rings and the Witt

vectors (though he used the term δ-rings). Indeed, he proved the following theorem.

Theorem 1.1. The forgetful functor from θ-rings to Zp-algebras not only has a left adjoint, but

also a right adjoint. Further, this right adjoint is the p-typical Witt vector functor from above.

One can rephrase this theorem as saying that W is the cofree comonad on the endofunctor V. In

this thesis, we give something of a generalization of this theorem. Of course, that requires saying

how we intend to generalize it, and for that we need to introduce some algebraic topology.

Let K∧p denote the E∞ ring spectrum of p-adic K-theory. As an E∞ ring, it comes with a notion

of power operations on the homotopy of its E∞ algebras. It’s often more convenient, though, to

consider its K(1)-local algebras. The action of these power operations has been studied by several

people, most notably, McClure ([BMMS86]), Bousfield ([Bou96]) and Hopkins ([DFHH14], Chapter

16). They prove, in particular, the following characterization of the action of the power operations

on π0.

Theorem 1.2. The zeroth homotopy group of a K(1)-local E∞ K∧p -algebra admits a natural θ-ring

structure.

Further, we can construct the functor V in a “topological” fashion. Let R be a Zp = π0(K∧p )-

algebra. Define V (R) as the pullback of the diagram
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V (R) (K∧p )0(BΣp)⊗Zp R

R R.

aug⊗ id

(−)p

The definition of V from before (at least, as a commutative monoid under multiplication) can be

recovered from this by noticing that (K∧p )0(BΣp) ∼= Zp[[T ]]/(T 2 − pT ), which is a free Zp algebra

with basis {1, T} This is a result of McClure ([BMMS86] Proposition IX.5.3).

We wish to generalize the above discussion, but first we need to say how. The cohomology

theory K∧p is the first in a sequence of cohomology theories called Morava E-theories, denoted

here with the letter E. Attached to these are two numbers: a prime p and a positive integer h,

called “height.” More will be said about these in Section 2.5. These all come with a notion of

power operations, and so one could contemplate the structure these provide on homotopy groups

of E-algebras.

Rezk provided an algebraic context to think about such problems.

Theorem 1.3 (Rezk, [Rez09]). Let E be a Morava E-theory at a prime p and height h. There is a

monad T on the category of graded E∗-modules so that the homotopy groups of K(h)-local E∞-E-

algebras naturally take values in T-algebras (which are, in particular, commutative E∗-algebras).

In the case of h = 1, E is K∧p and a T-algebra is what Bousfield ([Bou96]) calls a Z/2-graded

θ-ring.

As before, there is a surprising right adjoint.

Theorem 1.4 ([Rez09], Proposition 4.23). The forgetful functor T -Alg → E∗ -Alg has a right

adjoint W (as well as the usual left adjoint F ).

We can of course restrict the input and output of these three functors T,F = UF, and W = UW .

If M is an E0-module, we can consider it as a E∗-module concentrated in degree 0, apply T, and

only take the degree zero part of the value. We can also do similar things on the algebra category

and get functors F and W on the category of E0-algebras. For the rest of this paper, we will

restrict our attention to the category of E0-algebras and (abusively) use undecorated notation for

the restricted versions of these functors. In the height one case, the functor W now recovers the

p-typical Witt vectors.
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As in the case with the Witt vectors, we can now wonder how much data, really is a F-algebra

structure on a given E0-algebra, and is there a “small” functor, like V , whose coalgebras model

T-algebras? In fact, replacing K∧p with Morava E-theory of arbitrary height in the pullback square

at the end of that section is a perfectly valid thing to do, and will continue to define an endofunctor

on the category of E0-algebras. Unfortunately, its coalgebras are not the same thing as T-algebras.

Intuitively, this is because there are generally relations between operations, like the Adem relations

in the Steenrod algebra. We need to incorporate this data as well. In Section 4.1, we will define a

notion of a “coquadratic pair” of functors (V, V2), where V2(R) can, roughly, be thought of as an

admissible basis for the elements of V V (R) under some family of quadratic relations. There is a

well-defined notion of coalgebra for a coquadratic pair, and also a notion of “cofree comonad” on

a coquadratic pair. The primary goal of this thesis will then be to prove the following theorem,

which is something of a Morava E-theory analog of Joyal’s theorem above.

Theorem 1.5. There is a coquadratic pair (V, V2) on the category of E0-algebras so that UW is

the cofree comonad on (V, V2). As a consequence, the data of a (V, V2)-coalgebra on an E0-algebra

R, is precisely the same data as the data of a F-algebra or a W-coalgebra on R.

This thesis is organized as follows. Section 2.1 establishes a few conventions, and Section 2.2

is a brief bit of algebra. Section 2.3 introduces some useful maps, and Section 2.4 provides some

background on power operations. Section 2.5 briefly introduces Morava E-theory and its associated

power operations. Section 2.7 establishes some background and a few new results on the Morava

E-cohomology of symmetric groups. Sections 3.1 and 3.2 introduce the functors V and V2, as well

as the auxilliary functors V and V2, and studies some of their properties and interactions. Section

4.1 and 4.2 are a categorical interlude which define the notion of coquadratic pairs, as well as

their coalgebras and associated cofree comonads. Section 4.3 explicitly builds the cofree comonad

on the coquadratic pair (V, V2) and Section 5.1 identifies (V , V2)-coalgebras with something more

tractable. Finally, Section 5.2 provides a proof of Theorem 1.5
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Chapter 2

Preliminaries

2.1 Notation and Conventions

Let Σn be the symmetric group on some ordered set S with n letters. We’ll sometimes talk about

Σi × Σj as a subgroup of Σn for i + j = n. We will always consider this to be via the embedding

where Σi permutes the first i elements of S and where Σj permutes the last j elements.

If G is a finite group and H ≤ Σn is a subgroup of a symmetric group (often Σn itself), we’ll use

the symbols G oH to denote the semidirect product Gn oH, with H acting on Gn by permuting

the factors. In other words, G oH fits into a short exact sequence

1 Gn G oH H 1.

Via the embeddings Σi×Σj ≤ Σn above, we can consider two distiguished classes of subgroups

of Σm oΣn, namely the subgroups (Σi×Σj) oΣn (with i+ j = m) and the subgroups Σm o (Σk×Σl)

(with k + l = n).

For a commutative ring k, we’ll often need to talk about more than one k-algebra structure on

a ring R. Sometimes, if we have two such algebra structures in mind simultaneously, one will be a

left algebra structure, and one will be a right algebra structure. If f : k → R and g : k → R are

structure maps for a left k-algebra and a right k-algebra respectively, we’ll denote this situation

with superscripts on the appropriate side. For example, fRg. If we only have one algebra structure

in mind but the side matters, we’ll use similar notation on the appropriate side. Tensor products

over k will always be taken as k-k-bimodule tensor products.

If k has characteristic p, with Frobenius endomorphism φ, then we can base-change a right

k-algebra Rf along φ to get another k-algebra φ∗(R).
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If Rf has characteristic p, but k doesn’t, we can still base-change along the Frobenius on k/p

and get a “twisted” k-algebra structure on R. We’ll denote this similarly to the case when k does

have characteristic p, or we might also use the notation Rf(p).

There are also a few slightly non-standard operations that we will want to apply to k-algebras.

If A and B are k-algebras, and f : A → B is a map (which is possibly just a map of sets) we

can form an “exterior” tensor power f�n : A→ B⊗n where

f�n(a) = f(a)⊗ . . .⊗ f(a).

If A,B,and C are k-algebras, and f : A → B ⊗ C is a set map, we can further form a “half-

exterior power” fnn : A→ B⊗n ⊗ C as the composite

A (B ⊗ C)⊗n B⊗n ⊗ C⊗n B⊗n ⊗ C.f�n ∼= id⊗mult

Clearly, even if f is additive, f�n and fnn might fail to be. However, both constructions

preserve multiplicative maps.

Unless otherwise stated, all tensor products will be over the same base ring E0, defined in

Section 2.5. Because of this, we will generally neglect to write the base.

2.2 Bialgebras

Let k be a commutative ring. On occasion, it will be useful to talk about the sort of thing that

could represent an endofunctor on the category of k-algebras. To that end, we make the following

definition, following [BW05b].

Definition 2.1. A k-bialgebra is a commutative k-algebra A, together with three extra pieces of

structure:

• a cocommutative coassociative coproduct ∆+ : A → A ⊗k A (“coaddition”), with a counit

ε+ : A→ k and antipode σA→ A, endowing A with the structure of a cocommutative Hopf

algebra over k.
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• a second cocommutative coassociative coproduct ∆× : A → A ⊗k A (“comultiplication”),

with a counit ε×, and which codistributes over ∆+.

• a ring map β : k → k -Alg(A, k) (“co-k-linear structure”). The ring structure on the target is

given by the previous two items.

More succinctly, A represents a commutative k-algebra scheme over Spec(k), or a k-algebra

valued functor on k-algebras.

By definition, a k-bialgebra A defines a functor k -Alg(A,−) : k -Alg → k -Alg . Borger and

Wieland ([BW05b]), and earlier, Tall and Wraith [TW70]

Proposition 2.1. This functor has a left adjoint A � −. If A represents a functor F : k -Alg →

k -Alg and B represents a functor G : k -Alg→ k -Alg, then A�B represents F ◦G.

This provides the category of k-bialgebras with a (nonsymmetric) monoidal product. The unit

is k[e], with ∆+(e) = 1⊗ e+ e⊗ 1,∆×(e) = e⊗ e, β(c)(e) = c, ε+(e) = 0, ε×(e) = 1 and σ(e) = −e.

This represents the identity functor.

