Guide to the Geology, Hydrogeology, History, Archaeology, and Biotic Ecology of the Driftless Area of Northwestern Illinois, Jo Daviess County

Samuel V. Panno,¹ Philip G. Millhouse,² Randy W. Nyboer,³ Daryl Watson,⁴ Walton R. Kelly,⁵ Lisa M. Anderson,¹ Curtis C. Abert,¹ and Donald E. Luman¹

Cover photographs: (a) Entrance to the abandoned quarry on the Hanover Bluff Nature Preserve showing a spire of Silurian dolomite that rises about 50 feet (15 meters) above the quarry floor. Photograph by Samuel V. Panno; used with permission. (b) Lidar shaded-relief image showing details of the Aiken bird effigy (E) and four associated linear mounds (A–D). Map by Donald E. Luman. (c) Fragile prickly pear cactus (Opuntia fragilis) IL-E. Photograph by Randy W. Nyboer; used with permission. (d) Photograph of the Kipp property near the Black Jack Mine in the late 1800s showing visitors examining a pile of ore. From the collection of the Illinois State Geological Survey. (e) Solution-enlarged crevice in a road cut that is typical of crevices in Silurian dolomite. The inset photograph was taken from inside the crevice. The crevice shown in the photograph is 3 feet (1 meter) wide. Photographs by Samuel V. Panno; used with permission. (f) Richardson Blacksmith Shop on Commerce Street in Galena, Illinois, circa 1910, now part of the U.S. Grant Museum. Photograph courtesy of the Alfred W. Mueller Collection (Galena, Illinois).
Guide to the Geology, Hydrogeology, History, Archaeology, and Biotic Ecology of the Driftless Area of Northwestern Illinois, Jo Daviess County

Samuel V. Panno,¹ Philip G. Millhouse,² Randy W. Nyboer,³ Daryl Watson,⁴ Walton R. Kelly,⁵ Lisa M. Anderson,¹ Curtis C. Abert,¹ and Donald E. Luman¹

ACKNOWLEDGMENTS

The authors gratefully acknowledge the following for their contribution to the field trip: the Galena/Jo Daviess County Historical Society and U.S. Grant Museum, the River Ridge High School A.V. Club, the City of Galena, the Jo Daviess Conservation Foundation, the Galena/Jo Daviess County Convention & Visitors Bureau, the Galena Center for the Arts, the Illinois Department of Natural Resources, Conmat, Inc., Chestnut Mountain Resort, private landowners who granted access to their property, Tom Golden of Eastern Shore Soil Services, an anonymous donor who sponsored the band at lunch, and Nancy and Adlai Stevenson. We are also grateful to Steve Repp, curator of the Alfred W. Mueller Collection, for providing the historic photos of Galena, Illinois. Thanks also go to the ISGS public field trip logistical team: Lisa M. Anderson, Curtis C. Abert, Daniel J. Adomaitis, Michael W. Knapp, Cynthia A. Briedis, Kathleen M. Henry, Ronald Klass, and Derek Sompong. Their time and expertise are critical; without this team, the field trips would not be a success. Finally, we thank Susan Krusemark and Michael W. Knapp of the ISGS for their invaluable assistance to the authors in editing, compiling, and taking care of the details in finalizing this guidebook. This field trip and guidebook were also supported through the assistance and generosity of the League of Women Voters of Jo Daviess County and the Galena Foundation.

Suggested citation:
CONTENTS

ACKNOWLEDGMENTS

iv

INTRODUCTION

1

Geologic History

1

- Precambrian Era
- Paleozoic Era
- Mesozoic Era

4

Structural Setting

4

Preglacial History of Northwestern Illinois

7

The Driftless Area

7

Glacial Geology

8

Geology and Hydrogeology

11

- Geology
 - Galena-Platteville Formation
 - Silurian Dolomite
 - Ore Deposits
- Hydrogeology
 - Springs
 - Chemical Composition of Groundwater

19

References

21

NATIVE AMERICAN HISTORY IN JO DAVIESS COUNTY

23

Introduction

23

Paleo-Indian Tradition: 11,000–9000 B.C.

23

Archaic Tradition: 9000–1000 B.C.

23

Woodland Tradition: 1000 B.C.–A.D. 1000

25

Mississippian and Oneota Traditions: A.D. 1000–1400

26

Postcontact Native American People: A.D. 1690–2014

27

William Baker Nickerson (1865–1926) and American Archaeology

28

References

30

GALENA AND JO DAVIESS COUNTY SETTLEMENT HISTORY

33

The Settlement of Jo Daviess County

33

The Agricultural Economy

38

Jo Daviess County Today

42

References

42

THE ECOLOGY AND BIOTIC RESOURCES OF THE DRIFTLESS AREA OF NORTHWESTERN ILLINOIS

45

Early Vegetation of Jo Daviess County

45

Modern-Day Vegetation of Jo Daviess County

46

Endangered and Threatened Species of Jo Daviess County

49

References

50

GUIDE TO THE ROUTE AND STOP DESCRIPTIONS

51

Stop 1: Apple River Canyon State Park

51

Stop 2: Greenvale Road/Benton Mound

53

Stop 3: Hanover Bluff Nature Preserve

55

Lunch

57

Stop 4: Chestnut Mountain Cover-Collapse Sinkholes Overlying Silurian Dolomite

57

Stop 5: Casper Bluff Land and Water Reserve

57
FIGURES

1. Jo Daviess County is part of the Driftless Area that encompasses parts of four states and more than 16,000 square miles (41,440 square kilometers).

2. Generalized geologic column of Illinois showing all eras and periods throughout Illinois' geologic history.

3. The Illinois Basin and all the surrounding structures (arches and domes) that bound the basin margins.

5. (a) Major structural features in northern Illinois, southern Wisconsin, and eastern Iowa that bound Jo Daviess County. (b) Generalized geologic map of Jo Daviess County.

6. Glaciation of North America in the vicinity of Jo Daviess County showing the extent of pre-Illinois glaciation, the extent of the Illinois glacial episode, and the extent of the Wisconsin glacial episode.

7. Generalized map of the glacial deposits of Illinois.

8. Simplified timeline of glacial and interglacial events in Illinois during Pleistocene glaciation.

9. Cross section across Jo Daviess County showing isolated Silurian dolomite-capped mounds of the Dodgeville surface.

10. Tilted blocks of Silurian dolomite atop Maquoketa Shale showing movement of the blocks as they erode and collapse from the top of a knob in Jo Daviess County.

11. Map of the karst areas of Illinois showing the extent of karst terrain in Illinois, including northwestern Illinois.

12. En echelon cover-collapse sinkholes in loess overlying crevices in Silurian dolomite, as shown on a lidar (light detection and ranging) shaded-relief elevation model.

13. Solution-enlarged crevice in a road cut that is typical of crevices in Silurian dolomite.

14. The first map of the Upper Mississippi River lead mines, prepared by R.W. Chandler (1829).

15. Photograph of the Kipp property near the Black Jack Mine in the late 1800s showing visitors examining a pile of ore estimated to be worth $15,000 at that time ($383,000 today).

17. Lidar shaded-relief elevation model of the Vinegar Hill Mine in Vinegar Hill Township, northwestern Jo Daviess County.
Aerial photograph acquired on September 27, 2012, of an alfalfa field exhibiting northeast- to southwest-trending vegetated crop lines (a), which average about 4 to 6 feet (1.2 to 2 meters) in width.

Karst springs in Jo Daviess County are typically circular, with bedrock exposed near the center and drainage off to a nearby stream.

Colonization of the Americas by Native Americans began as early as 17,000 years before present near the end of the Ice Age, when ice connected Asia and North America.

Spear points left by the Early Archaic people (in situ) are commonly found in Jo Daviess County and are an important clue to the culture of the time.

Burial mounds constructed by the Woodland Indians are common along the Mississippi River bluffs.

Native Americans worked the Buck Mine Trench for galena, which they used for paint, decorations, and ceremonial and trading purposes.

Sage smoke ceremony at the Casper Bluff Land and Water Reserve.

(a) Aiken Group of Ancient Earthworks, the first map of the Aiken bird effigy and mounds at the Casper Bluff Land and Water Reserve, by W.B. Nickerson (1898). (b) Lidar shaded-relief image showing details of the Aiken bird effigy (E) and four associated linear mounds (A–D).

Lead ore (galena) is found within crevices in the Galena-Platteville Formation.

Miners at break time, circa 1900.

Detail of a lithograph titled View of Galena Ill., drawn and published by E. Whitefield (1856).

Hughlett Furnace, located 25 miles (40 kilometers) north of Galena, Illinois, was a major smelting operation fueled by wood.

Metallic lead production from 1800 to 1952 in the Upper Mississippi Valley District (Driftless Area) showing major historical events.

Extensive mining in this area (e.g., the Blewett Mine just north of Galena, Illinois) has created a rugged, excavated landscape with the remains of a disintegrating infrastructure and steep, cone-shaped gob piles.

The railroad replaced river travel and was used to shuttle pigs of lead (ingots) to Chicago.

Corner of Hill and Main Streets in Galena, Illinois, around the turn of the century.

General Ulysses S. Grant and his son Jesse in 1865 standing on the porch of their home at 500 Bouthillier Street in Galena, Illinois.

Stamp on an envelope from the Twin Black Jack Mining Company referring to “Galena the center of the greatest lead and zinc district in the world.”

Today, farmland dominates the landscape of Jo Daviess County.

Richardson Blacksmith Shop on Commerce Street in Galena, Illinois, circa 1910, now part of the U.S. Grant Museum.

A train wreck that occurred in Galena, Illinois, on March 3, 1910, provided a rare photographic opportunity for members of the community during a time when photography was in its infancy.
Abandoned mines such as this are located all across Jo Daviess County and, for safety reasons, most have been sealed.

Recent aerial photograph of the City of Galena, Illinois, taken from a hot-air balloon.

Canada Violet (Viola canadensis) IL-E.

The Jeweled Shooting-Star (Dodecatheon amethystinum) is rare in Illinois and is found primarily in the Driftless Area on rich, rocky slopes in open mesic woodlands.

Photograph of Apple River Canyon State Park showing the Apple River and the Canada yew shrub, a remnant population of the Pleistocene glacial episode.

The George N. Townsend house located just south of Apple River Canyon State Park was built of local stone in 1856.

Sand prairie and pale coneflowers in a burned unit near an abandoned Army warehouse on the Savanna Army Depot.

Fragile prickly pear cactus (Opuntia fragilis) IL-E is found only in the sand prairies at the Savanna Army Depot in Illinois.

Conceptual model of an algific talus slope.

Reaching into an algific talus slope cold air vent during the summer, one can feel very cold air discharging from underground.

The Iowa Pleistocene snail (Discus macclintocki) IL-E Fed-E is found only within algific talus slopes of the Driftless Area.

The Savanna Army Depot is shown here in a lidar shaded-relief elevation model with the mounds or igloos that once stored military ordnance on the site.

American Bald Eagles are now returning to Jo Daviess County, thanks, in large part, to the efforts of Terrance Ingram and the Eagle Nature Foundation.

Formation of Apple River Canyon.

An 1893 plat of the village of Millville, Illinois.

Photograph from 1925 of a hand-painted sign describing the features in and around Millville, Illinois.

The “poster wildflower” of the Driftless Area in Illinois, and specifically Apple River Canyon, is the Bird’s-Eye Primrose (Primula mistassinica), a State Endangered Plant.

(a) Numerous Silurian dolomite-capped knobs may be seen in the distance, as viewed from Benton Mound. (b) Lidar surface topography map of Jo Daviess County.

Entrance to the abandoned quarry on the Hanover Bluff Nature Reserve showing a spire of Silurian dolomite that rises about 50 feet (15 meters) above the quarry floor.

The western wall of the quarry is a remnant of the Silurian dolomite palisades along the Mississippi River bluff.

This photograph from the Clinton Herald on October 4, 1947, shows an experiment of burying 1,000-pound bombs beneath the soil at the Savanna Army Depot “in order to preserve them.”

This cover-collapse sinkhole overlying a Silurian dolomite crevice is about 20 feet (6 meters) in diameter and about 10 feet (3 meters) deep.

Bird effigy at the Casper Bluff Land and Water Reserve.

View of the Mississippi River from the Casper Bluff Land and Water Reserve.
63 Spring along the Galena River Trail
64 Riverside Drive in Galena, Illinois, around the turn of the century, looking west toward the US Route 20 bridge
65 Main Street in Galena, Illinois, in 1905 (left) and in 2014 (right) showing little change after more than a century
66 The steamboat *Nominee* docked in Galena, with two men and a stack of pigs of lead (ingots) in the foreground, circa 1852
67 Photograph of the 100 block of South Main Street in Galena, Illinois, during the flood of 1911
68 Pleasure boats on the Galena River around the turn of the century
69 Bluebirds are now returning to Galena, Illinois, thanks to the efforts of the Jo Daviess Conservation Foundation’s Conservation Guardians of Northwest Illinois (formerly the Natural Area Guardians)
INTRODUCTION

Samuel V. Panno, Illinois State Geological Survey

This field trip takes place in the Driftless Area\(^1\) of northwestern Illinois (Figure 1), where participants will learn how the geology and natural resources (mineral, and fauna and flora) are inseparably intertwined with human history and habitation in this area. This guidebook is intended to present to participants the geology, hydrogeology, archaeology, history, and botany of Jo Daviess County and how those entities relate to the county’s unique place in the history of the United States.

Geologic History

This section describes the geologic history of Illinois and Jo Daviess County from 1.5 billion years ago to prior to the Pleistocene Epoch (Figure 2). This section has been modified from Guide to the Geology of the Apple River Canyon State Park and Surrounding Area of Northeastern Jo Daviess County, Illinois, by Frankie and Nelson (2002), with updates from selected chapters in Geology of Illinois (Kolata and Nimz 2010).

Precambrian Era

The oldest rocks in the field trip area lie about 2,500 feet (762 meters) below the land surface and belong to the ancient Precambrian basement complex. We know relatively little about these rocks from direct observations because of their depth and the fact that they are not exposed at the surface in Illinois. Only about 35 drill holes have reached deep enough for geologists to collect samples from Precambrian rocks of the state. From these few samples, as well as from measurements of the Earth’s gravitational and magnetic fields and from seismic studies, we know that these ancient rocks consist mostly of granitic and rhyolitic igneous, and possibly metamorphic, crystalline rocks formed about 1.5 to 1.0 billion years ago. From about 1.0 billion to about 600 million years ago, these Precambrian rocks formed the land surface. During this long period, the rocks were deeply weathered and eroded, and the area was probably similar to the topography of the present Missouri Ozarks. During this time, rift valleys in southern Illinois (similar to those in eastern Africa) formed as the movement of crustal plates (known as plate tectonics) began to rip apart the Precambrian North American continent.

Paleozoic Era

After the beginning of the Paleozoic Era, about 520 million years ago in the late Cambrian Period, the rift-}

\(^1\)Terms in italics (except for Latin names) are defined in the glossary at the back of the guidebook. Also, please note that although all present localities have only recently appeared within the geologic time frame, the present names of places and geologic features are used because they provide clear reference points for describing the ancient landscape.
Figure 1 Jo Daviess County is part of the Driftless Area that encompasses parts of four states and more than 16,000 square miles (41,440 square kilometers). It represents an area that was not directly affected by glaciation during the Illinois and Wisconsin glacial epochs (figure modified from maps by the Driftless Area Initiative, http://www.driftlessareainitiative.org/maps.cfm, and U.S. Geological Survey). Used courtesy of the Driftless Area Initiative and the U.S. Geological Survey.
<table>
<thead>
<tr>
<th>Era</th>
<th>Period or System and Thickness</th>
<th>Age (years ago)</th>
<th>General Types of Rocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENOZOIC</td>
<td>Holocene</td>
<td>10,000</td>
<td>Recent; alluvium in river valleys</td>
</tr>
<tr>
<td></td>
<td>Quaternary (0–500’)</td>
<td></td>
<td>Glacial till, glacial outwash, gravel, sand, silt, lake deposits of clay and silt; wind deposits of loess and sand dunes. Deposits cover nearly all of state except northwest corner and southern tip</td>
</tr>
<tr>
<td></td>
<td>Pliocene (0–500’)</td>
<td>1.8 m</td>
<td>Chert gravel, present in northern, southern, and western Illinois</td>
</tr>
<tr>
<td></td>
<td>Paleocene</td>
<td>5.3 m</td>
<td>Mostly micaceous sand with some silt and clay; present only in southern Illinois</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33.7 m</td>
<td>Mostly clay, little sand; present only in southern Illinois</td>
</tr>
<tr>
<td>CENOZOIC</td>
<td>Eocene (0–500’)</td>
<td>54.8 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>65 m</td>
<td></td>
</tr>
<tr>
<td>CENOZOIC</td>
<td>Quaternary (0–500’)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pleistocene Glacial Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MESOZOIC</td>
<td>Cretaceous (0–300’)</td>
<td>144 m</td>
<td>Mostly sand, some thin beds of clay, and, locally, gravel; present only in southern and western Illinois</td>
</tr>
<tr>
<td></td>
<td></td>
<td>290 m</td>
<td></td>
</tr>
<tr>
<td>MESOZOIC</td>
<td>Pennsylvanian (0–3,000’)</td>
<td>323 m</td>
<td>Largely shale and sandstone with beds of coal, limestone, and clay</td>
</tr>
<tr>
<td></td>
<td>(“Coal Measures”)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PALEOZOIC</td>
<td>Mississippian (0–3,500’)</td>
<td>354 m</td>
<td>Black and gray shale at base, middle s<sub>e</sub>one of thick limestone that grades to siltstone chert, and shale; upper s<sub>e</sub>one of interbedded sandstone, shale, and limestone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>417 m</td>
<td></td>
</tr>
<tr>
<td>PALEOZOIC</td>
<td>Devonian (0–1,500’)</td>
<td>443 m</td>
<td>Thick limestone, minor sandstones, and shales; largely chert and cherty limestone in southern Illinois; black shale at top</td>
</tr>
<tr>
<td></td>
<td></td>
<td>490 m</td>
<td>Principally dolomite and limestone</td>
</tr>
<tr>
<td></td>
<td>Silurian (0–1,000’)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>543 m</td>
<td>Largely dolomite and limestone but contains sandstone, shale, and siltstone formations</td>
</tr>
<tr>
<td></td>
<td>Ordovician (500–2,000’)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chiefly sandstones with some dolomite and shale; exposed only in small areas in northcentral Illinois</td>
</tr>
<tr>
<td></td>
<td>Cambrian (1,500–3,000’)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Igneous and metamorphic rocks; known in Illinois only from deep wells</td>
</tr>
<tr>
<td></td>
<td>Precambrian</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2 Generalized geologic column of Illinois showing all eras and periods throughout Illinois’ geologic history (from Frankie and Nelson 2002, p. iv).
between the lower unit and the overlying unit. This type of contact is called an \textit{unconformity}. Unconformities occur throughout the Paleozoic rock record and are shown in the generalized stratigraphic column as wavy lines (all other lines are straight). Each unconformity represents an extended time interval for which no rock record exists; this is similar to removing several pages or even a chapter from a history book.

Near the close of the Mississippian Period, gentle arching of the rocks in eastern Illinois initiated the development of the La Salle \textit{Anticlinorium}, a complex structure having smaller structures such as domes, \textit{anticlines}, and \textit{synclines} superimposed on the broad upwarp of the anticlinorium. Further gradual arching continued through the Pennsylvanian Period. Because the youngest Pennsylvanian strata are absent from the area of the anticlinorium (either because they were not deposited or because they were eroded), we cannot determine just when folding ceased—perhaps by the end of the Pennsylvanian or during the Permian Period a little later, near the close of the Paleozoic Era.

\textbf{Mesozoic Era}

During the Mesozoic Era, the rise of the Pascola Arch in southeastern Missouri and western Tennessee produced a structural barrier that helped form the current shape of the Illinois Basin by closing off the embayment and separating it from the open sea to the south. The Illinois Basin is a broad, subsided region covering much of Illinois, southwestern Indiana, and western Kentucky. Development of the Pascola Arch, in conjunction with the earlier sinking of the deeper portion of the basin north of the Pascola Arch in southern Illinois, gave the basin its present asymmetrical, spoon-shaped configuration. The geologic map shows the distribution of the rock \textit{systems} of the various geologic time periods as they would appear if all the glacial, windblown, and surface materials were removed (i.e., the bedrock surface; Figure 4).

Younger rocks of the latest Pennsylvanian and perhaps the Permian (the youngest rock systems of the Paleozoic) may at one time have covered portions of Illinois. It is possible that Mesozoic and Cenozoic rocks (see Figure 2) could also have been present here. Indirect evidence, based on the \textit{stage} of development (rank) of coal deposits and the generation and maturation of petroleum from source rocks (Damberger 1971), indicates that perhaps as much as 1.5 miles (2.4 kilometers) of Late Pennsylvanian and younger rocks once covered southern Illinois. During the more than 240 million years since the end of the Paleozoic Era (and before the onset of glaciation 1 to 2 million years ago), however, several thousands of feet of strata may have been eroded. Nearly all traces of any post-Pennsylvanian \textit{bedrock} that may have been present in Illinois were removed. During this extended period of erosion, deep valleys were carved into the gently tilted bedrock formations. Later, the topographic \textit{relief} was reduced by repeated advances and melting back of continental \textit{glaciers} that scoured and scraped the bedrock surface. These glacial processes affected all the formations exposed at the bedrock surface in Illinois. The final melting of the glaciers left behind the \textit{nonlithified} deposits, later covered by windblown \textit{loess}, from which our modern soils have developed.

\textbf{Structural Setting}

Jo Daviess County is located in an area where several \textit{geologic structures}, basins, and \textit{arches}, intersect one another northwest of the Illinois Basin on the southwestern flank of the regional, broad, and gently sloping (dipping) Wisconsin Arch (Figure 5a). Paleozoic bedrock strata in the field trip area have a regional dip of
Figure 4 Generalized bedrock geology map of Illinois (Figure 2-12 from Kolata and Nimz 2010, p. 68). The black lines in the north-central and southern parts of the map are faults and fault zones.
Figure 5 (a) Major structural features in northern Illinois, southern Wisconsin, and eastern Iowa that bound Jo Daviess County (from Panno et al. 2015). (b) Generalized geologic map of Jo Daviess County (from Panno et al. in press; modified from McGarry and Riggs 2000).
20 to 30 feet (6 to 9 meters) per mile to the southwest, except where the strata are affected by local structures (e.g., folds and faults). The Wisconsin Arch is a broad, upwardly folded area that separates the Michigan Basin on the east from the Forest City Basin on the west. The northern end of the Wisconsin Arch—termed the Wisconsin Dome—is a region of Precambrian granite rock that outcrops in northern Wisconsin. The rest of the arch is overlapped by Cambrian, Ordovician, and Silurian sedimentary rocks. The southeast end of the Wisconsin Arch connects with the Kankakee Arch, which separates the Michigan and Illinois Basins (Nelson 1995). The Illinois Basin is the major structural depression between the Ozark Dome to the west, the Cincinnati Arch to the east, and the Kankakee Arch to the north.

The Wisconsin Arch began to emerge late in the Cambrian Period and was well established by the middle of the Ordovician Period. The Wisconsin Arch may have been covered by seas in the late Ordovician through middle Silurian time but rose again in late Silurian or Devonian time (Nelson 1995).

Preglacial History of Northwestern Illinois

After the last Paleozoic sea withdrew from the Midcontinent at the end of the Pennsylvanian Period some 286 million years ago, or possibly as late as the end of the Permian Period nearly 245 million years ago, the Upper Mississippi Valley region was uplifted and has remained a land area. Since then, many hundreds of feet of Paleozoic strata have been stripped away. During the Pliocene Epoch between 5.3 and 2.6 million years ago, near the end of the Tertiary Period, the topography or relief of the region was reduced to a very low erosional plain, formerly referred to as the Dodgeville Peneplain (also known informally as the Dodgeville surface). The word “peneplain” is a term that has fallen out of favor with geologists that was used to refer to a land surface worn down by stream erosion and mass wasting to a low, nearly featureless plain that gradually slopes upward from the sea. Such an erosion surface would take a very long time to develop and would be characterized by sluggish streams flowing in broad valleys. The bedrock structures previously described would have no influence on the topography because they would be uniformly beveled.

In northern Jo Daviess County, the slope of the Dodgeville surface and the dip of the Silurian dolomite are the same. The erosion surface corresponds to the dip slope—a fact cited by some geologists who argue that the upland surface is not a peneplain at all but a structurally controlled feature or surface that formed when strata that were less resistant than the Silurian dolomite were stripped away by erosion. In the unglaciated Driftless Area of Wisconsin, the Dodgeville surface is well preserved. However, in Jo Daviess County, Illinois, only remnants of the Dodgeville surface are preserved as isolated, flat-topped ridges and knobs of Silurian dolomite. We can imagine the tops of these Silurian flats joined by a plane surface sloping gently southwestward from about 1,200 to 1,000 feet (366 to 305 meters) above mean sea level (msl). Subsequently, the area was uplifted, resulting in erosion that extended down to more resistant strata about 200 feet (61 meters) lower. Known as the Lancaster surface, this surface coincides with the top of the Ordovician Galena-Platteville Formation to the north near Galena and slopes southwestward from an elevation of about 985 to 800 feet (300 to 244 meters) above msl.

The Driftless Area

The Driftless Area of northwestern Illinois, southwestern Wisconsin, southeastern Minnesota, and northeastern Iowa is unlike other parts of these states because it escaped the direct effects of Pleistocene-age glaciation (Figure 6). The higher elevation of the area resulted in the diversion of continental glaciers around the Driftless Area. The Driftless Area of northwestern Illinois, southwestern Wisconsin, southeastern Minnesota, and northeastern Iowa is unlike other parts of these states because it escaped the direct effects of Pleistocene-age glaciation (Figure 6). The higher elevation of the area resulted in the diversion of continental glaciers around the Driftless Area.
Area. Today, the area has relatively thin, fragile, highly erodible soils and is well known for its former mining activities, present-day agriculture, unique ecology, and steep and rugged knobs, hills, and valleys. It lays claim to the highest elevations in Illinois. Jo Daviess County has a long history of geological processes that sculpted the present landscape; conflict between Native Americans and early settlers; prehistoric, historic, and recent mining activities; agriculture; and, more recently, natural area preservation and tourism.