In fact, given a k-algebra B, both of the cited papers give an explicit construction of A�B, as

follows.

For a ∈ A, let ∆+(a) =
∑

i a
(1)
i ⊗ a

(2)
i and ∆×(a) =

∑
i a

[1]
i ⊗ a

[2]
i . Then (as a k-algebra) A�B

is the k-algebra generated by symbols of the form a � b (for all a ∈ A, b ∈ B,) subject to the

relations

1. (a+ a′)� b = a� b+ a′ � b

2. (aa′)� b = (a� b)(a′ � b)

3. c� b = c

4. a� (b+ b′) =
∑

i(a
(1)
i � b)(a

(2)
i � b′)

5. a� (bb′) =
∑

i(a
[1]
i � b)(a

[2]
i � b′)

6. a� c = β(c)(a),

7



for all a, a′ ∈ A, b, b′ ∈ B and c ∈ k.

We end the section with an observation we will need later.

Lemma 2.1. If F and G are two endofunctors of k -Alg, represented by polynomial rings A =

k[x1, . . . , xn] and B = k[y1, . . . ym], then as a k-algebra, A�B (representing F ◦G) is a polynomial

algebra in mn variables, and these variables can be taken to be the xi � yj for 1 ≤ i ≤ n and

1 ≤ j ≤ m.

We learned the proof of the second part from Charles Rezk.

Proof. First, we show the claim about polynomial algebras. The fact that F and G are represented

by polynomial algebras is the same thing as saying that, as sets F (R) and G(R) are naturally

isomorphic to Rn and Rm, respectively. We then have that F (G(R)) = Rmn as sets, and the claim

is immediate from there.

For the statement about variables, it suffices to show that the elements xi� yj generate A�B.

Let C be the subalgebra generated by these elements, and consider the set S = {g ∈ B|f � g ∈

C, for all f ∈ A}. We wish to show that S is all of B. Let f denote an arbitrary element of A. The

constants are in S, since f � c = β(c)(f) ∈ k. Further, S is closed under addition, since relation

(4) in the construction of A⊗B and the definition of S present f � (g+ h) (for g, h ∈ S) as a sum

of products of elements of C. Similarly, S is closed under multiplication. Finally, the yj are in S,

by relations (1), (2) and (3) above, and we are done.

2.3 Transfers

We’ll talk a lot about a certain flavor of generalized group cohomology later. To do this, we’ll need

to use some “wrong-way” or transfer maps.

Definition 2.2. If p : X → Y is a finite-sheeted covering space map, there is a stable map

p! : Σ∞+ Y → Σ∞+ Y called the “stable transfer map”

These maps have several properties which we will recall when/if they become necessary. For

more information, see [Ada78], Chapter 4, and [BMMS86], Chapter 2.
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We do note that if H is a subgroup of a finite group G, then BH → BG is a covering space (with

degree equal to the index of H in G.) For some multiplicative cohomology theory E, we will rename

the induced map on cohomology E0(BG)→ E0(BH) as “restriction”, and often abbreviate this to

res. Where there’s little possibility of confusion, we’ll call the associated map E0(BH)→ E0(BG)

“transfer,” and denote it tr. We do note one useful property now, which is proven in Chapter 4 of

[Ada78].

Proposition 2.2. The composite tr ◦ res is given by multiplication by tr(1).

In the case of the symmetric groups Σpk , there are two special ideals in E0(BΣpk). The first of

these, denoted In, is generated by all of the images of all of the transfer maps E0(B(Σi×Σn−i))→

E0(BΣn) as i ranges from 1 to (n − 1). This is called the “transfer ideal.” The other is the

intersection of all of the kernels of the restriction maps to all of those same subgroups, and will be

denoted by Jn. We will sometimes also denote the ring E0(BΣn)/In by On.

Similarly, in the cohomology E0(BΣm oΣn) of a wreath product, we can consider an analogous

transfer ideal Im,n, generated by the images of all transfers from the subgroups of the form (Σi ×

Σj) o Σn or Σm o (Σk × Σl), with i+ j = m and k + l = n.

2.4 Power Operations

An E∞-ring structure on a spectrum E is quite a lot of data. In particular, for each n there is a

“multiplication” map

µn : Pn(E) = (Σ∞+ EΣn) ∧Σn E
∧n → E,

Further, given an E∞ ring E, there is a well-behaved notion E-modules, and similarly well-

behaved notion of smash product ∧E on the category of E-modules (see, e.g. [EKMM97]). This

allows us to define the notion of an E∞-E-algebra. This is via the free E∞-E-algebra monad,

similar to the functors Pn above, just with all of the smash products taken over E. To wit,

PE(M) =
∨
n≥0

PEn (M) =
∨
n≥0

(E ∧ Σ∞+ EΣn) ∧E,Σn M∧En.

9



The monad structure maps here come from the operad structure on the E-modules E∧Σ∞+ EΣn,

inherited from the category of spaces. Now, an E∞-E-algebra A is just an algebra from this monad

on the category of E-modules. In particular, A comes with structure maps

µAn : PEn (A)→ A.

The author would like to apologize for the proliferation of uses for the letter E here. Historical

circumstances seem to force it to have several different meanings in close context. We hope this

does not cause too much confusion.

In any case one might start to wonder what manifestation all this extra structure has on

homotopy groups. The answer is power operations. We can construct these as follows. For

simplicity and focus, we concentrate on the operations on π0. These will be the main concern this

thesis anyway. Consider A an E∞-E-algebra. Let α be an element of E0(BΣn), represented by an

E-module map E → E ∧ Σ∞+ BΣn
∼= PEn (E) and let x ∈ π0(A) be a homotopy class represented by

an E-module map E → A. We can now consider the composite

E PEn (E) PEn (A) E.α PEn (x) µEn

Via this construction E-homology classes of symmetric groups parametrize certain sorts of

operations on the homotopy of E∞-E-algebras.

There’s a cohomological flavor of power operations that we’ll also make use of. Let X be a

space. We first write Pn(X) for Pn(Σ∞+ X) ∼= Σ∞+ (PnX). Now given a cohomology class x ∈ E0(X),

we can construct another cohomology class Pn(x) ∈ E0(P(X)) as the composite

Pn(Σ∞+ X) Pn(E) E.
Pn(x) µn

This defines a map Pn : E0(X) → E0(PnX), which we call the n-th total (exterior) power

operation. In general it is not a ring map. However, it is multiplicative, and there is a formula for

what it does to a sum of classes. These and some other properties are summarized in the following

proposition, which is part of [BMMS86], Proposition VIII.1.1
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Proposition 2.3. The following properties of the maps Pn hold.

• Pn(xy) = Pn(x)Pn(y)

• Pn(1) = 1

•

Pn(x+ y) = Pn(x)Pn(y) +
∑

0<i<n

trΣn
Σi×Σn−i

Pi(x)Pn−i(y).

• If i is the “inclusion” X∧n → Pn(X) and ∆ : X → X∧n is the diagonal, then i∗Pn(x) = x�n

and ∆∗i∗Pn(x) = xn.

We should also note that in the case X = ∗, this construction specializes to a map Pn : E0 →

E0(BΣn), and in the case X = BΣm, we get a map Pn : E0(BΣm)→ E0(BΣm oΣn). In particular,

if In ≤ E0(BΣn) and In,m ≤ E0(BΣn o Σm) are the transfer ideals from before, the induced maps

Pn : E0 → E0(BΣn)/In and Pn : E0(BΣm) → E0(BΣm o Σn)/Im,n are ring homomorphisms.

However, they are not E0-algebra homomorpisms.

This does mean though, that the rings E0(BΣn)/In and E0(BΣm)→ E0(BΣm oΣn)/Im,n each

acquire a second E0-algebra structure, via these ring maps. In both cases, we’ll consider this to

be a left algebra structure (even though E0 is commutative), and use the letter t for the structure

map. We’ll use the letter s for the standard algebra structure maps, and consider these to be right

algebra structures.

For spaces, there’s an internal version of these cohomology operations as well. The diagonal

inclusion Σ∞+ X → (Σ∞+ X)∧n induces a map ∆ : Σ∞+ (BΣn×X)→ Pn(X). The resulting composite

E0(X) E0(Pn(X)) E0(BΣn ×X)
Pn ∆∗

gives a map Pn, the total internal n-th power operations. In favorable cases (e.g. when the

cohomology of BΣn is a finite free E0-module), the target of Pn is isomorphic to E0(BΣn) ⊗

E0(X). This will be always be the case in what follows. This means that we can obtain operations

E0(X) → E0(X) by further composing the total internal power operation with linear functionals

E0(BΣn)→ E0.
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These internal operations satisfy properties similar to those enjoyed by the external ones. See,

e.g. [BMMS86] Proposition VIII.1.4 for more details.

2.5 Morava E-theory and its Power Operations

For the remainder of this thesis, we’ll consider operations on one particular family of ring spectra.

We won’t need need anything in particular about the construction of these, so we’ll only briefly

recall it here.

Let k be a perfect field of characteristic p, and let Γ be a formal group over k of height h.

There is a notion of “deformation” of such things, and the moduli problem of such deformations is

representable, by a ring which is (non-canonically) isomorphic to W(k)[[u1, . . . , uh−1]] ([LT66]). Here

W(k) is the ring of (p-typical) Witt vectors on k. It turns out that one can functorially construct a

ring spectrum E(k,Γ) out of such data, whose homotopy groups are W(k)[[u1, . . . , uh−1]][u±1]. (Here,

u is in degree −2, and everything else is in degree 0.)

For more details about the construction, see [Rez98].

From now on, we fix the ring spectrum E to be Morava E-theory associated to some formal

group Γ of height h over a perfect field of characteristic p, and supress both the field and the formal

group. Implicitly, p and h will also be fixed.

It is a celebrated theorem of Goerss, Hopkins and Miller ([GH04]) that Morava E-theory admits

an essentially unique E∞ ring structure. Thus, its algebras come equipped with a notion of power

operations as in Section 2.4. One is now led to wonder what can be said about the algebra of all

such operations. The answer turns out to be “quite a lot,” at least, if one makes a restriction about

what sort of algebras are admissible. In the remainder of this thesis, we will focus exclusively on

the case of K(h)-local E-algebras.

Rezk ([Rez09]) constructed a monad T on the category of graded E∗-modules which attempts to

algebraically model the power operation structure on the homotopy of K(h)-local E∞-E-algebras.

We recall a few of its properties now. (See also [Rez12].)

Proposition 2.4. Let M be an E-module and A∗ a graded E∗-module. The following properties

of the functor T hold.
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1. There is a comparison map

α : T(π∗LK(h)M)→ π∗LK(h)PEM,

which is natural in M

2. T decomposes as a direct sum of functors
⊕

m≥0 Tm.

3. Each of the functors Tm preserve finite free E∗-modules.

4. The comparison map α respects this direct sum decomposition. That is, for each m, there is

a map

αm : Tm(π∗LK(h)M)→ π∗LK(h)PEmM.

Further, if M is a finite free E-module, this map is an isomorphism.

5. As a consequence of the previous items, Tm(E∗) = E∗(BΣm), and T(E∗) =
⊕

m≥0E∗(BΣm)

6. If A∗ is concentrated in even degrees, so is TA∗.

7. If R is an E∞-E-algebra (that is, and algebra for the monad PE), then, via the comparison

map α, the E∗-module π∗LK(h)R inherits a natural T-algebra structure. That is, π∗LK(h)

defines a functor PE -Alg→ T -Alg.

8. A T-algebra structure on A∗ is, in part, the structure of a commutative E∗-algebra on A∗

Remark 2.1. As already stated, for the remainder of this thesis, we will concentrate on the

operations which act on π0. To do this with the functor T, we can regard an E0-module A0 as a

graded E∗-module concentrated in degree 0, apply T (or Tm) and forget all but the degree 0 part.

When we talk about T (or Tm) as an endofunctor on E0-modules, this is what we mean. The

previous proposition holds with all of the ∗’s replaced with 0’s.

One of the insights of [Rez09] is that the forgetful functor U : T -Alg → E∗ -Alg is more

structured than it might appear at a glance.

Proposition 2.5. The forgetful functor U : T -Alg → E∗ -Alg has a left adjoint F and a right

adjoint W. The analogous statement on π0 also holds. Further, the adjunction U aW is comonadic.
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Remark 2.2. We’ll denote the associated monad on E0-algebras by F and the associated comonad

on E0-algebras by W. One might argue that, in fact, W is the main object of study here.

Rezk also considers an “additive” version. He constructs a graded E0-subalgebra Γ = ⊕kΓ[k]

of T(E0). The inclusion Γ[k] → T(E0) in fact lands in Tpk(E0). A Γ-algebra is then simply an

E0-algebra equipped with an right algebra structure over Γ. However, it further turns out that

Γ is a Koszul E0-algebra ([Rez12]). This, in particular, means that a Γ-algebra structure on an

E0-algebra A is equivalent to an E0-algebra map P : A ⊗ sΓ[1]t → A so that there exists a map

P2 : A⊗ sΓ[2]t → A making the following diagram commute.

A⊗ sΓ[1]t ⊗ sΓ[1]t A⊗ sΓ[2]t

A⊗ sΓ[1]t A.

id⊗mult

P⊗id P2

P

The map P2 is unique if it exists.

There is a forgetful functor from T-algebras to Γ-algebras, and Rezk considers the question

of when a Γ-algebra structure on A lifts to a T-algebra structure. Theorem A of [Rez09] gives a

condition for when this holds, encapsulated by the following statement.

Theorem 2.1. There is an element σ ∈ Γ[1] so that, if A is a p-torsion-free Γ-algebra, the Γ-

algebra structure on A lifts to a T-algebra structure precisely when xσ ≡ xp mod pA for all x ∈ A.

Such a lift is necessarily unique.

The condition in this theorem (and some of its variants) is called the Frobenius congruence.

2.6 Hopkins-Kuhn-Ravenel Character Theory

We’ll occasionally make use of the generalized character theory of Hopkins, Kuhn and Ravenel

([HKR00]). This section will provide a brief review of the points we will need. Their proofs work

in slightly more generality than we will need, but we specialize to the case of Morava E-theory of

height h at the prime p here.

Let G be a finite group, and consider the set of group homomorphisms Zhp → G. The group G

acts on this set by conjugation.
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Definition 2.3. A “height h conjugacy class” on G to be an orbit of Hom(Zhp , G) under this

conjugation action.

More concretely, by choosing the standard Zp-basis e1, . . . , eh for Zhp , we can consider a height

h conjugacy class [α] as an equivalence class of h-tuples (α(e1), . . . , α(eh)) of commuting p-power

order elements of G. Again, G acts on such h-tuples by conjugation in each coordinate.

Remark 2.3. If we used Z instead of Zp and considered the case h = 1, we would recover the

usual definition of conjugacy class in a group.

This gives a notion of “class function”

Definition 2.4. Let R be a commutative ring. An R-valued “height h class function” on G is

simply a function ψ from the set of height h conjugacy classes in G to R. The set of all such things

will be denoted by Clh(G,R)

We can of course think of a height h class function as a function Gh → R which is constant on

height h classes.

Similarly to the cohomology of a group, the R-valued class functions on G come with a notion

of restriction and transfer. The second of these is also sometimes known as induction.

For H a subgroup of G, define transfer and restriction maps, trGH and resGH on height h class

functions by the following formulas.

trGH(ψ)(α) =
∑

gH∈(G/H)imα

ψ(g−1αg)

resGH(φ)(β) = φ(i ◦ β).

Here, φ is a height h class function on G ψ is a height h class function on H, α : Zhp → G represents a

height h conjugacy class in G, β : Zhp → G represents a height h conjugacy class in H and i : H → G

is the inclusion. From these definitions, it is easy to check the usual formula for composing transfer

and restriction.

Proposition 2.6.

φ trGH(ψ) = trGH(resGH(φ)ψ).
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In particular, trGH(resGH(φ)) = φ trGH(1), where 1 is the constant class function with value 1.

Hopkins, Kuhn and Ravenel construct a faithfully flat p−1E0-algebra C0 (there called L(E∗)),

and they show that after a base-change to C0, we can identify E0(BG) with the ring of C0-valued

class functions on G.

Theorem 2.2. There is an isomorphism

χ : C0 ⊗ E0(BG)→ Clh(G,C0),

which is natural in the group G

This is Theorem C in their paper. An immediate consequence is that this isomorphism is

compatible with the restriction maps on cohomology and class functions. They also prove (Theorem

D) that it’s compatible with transfers on both sides. Indeed,

Theorem 2.3. If H ≤ G, the following diagram commutes.

C0 ⊗ E0(BH) C0 ⊗ E0(G)

Clh(H,C0) Clh(G,C0)

C0⊗trGH

χ χ

trGH

Here, the top arrow is the stable transfer map on cohomology assoctiated to the covering space

BH → BG, and the bottom arrow is the class function transfer constructed above.

.

We should also note a slightly different interpretation for the symmetric group

Proposition 2.7. As an C0-module, C0 ⊗ E0(BΣm) is the free C0-module on the isomorphism

classes of Zhp sets of order m.

This is precisely because we can think of a group homomorphism Zhp → Σm as an action of Zhp

on the set {1, . . . ,m}.
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2.7 Some preliminaries on E-cohomology of symmetric groups

As in Section 2.4, the study of power operations for an E∞ ring spectrum often relies on detailed

knowledge of the cohomology groups of classifying spaces of symmetric groups. In Proposition 2.4,

we also saw that this is the case for T-algebras. Thus, to study these, we need recall much that is

already in the literature on the Morava E-theory of symmetric groups.

First, Hopkins, Kuhn and Ravenel ([HKR00]) give a condition (Theorem E there) under which

the Morava K-theory cohomology of the classifying space of a group is concentrated in even degrees,

which in particular applies to symmetric groups. Strickland ([Str98]) later provided a very detailed

analysis of the Morava E-theory cohomology of symmetric groups of p-th power order. He builds

upon the work of Hopkins, Kuhn and Ravenel to show, among many things that the Morava

E-cohomology of symmetric groups is free and concentrated in even degrees.

It turns out that for Morava E-theory, the ideal Ipk and Jpk have descriptions in terms of a

single subgroup.

Lemma 2.2 ([Str98], Lemma 8.11). The ideals Ipk and Jpk are equal to the image of the transfer

map E0(BΣp
pk−1) → E0(BΣpk), and the kernel of the restriction map E0(BΣpk) → E0(BΣp

pk−1),

respectively.

Strickland then shows the following.

Theorem 2.4 ([Str98], Theorem 8.6). The quotient maps

E0(BΣpk)→ E0(BΣpk)/Ipk

and

E0(BΣpk → E0(BΣpk)/Jpk

are split surjective. As a consequence, those quotients are free E0-modules. Further, Jpk is a free

E0(BΣpk)/Ipk-module on one generator.

Finally, he also provides an algebro-geometric interpretation of the ring E0(BΣpk)/Ipk .