Glacial Geology

Most of Illinois and portions of neighboring states to the north, east, and west were inundated by continental glaciers from the north during the Pleistocene Epoch (2.6 million years to 12,000 years before present [yr BP]; Hansel and McKay 2010). (On the basis of available references, the Pleistocene ranged from 2.6 million to 12,000 yr BP; glacial ice was in Illinois sometime around 800,000 yr BP.) Often referred to as the “Ice Age,” the glaciers of this epoch did not enter into Jo Daviess County or a contiguous portion of land in southwestern Wisconsin, southeastern Minnesota, and northeastern Iowa. Glaciation had a profound effect on most of Illinois from extensive physical erosion by advancing glaciers, the effects of flooding by glacial meltwaters, and the deposition of fine-grained (clay and silt) and course-grained (sand and gravel) materials. Much of Illinois is now covered with a blanket of materials hundreds of feet thick in many places that mask the underlying terrain. The Driftless Area provides a window into the appearance of northern Illinois and adjacent states’ topography prior to glaciation. Some changes to the topography, however, are due to changes in climate, including the effects of the erosive nature of glacial meltwaters (deep bedrock valleys), the weathering effect associated with the climate (e.g., frost wedging), and the accumulation of windblown loess (precursor to excellent agricultural soils). The following is a brief summary of the glacial history of Illinois that was derived, to a large extent, from Frankie and Nelson (2002).

During the Pleistocene Epoch, the climate, although still quite variable, cooled and continental glaciers began forming in eastern and central Canada as snow and ice accumulated in these areas. The glaciers began spreading from these centers in all directions. Their advances into the central lowlands of the United States dramatically changed the landscape of the midwestern United States. As the glaciers entered Illinois about 800,000 years ago (Hansel and McKay 2010), they carried with them rock debris. This debris was incorporated into the ice as the glaciers advanced and was deposited as the glaciers retreated or melted. Numerous advances and retreats of glaciers occurred during the Pleistocene Epoch. The older episodes are collectively referred to as pre-Illinois, and each glacial episode is punctuated by interglacial episodes when the climate was similar to what it is today.

The first of the last two glacial episodes began about 190,000 years ago and is referred to as the Illinois Episode. The Illinois Episode continued for 60,000 years (McKay and Hansel, 2010) and, based on sediment consolidation (B.B. Curry, Illinois State Geological Survey [ISGS], personal communication), saw up to 700 feet (213 meters) of ice in northern Illinois that almost reached the southernmost tip of Illinois (Figure 6). However, the glaciers never reached the Driftless Area and much of Jo Daviess County, stopping a mere 3 miles (5 kilometers) east of Apple River Canyon State Park (Riggs 2000). The glaciers went around the Driftless Area because this area is higher than the surrounding area. This is because the Driftless Area lies atop a structural feature known as the Wisconsin Arch (Figure 5a). In addition, structural basins lie to the east (Michigan Basin), west (Forest City Basin), and south (Illinois Basin) of the Wisconsin Arch. The Illinois Episode was followed by the Sangamon interglacial episode, which lasted for about 75,000 years until the beginning of the Wisconsin Episode (about 50,000 years ago). The glaciers from this episode extended into northeastern Illinois only about 29,000 years ago; the Wisconsin glacier finally retreated from Illinois about 16,000 years ago (Curry 2015; Figures 7 and 8).
Figure 7 Generalized map of the glacial deposits of Illinois (Figure 12-12 from Kolata and Nimz 2010, p. 229).
<table>
<thead>
<tr>
<th>Marine Oxygen Isotope Stages</th>
<th>Magnetic polarity</th>
<th>Years before present</th>
<th>Glacial and interglacial episodes and time–distance diagram</th>
<th>Pedostratigraphic units</th>
<th>Lithostratigraphic units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>HUDDSON EPISODE</td>
<td>modern soil</td>
<td>Cahokia Fm</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>Michigan Subepisodale</td>
<td></td>
<td>Wadsworth Fm</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>Athens Subepisode</td>
<td>Farndale Geosol</td>
<td>Haeger M</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>WISCONSIN EPISODE</td>
<td>Sangamon Geosol</td>
<td>Yorkville M</td>
</tr>
<tr>
<td>5</td>
<td>BRUNHES NORMAL</td>
<td></td>
<td>SANGAMON EPISODE</td>
<td>paleosol</td>
<td>Pleasant Silt, Henry and Equality Fms</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>125,000</td>
<td>ILLINOIS EPISODE</td>
<td></td>
<td>Winnebago Fm</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>190,000</td>
<td>YARMOUTH EPISODE</td>
<td>Yarmouth Geosol</td>
<td>Radnor M</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>425,000</td>
<td>PRE-ILLINOIS EPISODE</td>
<td>paleosol</td>
<td>Ogle, Hulick, & Vandalia M</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>610,000</td>
<td>PRE-ILLINOIS EPISODE</td>
<td>paleosol</td>
<td>Kellerville & Smithboro M</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>778,000</td>
<td>PRE-ILLINOIS EPISODE</td>
<td>paleosol</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>830,000</td>
<td>PRE-ILLINOIS EPISODE</td>
<td>Westburg Geosol</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>1,600,000 and older</td>
<td>PRE-ILLINOIS EPISODE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 8 Simplified timeline of glacial and interglacial events in Illinois during Pleistocene glaciation (Figure 12-6 from Kolata and Nimz 2010, p. 223).
During the late stages of the Wisconsin Episode, fine silt deposited in what is now the Mississippi River valley was eroded by strong westerly winds and was redeposited on adjoining uplands (McKay and Hansel 2010). The present soil zone developed within the loess, and because of erosion, the loess thickness now ranges from 0 to 25 feet (0 to 8 meters).

Geology and Hydrogeology

Geology

Bedrock in Jo Daviess County that presently forms the bedrock surface consists of Middle Ordovician (44–490 million years ago) carbonate rocks of the Galena-Platteville Formation, thin remnants of the Ordovician Maquoketa Shale, and Silurian (412–443 million years ago) dolomite (Figure 5b).

The well-known knobs of Jo Daviess County (e.g., Scales Mound) are erosional remnants (Figure 9). The resistant Silurian dolomite cap rock protects the knobs from erosion, but undercutting of the softer and more easily erodible Maquoketa Shale on which the dolomite rests results in highlands with intact dolomite caps in some areas and scattered and tilted house-sized blocks of dolomite that slide around on the shale in other areas (Figure 10). The Maquoketa Shale and underlying dolomite of the Galena Group make up the subdued hills and valleys of Jo Daviess County.

Tectonic compression and extension occurred in Illinois and the surrounding states during and after the formation of the Wisconsin Arch, which began in Cambrian time (490–543 million years ago) and continued to be active in late Silurian or Devonian time (354–417 million years ago; Nelson 1995). The Wisconsin Arch, in part, separates the Illinois Basin to the south from the Michigan Basin to the east. Jo Daviess County lies on the southwestern flank of the Wisconsin Arch (Frankie and Nelson 2002). As a result of compression and extension, bedrock along the Wisconsin Arch has a well-developed vertical joint system. Heyl et al. (1959) stated,

> All the rock formations in the district [most of Jo Daviess County] contain well-developed vertical and inclined joints. The vertical joints are traceable for as much as 2 miles horizontally, and for as much as 300 feet vertically. Joints are especially well developed in the Galena dolomite. (p. 1)

Both Heyl et al. (1959) and Bradbury (1959) found that most of the fractures and crevices in the area were oriented predominantly in east–west and north–south directions. Recent work by Panno et al. (2015) documented similar trends in pronounced alignments of vegetated crop lines, sinkholes, and historic mining trends (following vein-filling ores) throughout Jo Daviess County.
and adjacent areas. On the basis of this work, Panno et al. (2015) suggested that the east- to west-trending fractures were formed along with the Appalachian fold-and-thrust belt during the late Paleozoic Alleghanian Orogeny. These fractures were enlarged and mineralized by ore-forming solutions around early Permian time (about 270 million yr BP). Most of the north- to south-trending fractures and crevices of the carbonate bedrock in the county formed sometime later.

Galena-Platteville Formation In the mid-1990s, the ISGS identified Jo Daviess County as karst (Panno et al. 1997; Weibel and Panno 1997; Figure 11). Subsequent work by McGarry and Riggs (2000) identified most of Jo Daviess County as having “a very high aquifer sensitivity because fractured dolomite bedrock aquifers lie beneath the glacial drift or loess. Areas where dolomite bedrock is exposed are most sensitive” (n.p.). “Sensitive” in this context refers to the susceptibility of the aquifer to surface-borne contaminants. The karst water-bearing formations include the Galena-Platteville Formation and the Silurian dolomite. Panno and Luman (2008) examined sinkholes and the abundant secondary porosity (crevices) exposed along road cuts and in quarries in eastern Jo Daviess County and concluded that the area overlies aquifers within the Galena Group (primarily made up of dolomite) that are karst in nature. They also showed that cover-collapse sinkholes in the county were sparse and difficult to locate because of its thin soils (thick soils result in small cover-collapse sinkholes), although the county did fall into the medium to high category of aquifer vulnerability (Lindsey et al. 2010). Ekberg (2008) subdivided the secondary porosity of the Galena-Platteville into matrix, fracture, and conduit porosity. These subdivisions are supported by spring hydrographs and drawdown curves from aquifer tests that support a triple-porosity aquifer. The fracture porosity through which groundwater flows consists of northeast- and northwest-trending vertical fractures (consistent with Heyl et al. 1959) and bedding planes (Ekberg 2008). Domestic wells in Jo Daviess County get their water from the Galena-Platteville Formation at depths of less than 250 feet (76 meters; Frankie and Nelson 2002). Frankie and Nelson (2002) suggested that these aquifers are susceptible to bacterial pollution because the “open crevices provide little filtering action, and polluted water may travel long distances through these openings with little loss of pollutants” (p. 25). In addition, McGarry and Riggs (2000) characterized eastern Jo Daviess County as having a combination of low (because of the presence of Maquoketa Shale) and very high sensitivities (because of exposed fractured dolomite bedrock) to groundwater contamination. These findings are consistent with regional water quality results reported in Panno and Luman (2008).

Silurian Dolomite Examination of the lidar (light detection and ranging) elevation data revealed numerous and relatively large cover-collapse sinkholes in western Jo Daviess County overlying Silurian dolomite. Cover-collapse sinkholes are more obvious in this area because of thicker unconsolidated deposits. Field examination of the area revealed numerous sinkholes, solution-enlarged crevices, and small caves. Crevices in the Silurian dolomite are relatively wide (up to 6 feet [2 meters] or more). On the basis of measurements using lidar elevation data, sinkholes in this area are roughly circular features, 6 to 21 feet (2 to 6 meters) deep and 60 to 100 feet (18 to 31 meters) in diameter. Several of these sinkholes, initially seen in aerial photographs, were documented by Weibel and Panno (1997) and Panno et al. (1997). Additional sinkholes were detected from lidar, most of which lay en echelon along nearly east- to west-trending (N 80° W) lineaments in sediment overlying Silurian-age dolomite (Figure 12). Weibel and Panno (1997) and Panno et al. (1997) reported

![Figure 11](image-url) Map of the karst areas of Illinois showing the extent of karst terrain in Illinois, including northwestern Illinois (from Weibel and Panno 1997).
that they were collapse features with no evidence of waste piles or ejecta that would suggest excavations. Consequently, they were interpreted as sinkholes and not small-scale mining operations (known as sucker holes) following veins of ore minerals. Only about 10 of these Silurian dolomite sinkholes have been examined in the field, and it is possible that a few could be related to adjacent large-scale mining operations (e.g., Touseull and Rich 1980). Although a large sinkhole area (Figure 12) is located near the far southern edge of the Galena subdistrict (Heyl et al. 1959), the ore deposits in this area were primarily within the deeper Galena Group dolomite underlying the Silurian dolomite and Maquoketa Shale. Therefore, features identified as cover-collapse sinkholes in sediment overlying the Silurian dolomite are not related to mining operations. Road cuts in the area (between 3 and 4 miles [5 and 6 kilometers] to the east) reveal that these aligned sinkholes probably formed along nearly east- to west-trending crevices that range from 1.5 to 6 feet (0.5 to 2 meters) in width (Figure 13). The depth of the crevices at this site is at least 20 feet (6 meters) from land surface, as seen in road cuts. Collapse of sediment into these large crevices probably created the sinkholes and associated lineaments observed in the imagery. In addition, it is possible that large blocks of Silurian-age dolomite on ridges could separate along crevices and migrate downhill on the underlying shale. This would dilate existing crevices even more, thereby creating additional linear collapse features (D. Mikulic, ISGS, personal communication).

Because the Silurian dolomite is of limited areal extent and forms the highlands of Jo Daviess County, based on water-well data from the Illinois State Water Survey, it is rarely used as a groundwater source in this area. However, it is a prolific aquifer in other counties of northern Illinois (e.g., Will County to the southeast).
Figure 13 Solution-enlarged crevice in a road cut that is typical of crevices in Silurian dolomite. The inset photograph was taken from inside the crevice. The crevice shown in the photograph is 3 feet (1 meter) wide. Photographs by Samuel V. Panno; used with permission.
Ore Deposits Solution-enlarged crevices also acted as foci for ore mineralization in this area. The Upper Mississippi Valley Lead–Zinc District, which includes Jo Daviess County and extends into Iowa and Wisconsin, is referred to as the Upper Mississippi Valley District. The geology of this area has been summarized by Heyl et al. (1959) and Bradbury (1959). Lead- and zinc-bearing ore minerals were mined from the Jo Daviess County area from the late 1700s until 1976 (Figure 14). Primary ore mineralization was found in solution-enlarged crevices or in solution cavities in carbonate rocks of the Galena Group, called “gash-vein deposits.” Galena (PbS) was the main ore mineral in these deposits (Figure 15), and sphalerite (ZnS) was the most abundant ore mineral associated with bedding planes and reverse faults (Heyl et al. 1959). Geochemical and isotopic indicators within the ore and associated minerals indicate that hydrothermal ore-forming fluids (hot brines) carrying lead and zinc in solution were the source of the mineralization. Ore-forming solutions originating from evaporative brines associated with the Reelfoot Rift System (late Paleozoic time) are one of the more recent hypotheses proposed to explain the origin of these deposits (Rowan and de Marsily 2001). Ore mineralization and dolomitization (the conversion of limestone to dolomite by hot brines) of the Ordovician-age carbonate rocks of this district have been dated as Early Permian in age (270 and 280 million years ago; Brannon et al. 1992; Pannalal et al. 2004). The hot,}

Figure 14 The first map of the Upper Mississippi River lead mines, prepared by R.W. Chandler (1829). Wisconsin Historical Society, WHS-39775; used with permission.
acidic, metal-bearing brines (the more acidic the water, the more dissolved metals it can hold) migrated through fractures and crevices within carbonate rock and dissolved some of the carbonate rock. This buffered the brine and made it much less acidic and unable to carry as much dissolved metal; thus, the metals were deposited as sulfides on the walls of the now wider crevices.

Commercially available ore deposits were located throughout Jo Daviess County, and evidence of the mines and workings is visible as old crevice mine openings, trenches, and sucker holes. Heyl et al. (1978) described early mining in the area as follows:

Production was largely from “float” deposits formed by weathering of sulfide veins that left concentrations of residual galena on hillside bedrock overlain by varying thicknesses of residual soil. The miners would dig a pit to bedrock and then reach out in all directions, dragging the galena to the center. The mining limit of each pit was soon reached, and then the miners simply moved a short distance away and dug another pit. This system of “suckering” produced the pock-marked hillsides so common in the district. (p. 4; see Figure 16)

The sucker holes are visible throughout the county and are the most visible on lidar shaded-relief elevation models (Figure 17).

Hydrogeology

The Galena-Platteville Formation constitutes a major aquifer of Jo Daviess County. Ekberg (2008) subdivided the porosity of the Galena-Platteville into matrix, fracture, and conduit porosity (a triple-porosity aquifer). The fracture porosity through which groundwater flows consists of northeast- and northwest-trending vertical fractures (consistent with Heyl et al. 1959) and bedding planes (Ekberg 2008), with more north–south and east–west orientations in Jo Daviess County (Panno et al. 2015). Ekberg (2008) found that the fractures, crevices,
Figure 16 Sucker hole (center of photograph) at the Blewett Mine near Galena, Illinois. Note the mounding around the edges and the size of the tree within the sucker hole. The tree is about 2.5 to 3 feet (0.8 to 1 meter) in diameter and probably close to 100 years old. Photograph by Samuel V. Panno; used with permission.

Figure 17 Lidar shaded-relief elevation model of the Vinegar Hill Mine in Vinegar Hill Township, northwestern Jo Daviess County. The distinctive linear patterns are mine diggings (also referred to as sucker holes), ranging in depth from approximately 1 to 4 feet (0.3 to 1.2 meters). The major alignments are generally oriented east–west and north–south, consistent with the orientations of bedrock fractures containing veins of minerals. The red outline marks the location of the original mine shaft. North is at the top of the image. Map by Donald E. Luman, adapted from Panno et al. (2015).
and bedding planes of the Galena-Platteville Formation aquifer have the greatest porosity. The Galena Formation and underlying Platteville Formation, collectively referred to as the Galena-Platteville Formation, constitute an important and reliable groundwater resource for residents of Jo Daviess County (Hackett and Bergstrom 1956; Csallany and Walton 1963). Csallany and Walton (1963) found that “most water-yielding openings occur in the upper one-third of the shallow dolomite aquifers” (p. 1). They stated that some shallow dolomite wells have yields in excess of 1,000 gallons (3,785 liters) per minute. They also found that where the Galena-Platteville Formation is overlayed by unconsolidated deposits in northern Illinois, solution activity has enlarged openings, and the unit yields moderate quantities of water to wells. Where the unit is overlain by the Maquoketa Shale, the Galena-Platteville Dolomite is a less favorable source of ground water and yields little water from joints, fissures, and solution cavities. (p. 6)

Panno et al. (2015, in press) found that the widths of fractures and solution-enlarged crevices within the Galena Group ranged from less than 0.4 inches (1 centimeter) to 3 feet (1 meter) or more. In general, the crevices provide a network of pathways through which infiltrating surface water and groundwater can flow rapidly (Figure 18). Bedding planes may also provide pathways for groundwater movement. The effect of depth on the porosity and permeability associated with shear zones is currently under investigation. However, elevated concentrations of nitrate as nitrogen (NO$_3$-N) and chloride (Cl$^-$) in groundwater from private wells suggest the system is open to surface-borne contamination to depths of at least 100 feet (31 meters; Panno and Luman 2008).

Jo Daviess County has 16 public water supplies with between one and nine production wells, for a total of more than 50 in the county. Three of these public supply wells are screened in shallow sand and gravel aquifers (two in East Dubuque and one in Galena). The others are drilled into bedrock, and many of them are open to multiple aquifers. Almost two-thirds of the wells are open to the Galena-Platteville aquifer. About one-third of the wells are open to deeper aquifers, including the Jordan Sandstone, Ironton-Galesville Sandstone (also known as the Wonewoc Formation in adjacent states), Eau Claire Formation, and Mt. Simon Sandstone; about half of these wells are open to shallower bedrock aquifers (Galena-Platteville and Ancell) as well. Bedrock well depths range from 200 to 1,825 feet (61 to 556 meters). Seven of Galena’s eight wells are more than 1,500 feet (457 meters) deep.

Water quality data are available for about two-thirds of the public supply wells. The water in the bedrock wells is a calcium-magnesium-bicarbonate (Ca-Mg-HCO$_3$) type and is generally of good quality. Chloride concentrations are typically less than 20 mg/L, and NO$_3$-N concentrations are generally below detection. The only water quality concerns for the bedrock wells are two nuisance problems—high hardness and iron concentrations—and both of these problems are corrected in the treatment plants. The water quality in the sand and gravel wells in East Dubuque is inferior to that found in the bedrock wells. Concentrations of total dissolved solids are significantly higher, greater than the secondary standard of 500 mg/L. Chloride and NO$_3$-N concentrations are also much higher than in the bedrock wells, although below drinking water standards.

It is reasonable to assume that relatively rapid recharge to the Galena Group aquifers occurs throughout the county, but probably less so where Maquoketa Shale

Figure 18 Aerial photograph acquired on September 27, 2012, of an alfalfa field exhibiting northeast- to southwest-trending vegetated crop lines (a), which average about 4 to 6 feet (1.2 to 2 meters) in width. The curvilinear structures within the field (b) are permanent conservation terraces situated perpendicular to the prevailing slope to impede erosion. Relative scale of features can be compared to the farm lane at the left (~10 feet [3 meters] wide). The field is located in southern Wisconsin immediately adjacent to Jo Daviess County. Aerial photograph retrieved from Google Maps. North is at the top of the photograph. From Panno et al. (2015).
is present. In those areas where Maquoketa Shale constitutes the bedrock surface, and where drain tiles are used to lower the water table, a much greater amount of precipitation may discharge to streams before entering the aquifer. Sinkholes and macropores (e.g., desiccation cracks in soil) are present in the county and are locations of focused recharge. Sinkholes in the area are not commonly seen either because of intensive land management practices, which obscure all but the very largest of sinkholes, or perhaps because of their natural scarcity in some areas. During dry periods, macropores (desiccation cracks) are ubiquitous and form easily because of the thinness of the soil and the depth of the water table (below the soil–rock interface).

Springs Springs are a common feature throughout Jo Daviess County, and the locations of some have been mapped by Reed (2008) and Maas (2010). The only available data on the chemical composition of springs in the county are from Maas (2010) for six springs in northeastern Jo Daviess County within the Warren Quadrangle. The springs lay along prominent east-west-trending lineaments (Panno et al. in press) and are consistent with the discharge of groundwater along bedrock crevices where the overburden thins near stream valleys. The water table often intersects land surface in low-lying areas with relatively thin overburden (usually near stream valleys). Bedrock springs typically appear to be large circular to elliptical depressions (Figure 19). Small sections of the circular depressions are breached, providing openings through which the spring water discharges to a nearby stream.

Chemical Composition of Groundwater

Groundwater in Jo Daviess County is a Ca-Mg-HCO₃ type groundwater (the major components of dissolved minerals in the water) with elevated concentrations of Cl⁻ and NO₃-N in some areas (Panno and Luman 2008). The background or natural concentration range for Cl⁻ in shallow groundwater (near surface to several hundred feet deep) in northern and central Illinois is between 1 and 15 mg/L (Panno et al. 2006a). The range for back-

Figure 19 Karst springs in Jo Daviess County are typically circular, with bedrock exposed near the center and drainage off to a nearby stream. In this spring, bedrock is exposed at the base of the tree, and drainage is to the right of the photograph. Photograph by Samuel V. Panno; used with permission.
Ground concentrations of NO$_3$-N in Illinois is between 0 and 2.5 mg/L (Panno et al. 2006b; Hwang et al. 2015). The geochemical composition and background concentration of groundwater in northwestern Illinois should be the same. On the basis of chemical compositions of groundwater from wells and springs, the vertical distribution of Cl$^-$ and NO$_3$-N where the shallowest groundwater has the greatest concentration and relatively high dissolved oxygen concentrations (4.7 to 8.7 mg/L) in the aquifer is indicative of an open, oxygenated, unconfined karst aquifer. Surface streams typically have dissolved oxygen concentrations between 8 and 12 mg/L. Potential sources of Cl$^-$ and NO$_3$-N include road salt, human and animal waste, and fertilizers (e.g., potash and anhydrous ammonia). Groundwater in a karst aquifer is especially vulnerable to surface-borne contaminants. There is little or no attenuation of contaminants discharged into sinkholes, macropores, and fissures; consequently, wells, springs, and streams downgradient of contamination sources can show effects within a few days or even hours (Green et al. 2006). The convergent nature of flow in karst aquifers may result in contaminants becoming concentrated in conduits (Field 1993).

When discussing background concentrations, one must be aware that, for example, concentrations of sodium (Na$^+$), Cl$^-$, and NO$_3$-N that are somewhat elevated above background levels do not constitute water that is harmful to humans or to natural flora and fauna of an area. They do, however, indicate that surface-borne contaminants from land-use activities (e.g., deicing of roadways, use of septic systems, fertilization of row crops) have entered the groundwater and will ultimately discharge to surface waters. Further, it has been shown that elevated concentrations of Na$^+$ and Cl$^-$ can be deleterious to vegetation (e.g., Panno et al. 1999) and aquatic organisms (e.g., Kelly et al. 2012). These can impart a salty taste to drinking water when Cl$^-$ concentrations exceed 250 mg/L, and elevated Na$^+$ concentrations in drinking water may be a problem for people with high blood pressure (U.S. Environmental Protection Agency [USEPA] 2003). Nitrate-N concentrations greater than 10 mg/L in drinking water have been shown to cause methemoglobinemia (blue baby syndrome) and may be linked to stomach cancer (O’Riordan and Bentham 1993). For the purposes of this guidebook, we considered concentrations exceeding the upper end of background levels as anthropogenic tracers that may be used to investigate aquifer recharge areas, recharge rates, and groundwater movement through the aquifers of the Galena-Platteville Formation (Panno et al. 2006b).

Chloride and NO$_3$-N concentrations in private and public wells (most cased more than 100 feet [31 meters] below the surface) in the county were as high as 55 and 31 mg/L, respectively. These concentrations are well above the upper background threshold concentrations (i.e., levels that would be expected for pristine groundwater in this area). Potential sources of these contaminants include road salt (Cl$^-$), nitrogen fertilizer (NO$_3$-N), livestock waste, and effluent from private septic systems (both Cl$^-$ and NO$_3$-N). Contaminant concentrations in relation to sample depth were consistent with those of a karst system (Panno and Luman 2008), where little or no stratification of concentrations is observed such that the migration of contaminants is subject to groundwater flow through fractures and crevices.

Data from Maas and Peterson (2010) in eastern Jo Daviess County indicated that water from five of six springs sampled discharged from open, oxygenated systems and typically contained Cl$^-$ and NO$_3$-N concentrations above background. Spring water from all six springs was undersaturated with respect to calcite and dolomite. Because spring water is typically an amalgam of deep and shallow groundwater, the data suggest that shallow groundwater is mixing with deep groundwater before discharging from the springs. The lack of saturation with respect to calcite and dolomite indicates that karstification of the Galena Group is an ongoing process in this area. The elevated concentrations of NO$_3$-N found in all but one of the springs are similar to those of tile drain waters in Illinois. This suggests that these springs may be affected by recharge water containing relatively high concentrations of surface-borne contaminants.