Theorem 2.5 ([Str98], Theorem 8.6). Let (Γ,K) be the formal group over K, for which (EΓ)0
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classifies deformations. Then the E0-algebra E0(BΣpk)/Ipk is naturally isomorphic to the (EΓ)0-

algebra Opk which classifies isogenies of degree pk between deformations of Γ.

Later, we will need some knowledge of the structure of the whole E-cohomology of certain

symmetric groups. As a first step, we note the following proposition, which is Proposition 10.5 of

[Rez09].

Proposition 2.8. The augmentation map E0(BΣp) → E0 passes to a map Op → E0/p. This

classifies the Frobenius isogeny, and further, the following square is a pullback of E0-modules.

E0(BΣp) Op

E0 E0/p.

There is also something of an analog for symmetric groups of arbitrary p-th power order.

Proposition 2.9. Let Ipk be the transfer ideal in E0(BΣpk) and Jpk be the kernel of the restriction

map E0(BΣpk)→ E0(BΣp
pk−1). The square of quotients

E0(BΣpk) E0(BΣpk)/Ipk

E0(BΣpk)/Jpk E0(BΣpk)/(Ipk + Jpk)

is a pullback (and since all the maps are surjective ring maps, also a pushout) .Further, the quotient

E0(BΣpk)/Ipk + Jpk is pr-torsion for some r

Proof. For both claims, it suffices to show that the combined projection map

π : E0(BΣpk)→ E0(BΣpk)/Ipk ⊕ E0(BΣpk)/Jpk

becomes an isomorphism after inverting p. This means that π is injective before inverting p, so

that Ipk ∩ Jpk vanishes. A standard generalization of the Chinese Remainder Theorem then gives

the pullback claim. Further, the cokernel of π also vanishes after inverting p. As it’s a finitely

generated E0-module, some power of p kills it.

To prove the rational isomorphism, we use the character theory of [HKR00]. As noted in
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Section 2.6, there is a faithfully flat p−1E0-algebra C0 so that C0 ⊗E0(BΣpk) is isomorphic to the

ring of C0-valued height h class functions on Σpk . With Proposition 2.7 we can identify this as a

ring with
∏
C0, where the product ranges over isomorphism classes of Zhp -sets of order pk. By

the formula for transfers (Theorem 2.3), or as shown by Strickland and Turner ([ST97], Theorem

4.2), the quotient by the transfer ideal corresponds to the projection onto the product indexed by

the transitive Zhp -sets. Further, the quotient by the kernel of the restriction map corresponds to

the projection onto the remaining factors of the product decomposition. We immediately get the

required isomorphism after base-change to C0. But since C0 is faithfully flat, the map π is an

isormorphism after inverting p as desired.

Proposition 2.10. The square from Proposition 2.9 remains a pullback after tensoring up to any

p-torsion-free E0-algebra

Proof. It’s enough to check that the square is a pullback in E0-modules. Let R be a p-torsion-free

E0-algebra. Proposition 2.9 gives a short exact sequence of E0-modules

0 E0(BΣp2) E0(BΣpk)/Ipk ⊕ E0(BΣpk)/Jpk

E0(BΣpk)/(Ipk + Jpk) 0.

Base changing to R gives an exact sequence

E0(BΣp2)⊗R (E0(BΣpk)/Ipk ⊕ E0(BΣpk)/Jpk)⊗R

E0(BΣpk)/(Ipk + Jpk)⊗R 0.

But the first two terms in this sequence are free R-modules of the same rank, as they’re free

E0-modules of the same rank before tensoring up to R. Since R is p-torsion-free, the third term

is a torsion R-module. These facts together give that the first map in the sequence is injective,

proving the claim.

We now go about identifying one of the bottom terms in square from Proposition 2.9 in the

case k = 2.
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Proposition 2.11. The restriction map E0(BΣp2)→ (E0(BΣp)
⊗p)Σp is split surjective as a map

of E0-modules. As a consequence, (E0(BΣp)
⊗p)Σp ∼= E0(BΣp2)/Jp2

Proof. In the course of the proof of theorem 8.6 of [Str97], Strickland shows that the intersection

of the decomposables in T(E0) with E0(BΣm) is a retract, and so a summand. Dualizing the

statement that we want, we wish to identify this with the p-th symmetric power of E0(BΣp). By

the dual of lemma 8.11 there, we know that every decomposable element will be in the image of

the multiplication map Symp(E0(BΣp))→ E0(BΣp2). Thus, we can now carefully select a basis for

E0(BΣp2). Let xp, y1, . . . , yn be a basis for E0(BΣp), by Proposition 2.8 (where x is a generator for

E0(BΣ1), and the yi are orthogonal to xp). Then every element of the decomposables in E0(BΣp2)

is of the form

yi1 . . . yikx
pp−k (2.1)

for some k. From Strickland’s results we can count the E0-ranks of the modules involved here.

Using Hopkins-Kuhn-Ravenel character theory he identifies the rank of E0(BΣpk) as the number

of Zhp -sets of order pk. In the case k = 1, 2, this results in

rnk(E0(BΣp)) =
ph − 1

p− 1
+ 1

rnk(E0(BΣp2)) =
(ph+1 − 1)(ph − 1)

(p2 − 1)(p− 1)
+

(ph−1
p−1 + p

p

)
and that the rank of the indecomposables in E0(BΣp2) is the first term in the above formula. We

now have that the rank of the decomposables is the same as the rank of Symp(E0(BΣp)) (which is

the second term). Thus, all of the elements of the form (2.1) are distinct, and come in a unique

way from one of the basis elements of Symp(E0(BΣp)). We now have that the multiplication map

Symp(E0(BΣp))→ E0(BΣp2) is split monic (as a map of E0-modules). Dualizing, we get that the

restriction map is split surjective.

Remark 2.4. Perhaps it’s not clear where we used anything specific about the case p2 here. In

the case of pk for k > 2 the rank of the decomposables will be smaller than the rank of the p-th

symmetric power of E0(BΣp). This is already seen when p = 2 and h = 2, where the decomposables

have rank 133, and the symmetric power has rank 153. Intuitively, what’s happening here is that
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the elements in E0(BΣp) which “come from” lower degrees only form a rank one submodule. If it

were larger, products of such elements might come from more than one element of the symmetric

power.

Remark 2.5. The E0-algebra E0(BΣpk)/(Ipk + Jpk) inherits a second E0-algebra structure from

the E0-algebra t on Op2 . This will also be denoted by a superscript t on the left.

We say one more thing about the above pullback square that we’ll need later.

Proposition 2.12. The map Op2 → E0(BΣp2)/(Ip2 + Jp2) factors through a map Op2 → Osp ⊗
FrobO1/p = φ∗(Op/p).

Proof. The wreath product Σp o Σp has a quotient map to the second wreath factor. Call this π

and consider the following diagram.

E0(BΣp)

Op

E0(BΣp) E0(BΣp o Σp)

Op E0(BΣp o Σp)/Ip,p

E0 E0(BΣp
p)Σp

E0/p = O1/p E0(BΣp2)/(Ip2 + Jp2)

Pp

Ppπ∗

The left face is the pullback square for E0(BΣp), the bottom right square commutes as its

top edge is the restriction from the quotient E0(BΣp2) → Op2 , and the top left square commutes

by definition of Ip,p. That the top left square commutes is a standard fact about the interaction

of transfers with wreath products. The two maps out of Op combine together to give a map

tOsp ⊗ tOsp → E0(BΣp o Σp)/Ip,p which factors the map Op2 → E0(BΣp o Σp)/Ip,p. This of course

gives a map tOsp ⊗ tOsp → E0(BΣp2)/(Ip2 + Jp2). Note that the factor of Op coming from the left

side of the diagram is the second factor in the tensor product. Then the fact that the front face of

the above diagram commutes provides the desired factorization
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tOsp ⊗ tOsp → Osp ⊗O1/p→ E0(BΣp2)/(Ip2 + Jp2).
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Chapter 3

Two Functors

3.1 The functors V and V2

We now proceed to construct the promised functors V and V2 from the main theorem. We also

give a few auxilliary functors, which are perhaps more tractable. These will be often be used to

prove things about our main targets.

The first definition is immediately inspired by the pullback square of the introduction.

Definition 3.1. Define a functor V : E0 -Alg→ Sets as follows. For an E0-algebra R, V (R) is the

pullback

V (R) E0(BΣp)⊗E0 R

R R

p
aug⊗ id

(−)p

For a map f : R→ S, V (f) is defined via the universal property of V (S), that is “componentwise.”

Of course, the maps in the definition of V are not E0-algebra maps, or even ring maps. They

are, however, multiplicative. As a result, V (R) is only defined as a commutative monoid (under

multiplication) for now. Later we will in fact show that it actually does take values in commutative

E0-algebras. For now, we prove two useful facts about V .

Proposition 3.1. The functor V is representable by a polynomial algebra over E0.

Proof. The augmentation map aug : E0(BΣp)→ E0 splits as a map of E0-modules, by Theorem 2.4.

In fact, we may choose a basis x, x1, . . . , xd of E0(BΣp), so that aug(x) = 1 and aug(xi) = 0 for all

i. From the definition, of V, we can write a general element of V (R) as (r,
∑d

i=0 ri⊗xi) with r0 = rp

(and all of the r’s elements of R). In other words, we can write V (R) as {(r, r0⊗x0 +
∑d

i=1 ri⊗xi)}.

As a set, this is patently isomorphic to R1+d.

23



Proposition 3.2. The functor V preserves monomorphisms.

Proof. This follows immediately from the previous proposition.

To prove basically anything else about V , we’re going to need another functor. To that end,

we make the following definintion.

Definition 3.2. Define another functor V : E0 -Alg→ Ring as the pullback

V (R) t(E0(BΣp)/I
s
p ⊗E0 R

R s(p)R/p

p
aug⊗ id

(−)p mod p

Note that this functor is actually ring-valued, since the bottom and right maps are ring homo-

morphisms. In fact, we can give it an E0-algebra structure as well.

Proposition 3.3. There is a natural E0-algebra structure on V (R) for all E0-algebras R.

Proof. We’ve already noted that it has a ring structure. For the E0-algebra structure, we use the

left algebra structures on everything. In the case of E0(BΣp)/Ip, this is the algebra structure

coming from the additivized p-th power operation, as in Section 2.4. In the case of R/p, this is the

usual algebra structure twisted by the p-th power. The bottom map in the definition of V (R) is

now clearly an algebra map, and the left map is by Proposition 2.3.

V is very closely related to V ; they are isomorphic on E0-algebras that have no p-torsion.

Proposition 3.4. There is a natural transformation V → V . In addition, if R is a p-torsion-free

E0-algebra, the induced map V (R)→ V (R) is an isomorphism (of commutative monoids).

Proof. From Proposition 2.8 we have a pullback square of E0-modules taking the form

E0(BΣp)
t(E0(BΣp)/Ip)

s

E0
s(p)E0/p.

q

i∗ σ

q

(3.1)

Tensoring with R and attaching this to the pullback square defining V (R) gives a composite

commutative square
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V (R) E0(BΣp)⊗R t(E0(BΣp)/Ip)
s ⊗R

R E0 ⊗R s(p)(E0/p)
s ⊗R.

q⊗id

i∗⊗id σ⊗id

(−)p q⊗id

(3.2)

But the pullback of the right and bottom legs of this composite square is defined to be V (R); this

supplies the natural transformation required.

For the isomorphism, let R be a p-torsion-free E0-algebra. Note first that all of the corners

of the square (3.1) except the bottom right are free E0-modules – the top left and top right by

Strickland ([Str98]). The bottom right corner, on the other hand, has only p-torsion. Thus, the

square (3.1) remains a pullback after tensoring up to R. This gives that the composite square (3.2)

is also a pullback, proving the isomorphism.

This isomorphism now allows us to provide the promised E0-algebra structure on V (R) for

arbitrary R.

Proposition 3.5. For any E0-algebra R, V (R) has a natural E0-algebra structure.

Proof. Combining Propositions 3.3 and 3.4, we immediately get the required E0-algebra structure

when R is p-torsion-free. Now note that if R is p-torsion-free, then so is V (R). Indeed, the pullback

definition of V (R) presents it as a submodule of R× (E0(BΣp)/Ip)
s⊗R; this is p-torsion-free since

R and E0(BΣp)/Ip are. This means that V restricts to an endofunctor (which we will still call

V ) on the subcategory E0 -Algptf of p-torsion-free E0-algebras. Proposition 3.1 gives that V is

representable, not just on the whole category E0 -Alg, but also on E0 -Algptf , by an object P . Since

V takes values in E0-algebras on E0 -Algptf , P gains all of the maps and identities of an E0-bialgebra,

with the slight caveat, that all of those are only taking place in the subcategory of p-torsion-free

algebras. But all of these structure maps exist just as well in the whole category E0 -Alg, endowing

the functor V (on the whole category now) with the structure of an E0-algebra-scheme. That is,

V (R) has a natural E0-algebra structure, for arbitrary R.

The trick used in this proof – show a claim in the p-torsion-free case, and then recover the full

claim via some form of representability – will show up several times in this thesis. The author
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tends to think of it as a more elaborate version of the old trick of writing down formulas rationally,

and then noticing that they are in fact defined over the integers. Here, we may be unable to write

down the formulas explicitly, but the same idea applies.

We should also note the following, which was needed and shown in the course of the proof of

the previous proposition.

Proposition 3.6. If R is a p-torsion-free E0-algebra, then so is V (R).

We noted in the introduction that coalgebras for V (whatever that might mean) fail to fully

capture the notion of T-algebras. We also claimed there that we can remedy this deficiency by

introducing another functor. We do that now.

Definition 3.3. Define another functor V2 : E0 -Alg→ Sets as follows, for an E0-algebra R, V2(R)

is the limit of the diagram

E0(BΣp2)⊗E0 R

E0(BΣp)⊗E0 R (E0(BΣp)
⊗p)Σp ⊗E0 R

R R

res⊗id

aug⊗id

idnp

(−)p

Again, a map f : R→ S, V2(f) is defined in “the obvious way,” via the universal property of limits.

Similarly to the case with the functor V , this is only a priori defined as a commutative monoid.

We now proceed to relitigate the series of propositions and definitions that followed that definition,

with subscript 2’s everywhere.

Proposition 3.7. The functor V2 is representable by a polynomial algebra.

Proof. By Proposition 2.11, we can choose a basis y1, . . . yk, z1, . . . zl of E0(BΣp2) (as an E0-module)

so that the zj are in the kernel of the restriction and so that the images of the yi under res

form a basis for (E0(BΣp)
⊗p)Σp . A generic element of V2(R) can then be written in the form

(r,
∑
xi⊗ ai,

∑
yj ⊗ bj +

∑
zk ⊗ ck). (where the xi are as in the proof of Proposition 3.1, and r, as

well as the ai, bj and ck are in R,) subject to the condition that φ(x⊗rp+
∑
xi⊗ai) =

∑
res(yj)⊗bj).

This condition determines the bj ’s. Thus, V2(R)is, as a set, isomorphic to 1 +d+ l copies of R.
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Just like we had with V , we want a somewhat more managable functor to compare V2 with.

Definition 3.4. Define a functor V2 : E0 -Alg→ Rings as follows. If R is an E0-algebra, let V2(R)

be the limit of the diagram

tOsp2 ⊗R

tOsp ⊗R tAp2/(Ip2 + Jp2)s ⊗R

R s(p)R/ps .

(res ◦c)⊗id

Pp⊗(−)p

q⊗id

(−)p

Here, we have saved on space by defining Ap2 as E0(BΣp2). Additionally, Pp is the composite

given by Op → E0(BΣp oΣp)/Ip,p → tAp2/(Ip2 + Jp2)s from the proof of Proposition 2.12, and q is

the defining quotient map.

Proposition 3.8. V2 is valued in E0-algebras.

Proof. The only thing in question is the algebra structure, as all of the maps involved in the

definition of V2 are ring homomorphisms. If we twist the usual module structure on R/p and use

the second algebra structure t on Ap2/(Ip2 + Jp2) (as in Remark 2.5), we get E0-algebra maps.

Proposition 3.9. There is a natural homomorpism V2 → V2. If R is p-torsion-free, the map

V2(R)→ V2(R) is an isomorphism (of commutative monoids).

Proof. Consider the following diagram.

E0(BΣp2)⊗R

E0(BΣp)⊗R (E0(BΣp)
⊗p)Σp ⊗R tOsp2 ⊗R

R R tOp ⊗s R tAp2/(Ip2 + Jp2)s ⊗R/p

R s(p)R/ps

res⊗ id

idnp

q⊗id
q⊗id

(−)p

id

Pp⊗(−)p

res⊗ id

(−)p

The unlabeled arrows are reasonably obvious quotients. The limit of the upper zigzag is V2(R), and
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the limit of the lower zigzag is V2(R). This immediately gives the map. For the isomorphism, let R

be a p-torsion-free E0-algebra. We already know (by Proposition 3.4) that the map V (R)→ V (R)

is an isomorphism, so it suffices to show that the square

V2(R) E0(BΣp2)⊗R tOp2 ⊗s R

V (R) E0(BΣp) (E0(BΣp)
⊗p)Σp ⊗R tAp2/(Ip2 + Jp2)s ⊗Ridnp q⊗id

is a pullback. By definition the left hand square is a pullback, Proposition 2.10 gives us that the

right hand square is a pullback, and we are done.

Proposition 3.10. The functors V2 and V2 preserve p-torsion-free objects.

Proof. If R is p-torsion-free, the definition of V2(R) presents it as a submodule of a p-torsion-free

module. This gives the claim for V2. The claim for V2 now follows by Proposition 3.10.

Proposition 3.11. For any E0-algebra R, V2(R) has a natural E0-algebra structure.

Proof. This follows from Propositions 3.8, 3.9 and 3.10 exactly as in the proof of Proposition

3.5.

3.2 The map V2 → V V.

To consider the functor V2 as some sort of “admissibles” in V V , we need a map that allows us to

do so. We construct this map now.

Proposition 3.12. There is a natural transformation V2 → V V .

Proof. By the same arguments as in Proposition 3.5, it suffices to construct a map V2 → V V .

Now note that V preserves pullbacks (and so products); V is defined as a limit of sets, and limits

of E0-algebras are computed as sets. Thus, if R is an E0-algebra, we can compute V V (R) as a

pullback

V V (R) V (Osp ⊗R)

V (R) V (R/p),

p
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given by applying V to the definition of itself. Thus, to give a map V2(R) → V (R), we just

need to give compatible maps to V (R) and V (Osp ⊗R). The first map is clear; by definition V2(R)

comes with a map ψ to V (A). Expanding out the pullback above, we get a diagram

V (Op ⊗R) Osp ⊗R

Osp ⊗ tOsp ⊗R Osp ⊗R/p

V (R/p) R/p

Osp ⊗R/p R/p

V (R) R

Osp ⊗R R/p

aug

(−)p

aug

aug

(−)p

aug

aug

(−)p

(−)p

aug

(−)p

We need to give a pair of maps V2(R) to the upper right and bottom right corners making the

whole diagram commute. This amounts to maps three maps from V2(R) to Osp ⊗ tOsp ⊗R, Osp ⊗R

and R satisfying certain conditions.