Because of the nature of groundwater flow in karst aquifers, groundwater pathways may be discrete conduits or crevices, bedding planes, or both and may be fed by numerous and smaller crevices within carbonate bedrock because springs are discharge points for groundwater. Some of the inputs may have a shallow component containing surface-borne contaminants from a variety of land uses, whereas other inputs may originate from deeper, usually less contaminated, sources. The percentages of each component source can vary depending on the groundwater flow paths to the springs and can vary with the time and season.

Nitrate-N concentrations for most of the springs were greater than those of shallow groundwater in Illinois (based on data from Panno et al. 2006a). This is not surprising given that row crop agriculture is the predominant land use in the area and that N-fertilizer and manure are commonly applied to the fields. This indicates that N-based fertilizers, manure and human wastes, or both are likely entering the groundwater systems. The high dissolved oxygen concentrations in the spring...
samples (Maas 2010) suggest rapid movement of water into the subsurface, which would limit attenuation within the soil zone. In situations where water recharges more slowly through the soil zone, oxygen is consumed as organic matter is reduced, resulting in anoxic conditions that promote denitrification, which would decrease NO$_3$-N concentrations. The thin soils and the presence of macropores and sinkholes in this area appear to promote rapid recharge to the Galena-Platteville aquifer, a common feature of karst regions.

References

Chandler, R.W., 1829, Lead mines on the upper Mississippi River: Madison, Wisconsin Historical Society.

NATIVE AMERICAN HISTORY IN JO DAVIESS COUNTY

Philip G. Millhouse, Illinois State Archaeological Survey

Introduction

The Native American history in Jo Daviess County spans nearly 12 millennia from the end of the Pleistocene to the present day (Figure 20). The great story of these people is visible across our landscape in the form of ancient village sites, winter rock shelters, and ancestral burial mounds on prominent bluff tops (Millhouse 1993). Additional insights into how these people lived can be seen in the oral traditions and ceremonies of contemporary Native American people. This rich historical record is a palimpsest that allows us to examine and learn from cultures that occupied the area for thousands of years prior to the arrival of the first Europeans. Within this saga are stories of cultures that lived in relative peace and successfully managed their environment meticulously well for centuries, countered by other examples of groups failing under the stress of population pressure, resource depletion, and warfare. The challenges and issues faced by these cultures would be very familiar to us today. We can understand and learn from their experience or ignore it at our peril. If we choose the former, it is important for us to preserve, understand, and respect these places of past endeavor because by doing so, we may well create a foundation for solving some of our contemporary global difficulties.

Paleo-Indian Tradition: 11,000–9000 B.C.

After the retreat of the last glaciers, small bands of highly mobile hunters entered Jo Daviess County, likely from the south and east. The area these people encountered was much cooler and dominated by spruce forest. These groups moved over large territories (280 to 404 miles [450 to 650 kilometers]) in pursuit of megafauna. The resource-rich patchwork consisted of forested valleys and upland prairies with a game-rich edge area of mixed grass and copses of oak–hickory.

The challenges and issues faced by these cultures were very familiar to us today. We can understand and learn from their experience or ignore it at our peril. If we choose the former, it is important for us to preserve, understand, and respect these places of past endeavor because by doing so, we may well create a foundation for solving some of our contemporary global difficulties.

Although, to date, no single-component Paleo-Indian sites have been found in Jo Daviess County, the presence of fluted points in local collections indicates that these people were definitely moving through the area. Undoubtedly, Paleo-Indian people were exploiting a variety of rich resources and had a dynamic social life and complex belief systems; we simply have little preserved material to interpret these aspects of their lives. By the end of the Paleo-Indian tradition, the forest regime had evolved to a more diverse mixture of fir, pine, elm, ash, and oak. The megaflora had become extinct by this time, although it is unclear whether habitat loss, human hunting pressure, or both were responsible. The megaflora were replaced by a variety of smaller mammals we would recognize today. The following resources provide more detailed information on our current knowledge of Paleo-Indian occupation in the region: Birmingham et al. (1997), Loebel (2005, 2007, 2009), Overstreet et al. (2005), Stoltman (1998), and Theler and Boshardt (2003).

Archaic Tradition: 9000–1000 B.C.

The broad time of Archaic occupation in Jo Daviess County is characterized by slow population growth, adaption to changing environments, and an increased settling into more localized areas, with a corresponding intensification of resource exploitation. Initially, Archaic people lived within a cool, moist climate dominated by a relatively closed mesic forest with very limited openings of oak–hickory or prairie. This environment was home to abundant white-tailed deer, squirrels, and other game. These conditions changed from approximately 8,000 to 4,000 yr BP, when an extended dry period known as the Hypsithermal Interval saw an expansion of prairie grasslands and oak–savanna across the region. Although the impact of the Hypsithermal varied locally, in some areas the drying was significant enough to cause a restriction in settlement location as groups clustered around the larger wetlands and river systems that remained intact. Around 4,000 yr BP, the climate had become moister and the floral communities assumed a state that remained relatively stable until the dramatic alterations brought on by American settlement. The resource-rich patchwork consisted of forested valleys and upland prairies with a game-rich edge area of mixed grass and copses of oak–hickory.
Colonization of the Americas by Native Americans began as early as 17,000 years before present near the end of the Ice Age, when ice connected Asia and North America. There is some evidence that people may have migrated from Europe to North America around the same time, but there is little supporting evidence for this theory (Berkson and Wiant 2009). Used with permission of the Illinois Association for Advancement of Archaeology and Illinois Archaeology Survey.

Figure 20 Colonization of the Americas by Native Americans began as early as 17,000 years before present near the end of the Ice Age, when ice connected Asia and North America. There is some evidence that people may have migrated from Europe to North America around the same time, but there is little supporting evidence for this theory (Berkson and Wiant 2009). Used with permission of the Illinois Association for Advancement of Archaeology and Illinois Archaeology Survey.
Later, Archaic people developed a settlement system and seasonal round during this time that would be utilized in varying forms for the next several millennia. This land use entailed bands gathering at base camps near large wetland complexes in warm months and then dispersing to smaller camps over the year to exploit specific resources. During the winter months, a band would split up into even smaller kin groups to ride out the winter within protected inland rock shelters. As Archaic populations grew and settled into local landscapes, resource exploitation intensified and people began to manage their environment with fire and other tools to maintain or expand prairie edge zones and encourage nut-producing mast trees. This conscious alteration of the environment would continue in many forms until postcontact time. The so-called virgin timber and prairie that Europeans encountered was actually the result of centuries of extensive manipulation by Native American cultures through time.

Archaic people in the area also developed a number of additional innovations that included the use of regional projectile point styles, the manufacture of ground stone tools such as grooved axes, the use of subterranean pit features to store food, the long-term use of stable community cemeteries, and the beginning of experiments with domesticating plants. The end of the Archaic period saw the establishment of exchange systems that moved exotic materials across the Midcontinent, many of which ended up as burial goods for the esteemed deceased. Although these advancements are often overshadowed by professional studies focusing on earlier or later time periods, the many innovations of the Archaic Tradition are those that established a solid foundation for later cultural developments across the Midcontinent. The following resources provide more detailed information on our current knowledge of Archaic occupation in the region: Birmingham et al. (1997), Emerson et al. (2009), Plegar and Stoltman (2009), and Theler and Boszhardt (2003).

Woodland Tradition:

1000 B.C.–A.D. 1000

The Woodland Tradition is often considered to begin when the first ceramics were produced, initially in the Southeast and later in the Midwest (Figure 20). The first ceramic vessels were large, thick conoidal pots that were low fired and meant to sit permanently in the ground. During the middle of the Woodland Tradition, from approximately 200 B.C. to 200 A.D., some groups actively participated in long-distance exchange networks and a set of corresponding ritual and burial traditions, with alterations at the local level. The abundant availability of galena may have given local Middle Woodland groups access to a much-desired commodity in this exchange system. Much of the exotic trade material was fashioned into elaborate ornaments and pieces of ceremonial art that were ultimately deposited as grave goods in large burial mounds (Figure 22). These cultures also continued experimenting with horticulture by cultivating gardens of squash, gourds, sunflower, goosefoot, knotweed, marshelder, and a little barley. These Middle Woodland groups are often referred to as Hopewell, a generic term covering people across the Midcontinent who shared some of these similarities. Hopewell people lived in terrace or floodplain villages spaced approximately 11 miles (18 kilometers) apart along major rivers. Most of these villages were overlooked by impressive groups of burial mounds.
containing the remains of their ancestors, accompanied by substantial materials to take into the afterlife. Jo Daviess County has several large Middle Woodland mound groups, such as those visible in East Dubuque’s Gramercy Park.

By 300 A.D., the shared Hopewell beliefs, exchange systems, and elaborate burial practices that were overlain on local traditions had faded. Although long thought to be a cultural decline, this was actually a period of dynamic change across the region. This time period witnessed a dramatic population increase and filling of the landscape, the adoption of the bow and arrow (which revolutionized hunting and warfare), competition for resources and the congregation of people into fortified villages, and the introduction of maize as an extensively cultivated crop. In Jo Daviess County, Late Woodland people were participating in another widely shared ideology centered on the construction of earthen effigy mounds across the landscape. The construction of these enigmatic mounds likely drew dispersed communities together, and they probably carried multiple meanings pertaining to clan structure, territories, and burial of the dead. Excellent examples of these mounds can be seen at the Keough Effigy and Casper Bluff Land and Water Reserve, owned and managed by the Jo Daviess Conservation Foundation (JDCF). Sometime around 900 A.D., effigy mound construction largely ceased in many places and there appeared to be a substantial concentration of the population, increased warfare, and the construction of fortified villages. The following resources provide more detailed information on our present knowledge of Woodland occupation in the region: Benn (2009), Birmingham (2010), Birmingham and Eisenberg (2000), Birmingham et al. (1997), Emerson and Titlebaum (2000), Emerson et al. (2000), Farnsworth and Emerson (1986), Rosebrough (2010), Stoltman (1986, 2006), Stoltman and Christiansen (2000), and Theler and Boszhardt (2003).

Mississippian and Oneota Traditions: A.D. 1000–1400

The stresses on local people at the end of the Woodland Tradition were being felt by many cultural groups across the Midcontinent at this time, and their solutions varied widely by locale. In southwest Illinois near present-day East St. Louis, a culture arose referred to as Mississippian. This culture and way of living were a radical departure from the way people had lived during the Archaic and Woodland Traditions. Mississippian people lived in large, fortified towns, were reliant on substantial maize cultivation, and had a rigid social system in which rank was inherited. These towns were often constructed around a public plaza flanked by large platform mounds topped by the residences and temples associated with elite priests and authorities. In the immediate vicinity of the East St. Louis area was the enormous city of Cahokia with more than 10,000 inhabitants, surrounded by a number of large satellite towns and villages. It is now becoming clear that many of the new participants in these changes were migrants from afar, possibly drawn to the perceived spiritual power, authority, and prosperity of Cahokia’s leaders. The sheer size of Mississippian developments in this area ensured that their ideas and actions would have a powerful influence throughout the Midwest.

As Cahokia grew, its sphere of influence expanded northward in the form of local people emulating portions of Mississippian cultural practices or actual migrations of small numbers of Mississippian people from the south. In Jo Daviess County, a small group of Mississippian people apparently settled into the Lower Apple River Valley between Hanover and where the river joins the Mississippi. This settlement consisted of two towns with platform mounds and a number of smaller satellite communities. A substantial indigenous population was present at the time of the Mississippian arrival. The lack of defensive posture in the settlement pattern and evidence of strong Woodland influences in some of the material culture indicate that the two groups lived together for several generations. The JDCF’s Wapello Land and Water Reserve south of Hanover contains the John Chapman site, one of the two large Mississippian towns in the area.

Although there was a Mississippian presence on the Apple River and replication or emulation of certain southern elements, it was not long before the local Mississippian–Woodland amalgamation began traveling on its own trajectory. True Mississippian social structure with powerful leaders, rigid hierarchy, and inherited leadership did not take hold. The populations in the north were much smaller, the geography vast, and the resources plentiful. All these factors were not conducive to replicating the social structure of southern Mississippians. It is a possibility that some of the small Mississippian groups who came north did so purposely to remove themselves from this kind of structure.

In many places across the north after A.D. 1300, a new culture developed that is referred to as Oneota. These people lived in substantial villages and grew large amounts of maize, but also had a very diverse subsistence system and more decentralized leadership than did the Mississippian groups. Some of these Oneota manifestations were likely the distant Siouan ancestors of groups such as the Ho-Chunk, Ioway, and Oto. Several archaeological sites located at the mouth of the
Apple River and across the Mississippi have Oneota components. These people may simply be the descendants of the earlier Woodland–Mississippian communities in the area. At present, there does not seem to be any evidence of Native American occupation after the mid-14th century. What ultimately became of the small Oneota communities in the area is not known. The following resources provide more detailed information on our present knowledge of Mississippian and Oneota occupation in the region: Birmingham and Goldstein (2005), Birmingham et al. (1997), Emerson (1991), Emerson and Lewis (1991), Emerson et al. (2007), Finney (2013), Millhouse (2012), Pauketat (2004), Stoltman (1991), and Theler and Boszhhardt (2003).

Postcontact Native American People: A.D. 1690–2014

Although several early French expeditions recorded Siouan groups in the vicinity of Dubuque, we do not have good European records of a Native American group in Jo Daviess County until around 1690. At this time, a series of Algonquin-speaking Miami villages were located near present-day Galena. Leaders from these villages brought samples of galena to Nicolas Perrot and convinced him to establish a short-lived fortification and trading post somewhere in the vicinity of present-day East Dubuque. Early French maps from this time clearly show the Galena River, lead mines, and Miami villages. The Miami were recent arrivals who temporarily fled west to the security of the Driftless Area during the Iroquoian expansion during the Beaver Wars. When the Iroquois threat diminished, the Miami returned to their eastern homeland.