Consider the defining diagram of V2(R) (with a few extra things added)

V2(R) Osp2 ⊗R Osp ⊗ tOsp ⊗R

V (R) Osp ⊗R tAp2/(Ip2 + Jp2)sR

R R/p .

f

h

g

The arrows labeled f, g, and h are defined to be the evident composites with the respective sources

and targets. These three maps give us the required maps to various corners of the defining diagram

above for V V (R). We now have three conditions that we’d like to be satisfied. First, aug ◦f =
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(−)p ◦ g by definition. Second, (−)p ◦ f = aug ◦h by the factorization in Proposition 2.12, and

(−)p◦f = aug ◦h by the factorization in that proposition and consideration of the relative Frobenius

on t(Op/p)s.

Note that the functors V and V come equipped (by definition) with augmentations V → id and

V → id. This means in turn that the composite functors V V and V V come with two maps to V

and V , respectively, by applying this augmentation in either factor. Let E and E be the equalizers.

Proposition 3.13. The natural transformation V2 → V V of the previous proposition factors

through the equalizer E, and is split monic.

Proof. It suffices to show this for the map V2 → V V (and the equalizer E), by the now-usual

representablity argument. Fix an E0-algebra R. By defintion of V2(R), a generic element of

V2(R) is of the form (r, x, y) ∈ R × (Osp ⊗ R) × (Osp2 ⊗ R), subject to two equalities. We also

saw in the proof of the previous proposition that a generic element of V V (R) is of the form

(s, w,w′, z) ∈ R× (Osp ⊗R)× (Osp ⊗R)× (Osp ⊗ tOsp ⊗R) (subject to conditions).

We saw before that there is a map c : Op2 → Osp⊗ tOp, and the map in the previous proposition

is constructed so that

(r, x, y) 7→ (r, x, x, (c⊗ id)(y)).

The claim about the equalizer is now clear.

For the other claim, we note that Rezk ([Rez12]) showed that c is a split monomorphism of

E0-modules. This immediately gives the injectivity claim. Finally, let γ : Osp ⊗ tOp → Op2 be any

splitting of c. Then the map

(s, w,w′, z) 7→ (s, w, (γ ⊗ id)(z))

provides the required splitting of V2(R)→ V V (R).
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Chapter 4

Coquadratic Pairs and Comonads

4.1 Coquadratic Pairs and Their Coalgebras

In the introduction we claimed that we could think of a certain comonad as being the “cofree

comonad” on certain data that we called a “coquadratic pair”. This section will set up the frame-

work of coquadratic pairs, and discuss a few examples that are the primary subject of this thesis.

Of course, there is also a monadic version. We don’t need that version here, so we leave that for a

later date.

We get on with the main definition of this section.

Definition 4.1. Let C be a category. A coquadratic pair on C consists of two functors F, F2 : C → C,

together with three natural transformations:

• ε : F → IdC , (F is equipped with an augmentation)

• ε2 : F2 → IdC , (F2 is also equipped with an augmentation)

• and a structure map α : F2 → F ◦ F , which commutes with the augmentations. (F ◦ F

inherits a natural augmentation from that on F .)

We’ll think of F (R) as the “generators” of some larger functor of R and F2(R) as “admissible”

two-fold composites of these generators.

Sometimes we’ll denote a coquadratic pair by a blackboard bold letter, and its constituent

functors by the same letter in ordinary typeface. For example: F = (F, F2, ε, ε2, α). We will also

often drop the structure maps from the notation.

We’ve already seen a few examples.
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Example 4.1. (V, V2), and (V , V2) from the previous sections give examples of coquadratic pairs

on the category of E0-algebras.

We can also associate a coquadratic pair to a comonad.

Example 4.2. If W is a comonad on C with augmentation ε and structure map ∆ : W → WW ,

we can define its “underlying” coquadratic pair as UW = (W,W, ε, ε,∆).

Of course, we can assemble coquadratic pairs into a category.

Definition 4.2. Let F = (F, F2, ε, ε2, α) and G = (G,G2, η, η2, β) be coquadratic pairs in a category

C. A morphism Φ : F→ G is a pair of natural transformations φ : F → G,φ2 : F2 → G2 which are

morphisms of augmented endofunctors so that the following diagram commutes:

F2 G2

FF GG.

φ2

α β

φφ

Remark 4.1. Example 4.2 defines a forgetful functor U from the category of comonads Cmd(C) on

C to the category of coquadratic pairs CQ(C) on C. That is, a morphism f : W → C of comonads

gives a morphism (f, f) of coquadratic pairs. The definition of morphism of comonads ensures that

the necessary diagram commutes.

We are really interested in the notion of a coalgebra for a coquadratic pair.

Definition 4.3. Let F = (F, F2, ε, ε2, α) be a coquadraic pair on C, and let c be an object in C.

The structure of an F-coalgebra on c is a pair of morphisms φ : c → Fc, φ2 : c → F2c, so that the

following diagrams commute:

c Fc c F2c

c c

φ

id
εc

φ2

id
(ε2)c

c Fc

F2c FFc.

φ

φ2 F (φ)

αc
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Remark 4.2. In the case that the structure map F2 → FF is monic, the morphism φ2 in the

definition of F-coalgebra is unique if it exists. Thus, in this case, being an F-coalgebra becomes a

condition on F -coalgebras.

Remark 4.3. If W is a comonad, we can regard a W -coalgebra (C, f) as a UW -coalgebra, with

structure maps (f, f). However, the structure of a UW -coalgebra on C is not necessarily the same

thing as a W -coalgebra structure, since the diagonal on W need not be monic.

Example 4.3. A (V , V2)-coalgebra is precisely a Γ-algebra which satisfies the Frobenius congru-

ence. We’ll prove this in secton 5.1.

Of course there is a notion of “ quadratic pair” and of an algebra for such data. A terse

definition would be a coquadratic pair in the opposite category. We have no need of such a notion

here, and so will not say anything further about it.

4.2 Cofree and coquadratic comonads

We saw in the previous section that there is a forgetful functor U from the category of comonads

on C to the category of coquadratic pairs on C. In this section, we’ll be concerned with when a

comonad is determined by a coquadratic pair.

Let F be a quadratic pair, and consider the category Cmd(C)/F whose objects are comonads

W equipped with a morphism of coquadratic pairs f : UW → F, and whose objects are maps of

comonads φ : W →W ′ so that the diagram

UW UW ′

F

Uφ

f f ′

commutes in the category of coquadratic pairs on C.

Definition 4.4. If F is a coquadratic pair, a cofree comonad on F, is a terminal object of Cmd(C)/F.

Remark 4.4. We are not claiming that such a thing exists for a general coquadratic pair. In

fact, part of the claim of Theorem 5.1 is the existence. Later, we will prove this by constructing it

directly.
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Also, the terminology is abusive, since the objects of Cmd(C)/F are more than just a comonad.

However, we will generally be even more abusive, and refer to this terminal object as the cofree

comonad on F. (As is usual, all such things are isomorphic.)

Definition 4.5. A comonad W on C is coquadratic if there exists a coquadratic pair F and a

morphism f of coquadratic pairs UW → F, realizing W as the cofree comonad on F.

Remark 4.5. It may not be the case that W is the cofree comonad on UW .

Remark 4.6. It may be the case that a comonad W is coquadratic in more than one way. That

is W could be the cofree comonad on more than one coquadratic pair.

We’ll also need a comparison between coalgebras for a coquadratic pair and coalgebras between

its cofree comonad.

Proposition 4.1. If C is a category with all coproducts, and if W is the cofree comonad on a co-

quadratic pair (F, F2) in C, then the induced functor W -Coalg→ (F, F2) -Coalg is an isomorphism,

which is the identity on underlying objects.

Proof. The hypothesis on the category ensures that, for any object x of C, the left Kan extension

of 1→ C along itself exists. This is a comonad by standard properties of left Kan extensions. We

will call it the “endomorphism comonad” of x, and denote it by Ex. The definition of left Kan

extension also ensures that for any endofunctor G of C, a map φ : x→ Gx is the same as a natural

transformation Φ : Ex → G. If G is a comonad and φ gives x the structure of a G-coalgebra, then

Φ is a comonad morphism. If (F, F2) is a coquadratic pair, and x is an (F, F2)-coalgebra,, with

structure maps φ and φ2, then we get a morphism of coquadratic pairs (Φ,Φ2) : UEx → (F, F2)

in the same way. Now, if W is the cofree coalgebra on (F, F2), then its universal property gives

that the map (Φ,Φ2) : UEx → (F, F2) factors uniquely through a comonad morphism Ex → W ,

giving x a W -coalgebra structure. We now have a functors W -Coalg→ (F, F2) -Coalg (by neglect

of structure) and (F, F2) -Coalg→W -Coalg (by this construction), both of which are the identity

on underlying objects, and which will give the identity when composed in either order.
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4.3 The cofree comonad on (V, V2)

The goal of this section is to prove the existence, by explicit construction, of the cofree comonad on

V = (V, V2). We roughly follow the presentations of [BW05a] and [Rez96], with several differences.

First, those sources construct free monads, whereas we want to construct cofree comonads; this is

mostly a matter of replacing colimits with limits. Second, as V is already augmented, we must

build this into our construction, instead of freely adjoining an augmentation. Third, and most

importantly, we must also incorporate our additional functor V2.

On the other hand, since we are only interested in doing this for a specific case, we can take

advantage of a few things that are special to our situation.