This vacuum was filled by the Meskwaki, another Algonquin refugee group from the Great Lakes who fled to northeastern Wisconsin to escape the Iroquois. After a series of disastrous wars with the French, the Meskwaki migrated southwest to establish villages along the Mississippi River between the present-day Quad Cities and Prairie du Chien. One of the most critical centers of Meskwaki activity was the portion of the lead (galena) district centered around present-day Dubuque and Galena. It was here that the Meskwaki engaged in large-scale mining, smelting, and trading of the finished lead bars referred to as pigs. This activity was conducted on an industrial scale and represented a critical source of reliable income for the tribe, and much of the actual mining was done by women (Figure 23). In the Galena area proper, Meskwaki from the Bucks band operated a number of mines north of town along Hughlett’s Branch and the North Fork of the Galena River. By the early 1820s, a small community of Americans had established a cluster of trading houses in and around the present site of Galena. Many of these traders had learned from their French and British predecessors and married Meskwaki women. These marriages were not only economically beneficial, but, in the minds of the Meskwaki, would ensure fair treatment from the traders because they were now kin relations. This profitable economic activity brought other Native Americans to the area.

This nascent Creole community was truncated by the arrival of Colonel James Johnson from Kentucky in 1822 with a large party of miners, including enslaved African Americans. Johnson arrived with a government lease, American Indian agents, and a large military contingent as backup. After a few days of very tense meetings, the American Indian agents convinced the Meskwaki to back down and allow Johnson to work the mines as legalized (a loose use of the term) under the hated Treaty of 1804. This was the beginning of a massive rush of lead miners, smelters, and adventurers who quickly displaced the resident Meskwaki.
The tensions created by the aforementioned treaty, displacement of the Meskwaki in the Galena River valley, and trespassing onto Ho-Chunk mining lands to the northeast sparked the Winnebago War of 1827 and finally culminated in the disastrous Black Hawk War of 1832. This debacle was followed by a series of treaties that further codified the legal justification for removal of the remaining Native American groups along the east side of the Mississippi between the Rock and Wisconsin Rivers. In many histories, this marks the end of a Native American presence on the local landscape, but the reality is much different.

When combing through old records and talking to farm families who have been in the area for many generations, a very different picture emerges. Although not resident on the land, it appears that Native American groups returned to Jo Daviess County on a regular basis until the 1920s. These visits were likely tied to wanting to exploit certain resources, visit the graves of ancestors, or perform ceremonies at special places with spiritual or historical significance. Two examples of this were the construction of a small burial mound over a deceased infant along Smallpox Creek in the 1870s and the annual visit of Native Americans to perform ceremonies at a mound group above the Apple River north of Elizabeth. In more recent times, Native Americans from the Meskwaki and Ho-Chunk communities have attended the opening of JDCF preserves to speak and perform blessing ceremonies (Figure 24). Although forcibly removed en masse over a century and a half ago, there still is and will always be a Native American connection and presence in Jo Daviess County. The following resources provide more detailed information on our current knowledge of postcontact Native American occupation in the region: Birmingham et al. (1997), Broihahn (2008), Collins (2008), Millhouse (2010), Murphy (2000), and Schermer (2008).

William Baker Nickerson (1865–1926) and American Archaeology

There is no way to discuss the history of Native Americans in Jo Daviess County or the history of trying to decipher that past without mentioning William Baker Nickerson. Nickerson worked as a signal operator for a number of railroads throughout the East and Midwest. Wherever Nickerson went, he conducted archaeology at local sites, from the East to Ohio, Michigan, northwestern Illinois, southern Minnesota, and even Manitoba. For a good part of his career, Nickerson was stationed at Portage Tower near the mouth of the Galena River and embarked on a decade of archaeological explorations throughout Jo Daviess County. Nickerson was self-educated in the sciences, read widely, and corresponded regularly with archaeologists and antiquarians of his day, including receiving advice, instructions, and limited monetary support from Fredrick Ward Putnam of Harvard’s Peabody Museum. The result of this was an exacting excavator whose skills, methods, and interpretations were decades ahead of much of the professional work being done at the time (Figure 25). Nickerson was also far ahead in his archaeological thinking, realizing that investigators needed to move beyond mounds and excavate the domestic debris of village sites to truly begin reconstructing past histories. In a prophetic 1910 publication, Nickerson pleaded for the need to preserve the burial mounds that were rapidly disappearing to the plow and urban expansion. Some of the sites Nickerson mentioned were finally preserved a century later through the work of the JDCF and others.

Although many institutions Nickerson worked for hinted at a future position, none followed through. Nickerson was working at a time when the field was beginning to professionalize and individuals like him, no matter what their talents, were frozen out of positions because of their lack of formal training and degrees. When Nickerson died in 1926 in Kidder, Iowa (just west of Dubuque), he quietly left a remarkable, if unheralded, archaeological legacy. Several months after his death, the University of Chicago began some of its first archaeological work, and Nickerson’s widow kindly gave the field party Nickerson’s detailed maps and field notes to use. The inexperienced University of Chicago students quickly realized their good fortune and began mimicking Nickerson’s methods and techniques, although not necessarily his more forward-thinking ideas. This manner of excavation was soon humbly coined the “Chicago Method” and became the standard in the
Figure 25 (a) *Aiken Group of Ancient Earthworks*, the first map of the Aiken bird effigy and mounds at the Casper Bluff Land and Water Reserve, by W.B. Nickerson (1898). Courtesy of the Illinois State Museum and the Illinois State Archaeological Survey, University of Illinois. (b) Lidar shaded-relief image showing details of the Aiken bird effigy (E) and four associated linear mounds (A–D). Topographic contours with a 5-foot (1.5-meter) interval are included to illustrate the local relief of the area. Dimensions of the bird effigy are as follows: height ranges between 1.4 and 2.2 feet (0.4 to 0.7 meters), wingspan is 102 feet (31 meters), and head to tail is 72 feet (22 meters). Dimensions of the mounds are as follows: (A) height is 1.5 feet (0.5 meters), length is 95 feet (29 meters); (B) height is 1.8 feet (0.5 meters), length is 69.5 feet (21 meters); (C) height is 1.4 feet (0.4 meters), length is 86.5 feet (26 meters); (D) height is 1 foot (0.3 meters), length is 74 feet (22.5 meters). Map by Donald E. Luman.
Midwest for many decades. In the intervening years, knowledge of Nickerson’s contributions faded, awaiting rediscovery a century after he conducted his pioneering work. Nickerson’s work in Jo Daviess County can be read through these sources: Nickerson (1908a,b, 1911, 1913). The following resources provide more detailed information on the career of William Baker Nickerson: Bennett (1942, 1945) and Brownman and Williams (2002).

References
Murphy, L.E., 2000, A gathering of rivers: Indians, Metis and mining in the western Great Lakes, 1737–1832: Lincoln, University of Nebraska Press.

The Settlement of Jo Daviess County

The first European Americans to penetrate the Upper Mississippi River Region were the French. Although they were initially hoping to find gold and silver, they found a region rich with furs, fish, and forest products. Trade with the native peoples quickly became a profitable enterprise, but the desire for precious metals ran deep, and rumors of Native American mining were periodically confirmed by the appearance of lead and copper as trade goods. Although the French sporadically pursued attempts to find and engage in this trade, the first real evidence of discovery came with Nicolas Perrot about 1690 (Schockel 1916, p. 179–182). It was reported that by 1741, French and Indian miners on the Fever (now Galena) River had sold to French Canadian traders 2,500 bars of lead, each weighing roughly 70 pounds.

The Native Americans had mined lead sporadically for thousands of years for use as paint, charms, and ceremonial powder (Walthall 1981). The Europeans, however, wanted it for musket balls, roof flashing, water pipes, pewter, leaded glass, waterproofing, and as a paint additive. French trader Julien Dubuque moved to the Iowa side of the river in 1788 and engaged in the lead trade on a large scale (“Galena and its lead mines” 1866). He obtained permission from the Fox (Meskwaki) and Sauk (Sac) as well as from the Spanish government, which had acquired the western side of the river when the French lost the French and Indian War to the British (1754–1763).

A little-known fact is that Thomas Jefferson arranged for two exploration parties with the Louisiana Purchase in 1803. The Lewis and Clark Expedition left St. Louis in 1804 and the Lieutenant Zebulon Pike Expedition left the following year. The directive of the latter was to explore the Upper Mississippi and learn all there was to know about the land, animals, minerals, and people. Included was a visit to Dubuque’s lead mines, which were being worked primarily by Meskwaki with French help. Dubuque greatly distrusted the Americans and was not forthcoming with much information; he avoided a face-to-face meeting with Pike. The year before (1804), territorial governor William Henry Harrison had forced two chiefs of the Sauk tribe to sign a treaty giving up their lead mining lands, with the stipulation that they could remain until the U.S. Government sold the land to white settlers and miners. The chiefs were reportedly given copious amounts of alcohol and signed the treaty without any real understanding of what it contained (Channick 1988, p. 6–10).

The period between French, then British, and finally American control of the region created serious conflict among the various parties involved, including the various tribes of the region. The French traditionally had good relations with most tribes; their traders offered liberal terms, learned the language, and often took Native American wives. They traveled with the trade and did not take over complete control of the land. The British were less generous and did not hesitate to stir up trouble between the American traders and the Native Americans. The War of 1812 saw the American forces finally gain the upper hand in the region, but the animosity among the various parties continued to increase. It would culminate in the Black Hawk War of 1832.

A number of American traders came into the Galena area after the War of 1812 ended. They were generally not welcome, but by 1821, the little settlement of Galena featured at least five American-based traders. The largest mine in the immediate vicinity was the old Buck Lead Mine, located about one-half mile north of the settlement. This was mined by the elderly Fox Indian, Buck, and by other elderly men and women of the band. The younger men rarely engaged in this kind of work (Kett 1878, p. 233). Tools were originally deer antlers and crude stone instruments. The easily accessible mineral and shallow crevices were the extent of their operations (Figure 26), but trade goods at a very early date had brought in iron picks, shovels, and related tools of the trade.

Figure 26 Lead ore (galena) is found within crevices in the Galena-Platteville Formation. The cubic crystal structure of the mineral can be seen here. Photograph by Samuel V. Panno; used with permission.
The first official leases were issued in 1822—four in total (Johnson 1977, p. 4–5; Mansberger et al. 1997, p. 22). Nine were issued the following year. These first “miners” were in name only, with the exception of some from the Missouri lead mines of southeastern Missouri. Colonel James Johnson of Kentucky brought a number of slaves with his group of 100 “miners,” but slaves were never a significant factor in the Galena lead mines. Moses Meeker of Cincinnati came with a very well equipped and very well funded group in 1823 (Johnson 1977, p. 4–5). He was a producer of white lead, used in the production of paint. It was also during this year that the first steamboat was able to ascend the Mississippi River above the Rock Island rapids. Suddenly, the Upper Mississippi River Lead Mining District was doing well. Leases issued for mining jumped to 350 in 1826 and to 2,384 in 1827 (Mansberger et al. 1997, p. 24). Twenty-one smelters were also operating by 1828. By 1827, the name of the fledgling settlement officially became Galena (Latin for lead sulfide), as opposed to the Fever River Settlement or January’s Point.

Finding and mining the mineral is only half the story of Galena and the lead region. The other part is how that mineral acted as a catalyst for the development of Galena and the entire region. Transportation was a critical part of the economic development of the region because the mineral had to be transported to markets farther south and east: St. Louis, Cincinnati, New Orleans, and New York. Given the incredible weight of lead (only gold is heavier), most was shipped by keelboat, barge, and flatboat down the Mississippi. The steamboat changed all that. These vessels could quickly and efficiently carry huge loads downstream and return with tons of necessary supplies to keep the early miners and residents stocked up. Ice prevented trade during the winter months, so many miners and teamsters went back south during the cold months. The teamsters hauled the ore from the mines to the smelters and then hauled the pigs of lead from the smelters to the Galena levee.

During the earliest years of mining, northwestern Illinois and southwestern Wisconsin were noted for their southern character. The early miners were usually farmers from southern Illinois and the Upland South—Kentucky, Tennessee, and adjacent parts of southern Indiana and Missouri (Figure 27). As time moved on,
more and more settlers came from New England, New York, Pennsylvania, and the British Isles. Kett, in his 1878 book *The History of Jo Daviess County*, reported that the streets of Galena swarmed with rough miners: “all sorts of moving vehicles were seen in her thoroughfares, and every language was spoken, every costume worn” (p. 828).

The city leaders of Galena realized at a very early date that they had to develop a consistent and effective means of transportation for all the freight and people moving into and out of the region. Thus began the buildup of the largest steamboat line north of St. Louis (Figure 28). At first, Galena’s entrepreneurs competed with each other, but over time, they shrewdly joined forces and created a near monopoly of the Upper Mississippi trade (Toole 1964, p. 229–248). Bigger and better boats were ordered from huge boat works in Cincinnati and Pittsburgh (Peterson 1937, p. 204–226). No longer was Galena simply servicing the mining trade. The American frontier was on the move, and the Upper Mississippi was the gateway to new lands and new opportunities. Soon the main street of Galena was lined with huge mercantile houses—wholesale and retail—to serve the exploding trade of the region. Large banks supplied ample financing, with lead sometimes serving in the same capacity as gold and silver. The 1830s and 1840s saw Galena become the hub of the Upper Mississippi River Lead District and of every other kind of trade. Not even the nationwide depression of 1837 slowed its growth (unlike Chicago, which suffered heavily).

Tin miners from Cornwall in the southwest of England and the lead mining Dalesmen of northeastern England (Yorkshire) brought advanced mining and smelting techniques (Figure 29). The lead mining peaked in 1845, with the Illinois, Wisconsin, and Dubuque, Iowa, mines (Upper Mississippi Valley Lead District) producing 55 million pounds of mineral, more than 85% of the nation’s output (Figure 30). The Missouri mines in southeastern Missouri supplied most of the remainder, but in a twist of fate, the production of the latter mines would overtake the Upper Mississippi mines by the time the Civil War broke out in 1861 (Schockel 1916, p. 194).

The leasing system, whereby miners could stake a claim and pay the government one-tenth of the mineral produced, was neither effective nor efficient. By 1836,
Figure 29 Hughlett Furnace, located 25 miles (40 kilometers) north of Galena, Illinois, was a major smelting operation fueled by wood. Notice the barren landscape where trees had been cut for fuel (Plate 1 from Cox 1914).

Figure 30 Metallic lead production from 1800 to 1952 in the Upper Mississippi Valley District (Driftless Area) showing major historical events. The greatest production was between 1845 and 1850 (Figure 48 modified from Heyl et al. 1959, p. 73). Figure courtesy of the U.S. Geological Survey.
the government agreed to sell all the leased lots in Galena (and a number of other communities), and in 1846, all lands within the lead-mining district were opened up for sale. The former date marks the beginning of the first permanent improvements to Galena’s fabric because now businessmen were willing to look farther down the road. When all lands went up for sale, agriculture expanded rapidly and the character of the entire region changed from one of a raw mining camp to one dominated by farms and livestock. Most of the early miners were farmers, and many engaged in mining to acquire cash with which to improve or add to their farm holdings.

Mining changed further in the late 1840s. Formerly the domain of small groups of individuals, the best mineral deposits had been taken up—the easily available lead was nearly gone. As miners went deeper, larger and more expensive pumps were needed to keep the groundwater out of their mines. Increased capitalization and more systematic techniques were needed, at the very time the California Gold Rush came. News of California gold swept the lead mining districts like a fever. Huge numbers of miners—and everyone else, it seemed—flocked to the West. It is interesting that the mines of the Upper Mississippi and those of southeastern Missouri were the first to send experienced miners to California; they did much to open up the gold fields for the masses that followed. Many returned, but many did not. The loss of life, talent, and money from the area was, as one early settler said, “a great detriment to the township and county in general” (Kett 1878, p. 581).

Galena, however, continued to grow. It outfitted many of the prospectors heading west and continued as the largest steamboat port north of St. Louis, even though it was more than 3 miles (5 kilometers) from the Mississippi River. Boats, however, were having an increasingly hard time making it up the muddy little Mississippi tributary. It was sitting in badly because of massive erosion from mining and farming activities upstream (Figure 31). The rate of fall above Galena is substantial, but from Galena to the Mississippi, it is negligible. The result was heavy siltation in Galena’s harbor and all the way to the Mississippi. A traveler voiced the obvious as early as 1841 in the local Northwestern Gazette and Galena Advertiser (Johnson 1977, p. 23, 25):

Within a few rods of the usual steamboat landing, our boat struck the bottom of the river. She then threw off her tow-boats, drew back a few rods, and with a full head of steam, dashed forward, and after many struggles which made the very engine sweat, plowed her way to the landing. This Fever River, as it is with singularly bad taste named, has all the appearance of a large canal. What can prevent its ultimately being filled with mud?

The town fathers persuaded the Illinois state legislature to change the name from Fever to Galena River in 1854, but the state of Wisconsin did not follow suit; thus, the river retains its original name where it flows in that state. Dredging efforts at Galena were too little and too late—this at a time when railroads were becoming the transportation vehicle of choice (Figure 32).

The Galena and Chicago Union Railroad had reached Freeport in 1852, but the task of extending a line to Galena and the Mississippi was undertaken by the Illinois Central. The latter wished to make Galena its western terminus, but the town leaders refused to give up their valuable waterfront. A compromise was finally reached, but the next year (1855), the rail line was extended to Dunleith (now East Dubuque) on the Mississippi. The Illinois Central and Galena and Chicago Union Railroads were controlled by eastern investors, many tied to Chicago interests; Galena and its boats were competition. It was not long before trade of all kinds was siphoned from Galena eastward to Chicago.

Another blow to Galena’s economy came from a nationwide depression (the Panic of 1857) that devastated the nation’s economy. A severe drought in 1859 closed the river to navigation for a time, and then the Civil War came in April of 1861 and the north–south river trade that had so dominated Galena trade since the beginning collapsed.

The final straw was the politics of war. Galena split between two defiant camps: the new Republican party,
led locally by U.S. Congressman Elihu B. Washburne of Galena (whose home is now a State Historic Site), and the Douglas Democrats, led by local attorney John Rawlins and others (Owens 1963, p. 23–51). The Democrats split further over the “War” faction that wanted no treasonous secession and a more peace-oriented faction that wanted to end the war and bloodshed through negotiation with the South. Leadership in Galena waned, and the problems facing the town went unresolved. Many prominent businessmen had already left for Chicago or points farther west. Trade was now firmly entrenched in an east–west direction, and the geography that had built Galena was now destroying it. Chicago was the beneficiary.

The town had peaked in population in the 1850s with roughly 14,000 people (Figure 33). (So many migrants were moving through the town to points farther north and west that it was almost impossible to get an accurate count.) Wealth generated by the town’s huge trade had been translated into stately mansions, oftentimes built next to lowly miners’ cottages. Ulysses S. Grant moved to Galena in 1860 to work in a leather goods shop run by his two younger brothers. He was here only one year before the Civil War broke out. Although not well known by his fellow townspeople at the time, he returned 4 years later as the victorious general of the Union armies. The grateful community (a small group of wealthy Republicans) awarded him a fine home—now a State Historic Site (Figure 34). But Galena would never be the same after the war; it gradually became a small agricultural trade center.

Zinc mining gave some hope to the mining interests with the development of an economical way to process the mineral in the late 1850s (Heyl et al. 1959, p. 74–75). Zinc was found to provide protection for anything made of iron or steel, through either galvanizing or applying zinc oxide primer, which is still true today. However, before these discoveries and the development of economically feasible methods of processing, the ore was simply discarded. Zinc was normally found at lower levels in the Galena Group, and large amounts of capital were needed to pursue a more difficult form of mining. Large companies were created to handle the challenge (Figure 35). The era of the small miner was largely gone. The last large Illinois mine, the Grey/Bautsch Mine located off Blackjack Road 4 miles (6 kilometers) south of Galena, closed in 1975. Today, it is a Superfund cleanup site because of the presence of heavy metals in the tailings. For many years, these were mixed with road salt and applied extensively to roads and streets throughout the lead and zinc region during wintertime. Production of zinc expanded rapidly after 1900 (see Figure 49 in Heyl et al. 1959, p. 76), but prices and demand fluctuated. A second wind came with World War II, but production declined thereafter until the last mine closed on the Wisconsin side (south of Shullsburg) in 1979 (Figure 30).

The Agricultural Economy

Despite a rebirth of mining with the demand for zinc ore after the Civil War, the mining district had become, and remained, an overwhelmingly agricultural district (Figure 36). During the earliest years, most miners went back south for the winter. The rivers were frozen, the boats were holed up in St. Louis, and overland travel remained difficult at best. The first boat of the spring season to arrive at Galena was, by all accounts, a joyful and wondrous event.

This early mining district, whose population was in the vicinity of 10,000 by 1829 (Figure 14), proved to be a huge market for agricultural produce, no matter what time of the year. Drovers of cattle and hogs were driven up from southern Illinois in the fall of the year. It was a journey fraught with danger for both men and animals. The following account is from the Funk family.
Figure 33 Corner of Hill and Main Streets in Galena, Illinois, around the turn of the century. Notice the Edison carbon arc light hanging directly over Main Street. These produced a very bright light and were the first street lights. Photograph courtesy of the Alfred W. Mueller Collection (Galena, Illinois).

Figure 34 General Ulysses S. Grant and his son Jesse in 1865 standing on the porch of their home at 500 Bouthillier Street in Galena, Illinois. Photograph courtesy of The U.S. Grant State Historic Sites.

Figure 35 Stamp on an envelope from the Twin Black Jack Mining Company referring to “Galena the center of the greatest lead and zinc district in the world.” Image courtesy of the Tom Golden Collection.

(famous in the 20th century for their hybrid seed corn) of McLean County (Bloomington, Illinois). They drove many herds of cattle and hogs to Galena and later to Chicago, but the December 1830 drive was memorable because of heavy snow and cold:

When they crossed the Illinois River, some of the pigs . . . broke through the ice and were drowned . . . many . . . were frozen to death. . . . At the commencement of the journey they weighed from two hundred and fifty to three hundred pounds, but on
their arrival at Galena, after a journey of forty-five
days, they weighed from one hundred and fifty to
one hundred and eighty pounds each. (Duis 1968,
p. 592–593)
The conclusion of the Black Hawk War in 1832 opened
up the entire lead region to settlement. Increasingly,
immigrants were coming from the East, not the South,
and more and more were coming for agricultural and
business opportunities, not mining. The opening of the
Eric Canal (from Albany to Buffalo) in 1825 and the
explosion of lake steamers greatly increased the flow
of immigrants, giving the county a much more northern
attitude in institutions and outlook. Many were farmers
looking for permanent homes. Even by 1840, Jo Da-
viess County had more farmers than miners (Schockel
1916, p. 208).
Corn, oats, and wheat were the main crops, although
potatoes, rye, and barley were also important. With the
railroads in place, the northern tier of Illinois counties
and southern tier of Wisconsin counties made this cor-
dor the largest wheat-producing region in the nation
during the 1850s. Cattle and hogs were also common,
mostly roaming at will. During this time, the crops
were fenced in, not the livestock. Because Galena had
a number of slaughterhouses, it became an important
meat-shipping point, especially with the coming of
the railroad. Those same railroads also encouraged
commercial agriculture on a large scale; wheat, for
example, could be transported cheaply to the huge
grain elevators being built in Chicago. By the 1880s,
the county was noted for its purebred Hereford cattle,
and by 1900 for its dairy cows. Today, it is the largest
county in Illinois for all types of cattle grazed.
The lumber trade also became huge. The Wisconsin
pineries supplied white pine logs and lumber to Galena,
Chicago, and elsewhere in the Upper Mississippi Val-
ley and beyond. In 1857, Galena had three sawmills
(Schockel 1916, p. 209). Steamboats supplied them
with huge rafts of logs, but until the white pine lumber-
ing to the north was developed, good timberland was
not overly abundant in the lead region. This made the
local limestone and dolomite a convenient and common
building material. Immigrants from the British Isles
knew well how to build in stone and gladly used the na-
tive stone in place of wood. It was used for house and
barn foundations up until concrete replaced it shortly
after 1900. The ubiquitous stone retaining walls of Ga-
lena were often made of stone quarried in place or that
had been dug out of nearby mines.
After the Civil War, Galena failed to regain regional
importance. It slowly but surely lost population but did
retain a respectable amount of business activity (Figure
37), most of it now agriculturally related. The Ryan
Packing House was thought to be one of the largest
outside Chicago (“A list of buildings being erected this
year” 1871; “An important enterprise” 1880). The town
also became a small but important railroad center, with
the Illinois Central, Burlington, Chicago Great Western,
and North Western all providing service to the town by
1888 (Figure 38).
Figure 37 Richardson Blacksmith Shop on Commerce Street in Galena, Illinois, circa 1910, now part of the U.S. Grant Museum. Photograph courtesy of the Alfred W. Mueller Collection (Galena, Illinois).

Figure 38 A train wreck that occurred in Galena, Illinois, on March 3, 1910, provided a rare photographic opportunity for members of the community during a time when photography was in its infancy. The dry plate camera in the center of the picture could produce high-quality photographs. Photograph courtesy of the Alfred W. Mueller Collection (Galena, Illinois).
However, no new residents were coming into the county. The population of Jo Daviess County peaked in the mid-1870s at about 27,500. Today, it is about 22,000 and the population of Galena is about 3,500. All the land had been taken up by the Civil War, and people were moving farther west. As a result, the ethnic make-up of the county changed little. Those with English, Irish, Scots-Irish, and German roots predominated, and still do. Place names such as Irish Hollow (Scots-Irish) or Cabbage Town (German) reflect the early settlement patterns.

Jo Daviess County Today

The physical environment of Galena and Jo Daviess County has had a huge impact on the nature of their development. The presence of lead ore began the European American rush into the region (Figure 39). The isolation and rugged topography made water transport incredibly important. Steamboats reigned supreme before the Civil War and the coming of the railroads.

However, the loess-covered hills also proved valuable for grazing livestock. The flatter and more fertile lands on the northeastern side of the county proved equally valuable for grain farming. Today, large farms growing corn and beans are the rule, with the number of farms declining as the acreage of each has increased. The more rugged western and southern sections of the county now support a rich and flourishing tourism and recreational industry. Second homes and small rural acreages are common. Galena sees more than one million visitors annually (Figure 40). They have found the Driftless Area to be unique—a place where land and people have shaped each other. It is a process that continues.