Consider the iterated composites V ◦n as n ≥ 1 varies. The idea will be to take the limit of

these, incorporating various identities. Since V is an augmented endofunctor, we get n natural

maps V ◦n → V ◦n−1 by inserting the augmentation into various positions. We can define En to be

the equalizer of these n maps, and note that this gives us a single natural map En → En−1. Now

we know that the inclusion V2 → V V factors through E2. Then we can define another functor V(n)

(for n ≥ 2) inductively as V(2) = V2 and Vn is the pullback of the angle V(n−1) → En−1 ← En.

Alternatively, we can define Vn as the limit of the diagram formed by the n maps V ◦n → V ◦n−1

and the map Vn−1 → V ◦n−1. By definition, these come equipped with maps V(n) → V(n−1). Finally,

we define CV as the limit of the V(n). We note that the maps V(n) → V ◦n are monic, as pullbacks

of monic maps.

Before we prove the required things about this construction, note that the functors V and V2

commute with limits, as they are representable. In the course of the next few propositions, we will

use this fact repeatedly, and often without further comment.

To show that this is indeed the cofree comonad on (V, V2) we’ll need to use a few lemmas.

Lemma 4.1. The inclusion V(k+l) → V ◦k+l factors through both of the inclusions V ◦kV(l) → V ◦k+l

and V(k)V
◦l → V ◦k+l.

Proof. The result is tautological if either k or l are 1. To factor through the first inclusion, we fix
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k and induct on l, so assume the result for the pair (k, l). We have a commutative diagram

V(k+l+1) V ◦kV(l+1) V ◦k+l+1

V(k+l) V ◦kV(l) V ◦k+l,

...

and we want to fill in the top row, making the diagram continue to commute. Note that the bottom

composite is the inclusion, by inductive hypothesis. The right hand “square” is a limit diagram

(since V preserves limits), so we get our desired map. The other inclusion follows very similarly.

Lemma 4.2. The inclusion V(k+l) → V ◦k+l factors through the inclusion V(k)V(l) → V ◦k+l

Proof. Again, we induct on k and l (separately). For notation’s sake, set V(1) = V . The claim is

tautologically true if k = l = 1.. Now assume the lemma for a pair of integers (k, l). We wish to

establish it for the pairs (k + 1, l) and (k, l + 1). We cover the case of increasing k first. Consider

the following diagram.

V(k+1+l) V(k+1)V(l) V ◦k+1V(l) V ◦k+l+1

V(k+l) V(k)V(l) V ◦kV(l) V ◦k+l

... ...

We again wish to complete the diagram with a map V(k+1+l) → V(k+1)V(l), and as in the previous

lemma, the composite along the bottom is the inclusion by inductive hypothesis. By the previous

lemma, the curved arrow on the top factors through a map V(k+1+l) → V ◦k+1V(l) (with the diagram

remaining commutative). Then since the middle “square” is a limit diagram (since V preserves

limits), we get the desired factorization. Induction on l is very similar, except that we also need to

use that V(k) preserves limits, as it’s a limit of limit-preserving functors.

Proposition 4.2. The functor CV carries a natural comonad structure. Further, it’s underlying

coquadratic pair has a natural map (of coquadratic pairs) to (V, V2).
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Proof. The second part of the proposition is evident by construction. For the first part, define

the augmentation CV → id as the composite CV → V → id. (There is only one evident map

CV → V by construction.) Define the comultiplication as follows. We want a natural transformation

∆ : limn V(n) → limk,l V(k)V(l). (We used the fact that V commutes with limits here.) So it suffices

to construct compatible maps limn V(n) → V(k)V(l). We get this by considering the composite

limn V(n) → V(k+l) → V ◦k+l and applying Lemma 4.2. For future usage, write ∆k,l for these maps

CV → V(k)V(l). The counit diagram is now reasonably clear, and we need to check the coassociavity

axiom.

That is, we need to check, for all n, k, l, that the square

V(n+k+l) V(n)V(k+l)

V(n+k)V(l) V(n)V(k)V(l)

∆n+k,l

∆n,k+l

V(n)(∆k,l)

∆n,kV(l)

commutes. To do that, we induct (again) on n, k and l. The case where all three are 1 follows from

the definition of V(3).

Let’s consider the case of increasing n first. Assuming that the above square commutes for

(n, k, l), we want to show it for (n + 1, k, l). As with previous inductive arguments, consider the

following diagram.

V(n+1+k+l) V(n+k+l)

V(n+1+k)V(l) V(n+k)V(l)

V(n+1)V(k+l) V(n)V(k+l)

V(n+1)V(k)V(l) V(n)V(k)V(l)

V n+1V(k+l) V n+1V(k)V(l)

V nV(k+l) V n+1V(k)V(l)

···

···

37



The front right hand square is a limit diagram, and the whole outer diagram commutes, as well

as all of the faces except possibly the top left. The bottom left square commutes by assumption.

Thus, both of the ways around the desired commutative square (top left) are the same, by definition

of V(n+1) as a limit. The other two cases follow similarly.

Proposition 4.3. With the the structure from the previous proposition, CV is the cofree comonad

on V.

Proof. We check the universal property. Let W be a comonad equipped with a morpism of co-

quadratic pairs (f, f2) : UW → (V, V2). The required maps W → V ◦n are given by fn ◦ ∆◦n−1,

and the required map W → V2 is provided by f2. These maps are compatible with the structure

map α : V2 → V V since (f, f2) is a morphism of coquadratic pairs. Since CV was defined as a

limit of these things, we get our desired natural transformation φ : W → CV. For later use, let’s

name the map W → V(k) as φ(k). It’s clear that φ is the only such natural transformation which

is compatible with (f, f2), since CV is defined as a limit. It’s also clear that this is a morphism

of augmented functors, so we now only need to check that it is, in fact a morphism of comonads.

That is, we need to check that the square

W CV

WW CVCV

φ

∆W ∆CV

φφ

commutes. Unpacking this, we see that the right-and-then-down composite ∆CV ◦ φ is given on

components by taking the map φ(k+l) : W → V(k+l) → V ◦k+l and factoring it through V(k)◦V(l). On

the other hand, the down-and-then-right composite is given as the comultiplication on W followed

by φ(k)φ(l). This also is a factorization of a certain map from W → V ◦k+l. Thus we need to check

that the two maps fk+l ◦ (∆W )◦k+l−1 and ((fk(∆W )◦k−1)(f l(∆W )◦l−1))∆W are equal. This follows

from the interchange law for horizontal and vertical compostions of natural transformations.
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Chapter 5

Proof of the Main Theorem

5.1 A characterization of (V , V2)-coalgebras

In section 4.1, we promised a characterization of (V , V2)-coalgebras. This section exists to fulfill

that promise. Before we need to slightly recast the notion of Γ-algebra.

Definition 5.1. A Γ-algebra structure on R is data of an E0-algebra homomorphism P : R →

Osp ⊗E0 R, subject to the existence (and consequently, uniqueness) of a dotted arrow P2 making

the following diagram commute.

R Osp ⊗R

Osp2 ⊗R
tOsp ⊗ tOsp ⊗R.

P

P2 id⊗P

c⊗id

By E0-linear duality, this amounts to the same thing as before.

A Γ-algebraR satisfies the Frobenius congruence (following [Rez09]) if the composite (aug⊗ id ◦P :

R→ R/p is the p-th power map. Again, this is straightforwardly equivalent to the definition from

before.

Now we can state the main result of this section.

Proposition 5.1. A (V , V2)-coalgebra is precisely a Γ-algebra which satisfies the Frobenius con-

gruence. In other words, a (V , V2)-coalgebra structure on R determines and is determined by the

structure on R of a Frobenius Γ-algebra.

Proof. Given a Γ-algebra structure on R, satisfying the Frobenius congruence, we wish to create a

(V , V2)-coalgebra structure on R. This is a pair of maps ψ : R→ V (R), ψ2 : R→ V2(R), satisfying

certain conditions. We’ll provide the V -coalgebra structure first. By the limit definition of V , we
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only need to provide a map R→ Osp ⊗R, so that

R Osp ⊗R

R R/p

id aug⊗ id

(−)p

commutes. This is provided by P . The commutativity of the diagram is exactly the Frobenius

congruence. Now for the V2-coalgebra structure. Again, by the limit definition, we need a map

R → Osp ⊗ R (already provided by P ), as well as a map R → Osp2 ⊗ R, subject to some more

conditions (which we will check in a moment). This second map is provided by P2. We need to

check that this actually produces a map R→ V2(R) That is, we need that the diagram

R Op2 ⊗R

Op ⊗R tAp2/(Ip2 + Jp2)s ⊗R

R R/p

P2

P
q⊗id

Pp⊗(−)p

q⊗id

(−)p

commutes. The lower left portion is guaranteed to commute, since this is the Frobenius congruence.

The upper portion is slightly more complicated.

First, recall that φ : O1/p→ O1/p denotes the p-th power map, and φ∗Op/p = (Op/p)s⊗φO1/p

is the base changed Op/p. The relative Frobenius map Frob : φ∗Op/p→ t(p)Op/p factors the p-the

power map Op/p→ Op/p as a composite

Op/p φ∗Op/p t(p)Op/p.
a7→a⊗1 Frob

We’ll call the first map b in what follows.

We can insert the commutativity diagram for a Γ-algebra into that top portion as shown below.
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R Op2 ⊗R

Osp ⊗ tOsp ⊗R

Op ⊗R φ∗(Op/p)⊗R tAp2/(Ip2 + Jp2)s ⊗R

P2

P

c⊗id

b⊗(−)p

id⊗P

Now, the top left sector commutes, since R is a Γ-algebra, the right sector commutes by Propo-

sition 2.12, and the bottom left sector commutes precisely because the Γ-algebra structure on R

satisfies the Frobenius congruence.

To go the other way, from a (V , V2) coalgebra to a Γ-algebra, we note that the definitions of V

and V2 endow these functors with natural transformations π : V → Osp⊗− and π2 : V2 → Osp2 ⊗−.

Composing these with the structure maps ψ : R → V (R) and ψ2 : R → V2(R), we get the desired

Γ-algebra structure maps P and P2.

We now need to check that the commutativity diagram for Γ-algebras does in fact commute,

or, going the other way, that the analogous diagram for (V , V2)-coalgebras commutes.

Consider the following diagram.

R V (R)

V2(R) V V (R)

R Osp ⊗R

Osp2 ⊗R Osp ⊗ tOsp ⊗R

ψ

ψ2

π

V (ψ)

α

ππ
P

P2

id⊗P

c⊗id

π2
(5.1)

Given that either the top or bottom face commutes, we need to check that the other one does.

Let’s assume first that the top face commutes. Then the left and right faces commute by the

definition of π and the construction of P and P2 from ψ and ψ2 The back face also commutes by

the construction of P from ψ Then we only need to check that the front face commutes, but this

is due to the construction of the map α : V2 → V V given in Proposition 3.12.
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Now assume that the bottom face commutes. We want to verify that the top does. But this is

due to the construction of α, again as in the proof of Proposition 3.12.

These two processes give functors between the categories of Frobenius Γ-algebras and (V , V2)-

coalgbras, which are the identity on underlying objects, and evidently the identity when composed

in either order. This proves the proposition.

5.2 Comparison of (V, V2)-coalgebras and T-Algebras

In this section, we’ll set up a comparison between (V, V2)-coalgebras and T-algebras. More precisely,

we’ll show the following theorem.

Theorem 5.1. Let U be the forgetful functor from T-algebras to E0-algebras, and W its right

adjoint. Then the comonad W = UW on E0-algebras is the cofree comonad on the augmented

endofunctor with relations (V, V2).

We first show a version of this theorem on p-torsion-free objects.

To set notation, let CV denote the cofree comonad on (V, V2). In addition, let (CV -Coalg)ptf

and (W -Coalg)ptf be the full subcategories of CV-coalgebras (resp. W-coalgebras) consisting of the

objects which are p-torsion-free (as underlying E0-algebras.)

Proposition 5.2. There is an isomorphism of categories between (CV -Coalg)ptf and (W -Coalg)ptf ,

which is the identity on underlying E0-algebras.

Proof. Consider the following diagram of functors between categories of algebras or coalgebras.
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CV -Coalgptf CV -Coalg

(V, V2) -Coalgptf (V, V2) -Coalg

(V , V2) -Coalgptf (V , V2) -Coalg

Γ -AlgFrob,ptf Γ -AlgFrob

T -Algptf T -Alg

W -Coalgptf W -Coalg

(1)

(4) forget

(2)

(5) forget

(3)

All of the maps are identities (or inclusions) on underlying E0-algebras. The numbered isomor-

phisms may need some justification. The isomorphism (1) is given by Propositin 4.1. Proposition

5.1 gives (2), and playing around with adjunctions gives (3). The functors V and V are the same

functor on the p-torsion-free subcategory, and the same is true for V2 and V2; this gives (4). Finally,

(5) is precisely Theorem A of [Rez09]. Composition along the left gives the required homomor-

phism.

To finish the proof of the theorem, we need a sequence of propositions that allow us to reduce

to the p-torsion-free case just established.

Proposition 5.3. The comonad CV on E0-algebras preserves p-torsion-free objects.

Proof. The functors V and V2 preserve p-torsion-free objects, by Propositions 3.6 and 3.10. Now,

CV is constructed as a limit out of iterates of these, so it also preserves p-torsion-free objects.

Proposition 5.4. The comonad CV is representable, by a p-torsion-free object.

Proof. We know by Propositions 3.1 and 3.7 that the functors V and V2 are representable by

polynomial rings P and Q over E0. Lemma 2.1 gives that the iterates V ◦n are also represented

by the polynomial rings P�n and that the various induced maps P�n−1 → P�n are just given by
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inclusions of subsets of variables. Since the map V2 → V V is split monic, the induced map P2 → Q

is split epic. The result follows from the limit definition of CV and this splitting.

Proposition 5.5. The comonad W is representable, by a p-torsion-free object.

Proof. Recall that W was defined as the composite UW , where U was the forgetful functor from T-

algebras to E0-algebras, andW was its right adjoint. A straightforward manipulation of adjunctions

now says that W is representable by T(E0), which is p-torsion-free.

Proposition 5.6. The comonad W on E0-algebras preserves p-torsion-free objects.

Proof. We’d like to show that the map (of E0-modules) “multiplication by p” on W(A) is monic.

As W is representable by T(E0), we can consider the following diagram.

HomE0 -Alg(T(E0), A) HomE0 -Alg(T(E0), A)

HomE0 -Alg(T(E0), p−1A) HomE0 -Alg(T(E0), p−1A)

HomE0 -Alg(p−1T(E0), p−1A) HomE0 -Alg(p−1T(E0), p−1A)

·p

·p

·p

∼ ∼

The vertical arrows on the top are monic, since A is p-torsion free. Thus, the top horizonal

arrow is monic if the bottom horizontal arrow is. By representability, the natural transformation

·p : W(−) → W(−) is induced by a map [p] : T(E0) → T(E0). That the bottom horizontal arrow

in the diagram is monic now follows from the next lemma.

Lemma 5.1. The map [p] : T(E0)→ T(E0) is an isomorphism after inverting p.

Proof. As and E0-module, T(E0) decomposes as

T(E0) '
⊕
n≥0

E∧0 (BΣn).

The map [p] preserves this decomposition, and so we can decompose [p] and dualize to get a family

of maps [p]∨n : E0(BΣn) → E0(BΣn). Since the coproduct ∆+ on T (E0) representing addition on
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W is given by stable transfers in the homology of symmetric groups, we can write

[p]∨n =
∑
λ

trΣn
Σλ

resΣn
Σλ
,

where the sum is over all ordered p-tuples λ = (λ1, . . . , λp) of non-negative integers whose sum is

n, and Σλ = Σλ1 × . . .×Σλp ≤ Σn. We wish to show (for each n) that this is an isomorphism after

inverting p. To do this, we’ll use the character theory of Hopkins, Kuhn and Ravenel ([HKR00].)

The upshot of all of this is we can define a map [p]cln : Clh(G,C0) → Clh(G,C0) by the same

formula as before;

[p]cln (φ) =
∑
λ

trΣn
Σλ

resΣn
Σλ

(φ) = φ

(∑
λ

trΣn
Σλ

(1)

)
.

By the discussion above, the diagram

C0 ⊗ E0(BG) C0 ⊗ E0(G)

Clh(H,C0) Clh(G,C0)

C0⊗[p]∨n

χ χ

[p]cln

commutes. Since C0 is a faithfully flat p−1E0-algebra, [p]∨n : p−1E0(BΣn) → p−1E0(BΣn) is an

isomorphism if and only if C0 ⊗ [p]∨n is. It thus suffices to check that [p]cln is an isomorphism, i.e.,

that the class function ∑
λ

trΣn
Σλ

(1)

is a unit in Clh(G,C0)

A height h class function φ is a unit if and only if, for all height h conjugacy classes α, φ(α) is

a unit in C0. Now, by the definition of transfers for class functions given above,

trΣn
Σλ

(1)(α) =
∑

gΣλ∈(Σn/Σλ)imα

1 =
∣∣(Σn/Σλ)imα

∣∣ ,
which is a non-negative integer. Thus

∑
λ

trΣn
Σλ

(1)(α) =
∑
λ

∣∣(Σn/Σλ)imα
∣∣
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is a non-negative integer. The term given by λ = (n, 0, . . . , 0) contributes a 1 to the sum, and so

we see that this is actually a positive integer. As C0 is a Q-algebra (since p−1E0 is), all positive

integers are units in C0, and we are done.

Proof of Theorem 5.1. By Propositions 5.3 and 5.6, the comonads CV and W restrict to comon-

ads on the full subcategory (E0 -Alg)ptf . Let (CV -Coalg)ptf denote the full subcategory of CV-

coalgebras whose underlying objects are p-torsion-free, and similarly for (W -Coalg)ptf . That is,

these are the categories of coalgebras for the comonads CV and W considered as comonads on

the category (E0 -Alg)ptf . By Proposition 5.2 we have an isomorphism Φ′ : (CV -Coalg)ptf →

(W -Coalg)ptf of categories which is the identity on underlying objects. Then by Theorem 3.6.3 of

[BW05a] (dualized), this induces and is induced by an isomorphism ϕ′ : CV →W of comonads on

(E0 -Alg)ptf . Since CV and W are representable by p-torsion-free objects PV and PW, respectively

(Propositions 5.4 and 5.5), we get an isomorphism PW
∼−→ PV. This in turn induces an isomorphism

ϕ : CV → W of comonads on the whole category E0 -Alg, and so by Theorem 3.6.3 of [BW05a]

again, we have the desired isomorpism Φ : CV -Coalg→W -Coalg .

Corollary 5.1. A T-algebra structure on an E0-algebra A is the same data as a (V, V2)-coalgebra

structure on A. More precisely, there is an isomorphism of categories between T -Alg and (V, V2) -Coalg,

which is the identity on underlying E0-algebras.

Proof. By adjuctions, a T-algebra structure on R is precisely the same thing as a W-coalgebra

structure on R. By definition, the structure of a coalgebra for CV is precisely the same thing as

the structure of a (V, V2)-coalgebra.
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