References

A list of buildings being erected this year: J. M. Ryan’s Pork House, 1871, Galena Daily Gazette, August 20, p. 3.

An important enterprise, 1880, Galena Gazette, November 30.

Figure 40 Recent aerial photograph of the City of Galena, Illinois, taken from a hot-air balloon. Photograph courtesy of George Bookless Studio (Galena, Illinois).

Peterson, W.J., 1937, Steamboating on the Upper Mississippi: Iowa City, University of Iowa.
THE ECOLOGY AND BIOTIC RESOURCES OF THE DRIFTLESS AREA OF NORTHWESTERN ILLINOIS

Randy W. Nyboer, Illinois Natural History Survey

A unique set of geologic conditions and processes, the timing of historic settlement of the county, and the area’s biogeographic position in North America have been instrumental in shaping the biotic ecology of Jo Daviess County. The Illinois portion of the four-state, 16,000-square-mile (41,440-square-kilometer) Driftless Area covers only about 6.5%, or 990 square miles (2,564 square kilometers), of this unglaciated landform (Hartley 1966; Ruesink et al. 1998). All occur within Jo Daviess and Carroll Counties. The following narrative of the development of the biotic resources found here today is just a brief overview of a complex set of ecological processes that have taken place over the past 10,000 to 13,000 years since the retreat of Wisconsinan glaciers. Over the past 1.6 million years of the Pleistocene Epoch, the Midwest was covered during several periods of glaciation, with each failing to override the Driftless Area (Willman and Frye 1970; King 1981; Hansel and McKay 2010, Figures 12-1 and 12-6).

Early Vegetation of Jo Daviess County

Being the highest landform in the upper Midwest, the Driftless Area has escaped devastation by the glaciers that covered all the surrounding areas. Ecologists believe that this fact, coupled with the shorter duration and extent of Wisconsinan glaciation, made the Driftless Area a refugium for many northern plants and animals (Gleason 1923; Hartley 1966). A number of the plants now commonly found in the Rocky Mountains, Canada, or the Great Plains still occur here, disjunct from the species’ current range (Figures 41 and 42). Pollen records taken from bogs indicate that the forests of Jo Daviess County were like spruce woodlands by the close of Wisconsinan glaciation (King 1981). By about 11,000 yr BP, forests of pine, fir, and birch replaced the spruce, a forest type that occurs today in northern Wisconsin. The gradual warming of the climate changed these forests to a pine–oak composition and eventually to an oak–hickory forest type by 9,000 yr BP (King 1981). White pines, being the most tolerant to these climatic changes, persisted in cooler ravines of the Driftless Area and other northern areas of Illinois (Cawley 1965; Nyboer 1982). The greatest change in the vegetation came between 8,000 and 5,000 yr BP during the Hypsithermal Period. This period, having a much drier and warmer climate, influenced the migration of the Prairie Peninsula from the Great Plains into Illinois, replacing many of the oak–hickory forests with other species, such as aspen, maple, and basswood (Cawley 1965; Nyboer 1982).
with tallgrass prairie. The remaining forests of northern Illinois lost much of the oak component during this time, leaving a hickory-dominated forest type (King 1981). Sweeping landscape fires increased as the prairie replaced the forests and also influenced the changing vegetation. The cooler climate species, such as the white pine and Canada yew, retreated to those areas of Jo Daviess County where shaded cliff faces or other specialized habitats created the conditions for them to persist, mostly as we see them today (Figure 43). It was not until late in the Hypsithermal that an increase in moisture allowed the deciduous forests to increase and compete with the prairies. About 1,000 yr BP (the Little Ice Age), a cooler, moister climate prevailed, and fossil pollen records indicate a slight increase in conifer tree species expanding again in the northern parts of Illinois. At the time of European settlement, the landscape was still covered by vegetation similar to that found in 1,000 yr BP (King 1981).

Modern-Day Vegetation of Jo Daviess County

By 1820, any climatic influence of the Little Ice Age on the vegetation of Jo Daviess County was ending and a new change was beginning to assert itself on the landscape—European settlement. Although Native Americans had made minor changes to the vegetation of the county for the past several thousand years, it was not until the arrival of European settlers that the historic clearing of prairies, forests, and wetlands occurred, completely altering the vegetation of the county and the Midwest in general.

Prior to settlement of the Illinois Driftless Area in 1820, forests (including savanna and woodlands) covered about 74% of the area. Prairies made up about 22% of the land cover, and wetlands of all types occupied about 3.5% of the area. Today, only about 20% of the forests, about 3.5% of the prairie, and about 2.7% of the wetlands remain (Pepoon 1909a,b, 1910; Gleason 1910, 1923; Hartley 1966; White 1978; Rachuy 1994; Ruesink et al. 1998).
In Jo Daviess County, the deciduous forests were heavily affected by early settlement. The extent of lead mining made wood, used for firing the smelting furnaces, too valuable to be used simply as a building material; thus, the Wisconsin pineries supplied most of the lumber needed. With limestone and dolomite being so common, many structures were built of native stone (Schockel 1916; Figure 44). The prairies fared much better up until the mining boom played out and agriculture replaced mining as the leading economic resource for the county. The 1860 land survey maps still showed large areas of prairie in the uplands away from Galena, with small farm fields interspersed. However, not long after this, these prairies were converted to either row crops or pastures. Where soils were either too dry or rocky to allow their conversion or too steep to allow access for grazing, a few large remnants of prairie persisted into the next century. Upland wetlands associated with springs and artesian upwellings, often used for human consumption or cooling perishable food stores, were extensively grazed by livestock.

In 1975, Illinois conducted the first inventory in the United States for natural areas on both public and private lands. Forests, prairies, and wetlands that exhibited minor degradation from past grazing, logging, or other human-induced disturbances were surveyed by a team of ecologists from the University of Illinois. They also looked for rare habitats and populations of rare species. At the end of the inventory, Jo Daviess County had only 2.1 acres (0.9 hectares) of sand hill prairie to add as a statewide significant natural area (White 1978; Figures 45 and 46). This is a testimony to the devastating influence early European settlers had on this

Figure 44 The George N. Townsend house located just south of Apple River Canyon State Park was built of local stone in 1856. This is a good example of the use of local stone, which can be seen throughout Jo Daviess County. Photograph by Daryl Watson; used with permission.

Figure 45 Sand prairie and pale coneflowers in a burned unit near an abandoned Army warehouse on the Savanna Army Depot. Photograph by Randy W. Nyboer; used with permission.
landscape. The ecologists identified a number of other potential natural area types besides high-quality natural communities that were in need of conservation because so few were found in the Driftless Area. Finally, 14 of these sites were recognized because of the rare species occurring there or because of the presence of small, rare habitats. It was within these two latter categories that most of the Ice Age relicts were found (White 1978).

In 1981, an entirely new type of habitat, called an algific talus slope, was discovered and described by an Iowa ecologist (Post 1998). This complex, cold air-producing talus slope was eventually found in Illinois, but only a few were of an undisturbed nature (Figures 47 and 48). Growing on these slopes were several species of Ice Age plants that had not been seen in Illinois before! Even better, two species of snails thought to have become extinct after the Ice Age were found living within the mossy cover of the algific talus slopes (Figure 49).

In 2008, the Illinois Natural Areas Inventory Update began, using updated survey techniques and modern technology the 1978 inventory did not have. As a result of the more than 30 years of natural ecological healing, new land stewardship techniques that did not exist in 1978, and a number of refined databases and aerial photography, the ecologists for the Illinois Natural Areas Inventory Update located and surveyed several new high-quality forests, prairies, and wetlands (Nyboer, unpublished 2012 data).

Even with the past disturbances, the Illinois Driftless Area still has an extremely rich diversity of plants and animals. Considering that it constitutes only 1.7% of the state’s total land area, it provides habitat for 42% (915 species) of our native flora. More than 270 species of birds occur here, about 90% of the 300 species of birds that regularly occur in the state. Forty-five species of mammals occur here, representing 78% of the state’s mammal species. Eleven amphibian and 26 reptile species occur here, representing 28% of the amphibian and 44% of the reptile species found in Illinois. Finally, the 1,632 miles (2,627 kilometers) of rivers, streams, and
wetlands of the Driftless Area support 89 species of fish and 39 species of mussels (Post 1998).

Endangered and Threatened Species of Jo Daviess County

Although the Illinois Endangered Species Protection Act was signed in 1972 (one year before the Federal Endangered Species Act of 1973), the first official listing of Illinois species did not occur until 1981 (Bowles et al. 1981). At that time, four mammals, one bird, and 33 plants were listed as either endangered or threatened for Jo Daviess County. As of 2004 (the most recent list revision), one mammal, six birds, five herptiles, 10 mussels or snails, four fish, one butterfly, and 51 plants were listed for the county (Nyboer and Ebinger 2004; Nyboer et al. 2006). From the first listing in 1981, two of the mammals have recovered significantly statewide to be delisted, and one has become extirpated. The only bird listed at that time, the American Bald Eagle, is now also delisted because of its recovery.

The recovery success story of the American Bald Eagle is one in which Jo Daviess County has played an extremely large role. When first listed in Illinois in 1981, the state had two active nests: one at the Savanna Army Depot in Jo Daviess County (Figure 50) and the other at the Crab Orchard Natural Wildlife Refuge in southern Illinois. The eagle was delisted on both the federal and state levels in 2007 and 2009, respectively, and now more than 100 nesting pairs occur statewide (Figure 51). Jo Daviess County alone has nearly 20 nesting pairs (Nyboer et al. 2006)!

Going back to those relict Ice Age plants, Jo Daviess County has the only locations for 11 of those species. Another seven species may be found only in both Driftless Area counties. State-listed plants and animals that migrated from the Great Plains prairies during the Hypsithermal Period include 14 plants, three reptiles, and one butterfly. Others that migrated here after glaciation are from the Atlantic coastal plain and the Appalachian Mountains.
Overall, the Illinois Driftless Area is a one-of-a-kind landscape that displays a rich diversity of our biological heritage. This unique natural heritage will persist only with the proper stewardship and with the cooperation of local citizens and conservation organizations working together to create successful partnerships so that future generations may enjoy these biological treasures.

References

Guide to the Route and Stop Descriptions

Some of the stops are on private property. The owners were kind enough to grant us access on the day of the field trip. Please treat their property with respect and do not litter or climb fences. Treat public property with the same respect. Parents, please closely supervise your children. If using a rock pick, please wear eye protection. Stay away from highwalls in the quarry.

If you are using the field trip guidebook at a later date, remember that proper permission to enter private property is required. You must obtain permission—no trespassing, please. Permission is also recommended should you want to enter the Hanover Bluff Quarry at a later date—contact the Department of Natural Resources at Apple River Canyon State Park to do so.

START of the field trip: Arrive at Apple River Canyon State Park, concessions picnic shelter. The maps to the route and stops begin on page 64.

STOP 1: APPLE RIVER CANYON STATE PARK

Apple River Canyon State Park is located in northeastern Jo Daviess County and is a unique geologic feature of Illinois (Figure 43). The canyon was formed during the Illinois Glacial Episode when a glacial lobe blocked the drainage of a watershed flowing to the southeast (delineated by the glacial till boundary). A lake formed within the watershed and began discharging across a drainage boundary into the adjacent Apple River watershed. Continued discharge of glacial meltwaters across the boundary caused downcutting of the landscape until the divide was breached and eventually drained the lake. The rushing waters escaping the lake rapidly carved their way through Silurian dolomite and Maquoketa Shale, and finally into dolomite of the Galena Group. A narrow canyon, as deep as 200 feet (61 meters) and as wide as 250 to 400 feet (76 to 122 meters) at the bottom, formed what is now Apple River Canyon (Frankie and Nelson 2002; Figure 52).

Apple River Canyon State Park will be a registration and assembly point. At this first site of interest, we will discuss the bedrock geology, glacial geology, hydrology, hydrogeology, botany, and history of the area. A hike along the Primrose Trail and across the river will give you a view of the canyon and will introduce you to the unique flora of the area (Figure 55). Parking and bathrooms are available.

TURN RIGHT (north) out of the parking lot onto North Canyon Park Road.

Travel approximately 250 feet (76 meters), follow the curve of the road to the right (east), and TURN RIGHT onto East Canyon Road.

Continue about 3 miles (5 kilometers) to the stop sign. TURN RIGHT (south) on Illinois Route 78.

Travel about 3 miles (5 kilometers) and TURN RIGHT (west) onto East Greenvale Road.

Travel 1 mile (1.6 kilometers) and obey the stop sign at North Stockton Road. Proceed on East Greenvale Road for about 2.5 miles (4 kilometers) farther and park in caravan formation along the road. Arrive at STOP 2—Benton Mound.
Figure 52 Formation of Apple River Canyon: (a) Preglacial drainage. (b) Formation of a lake during the Illinois glacial episode. (c) Postglacial drainage today (Figure 18 from Frankie and Nelson 2002, p. 51).

Figure 53 An 1893 plat of the village of Millville, Illinois. The bluff immediately north of the Apple River is the Primrose Trail. Image courtesy of the Daryl Watson Collection (Apple River, Illinois); used with permission.

Figure 54 Photograph from 1925 of a hand-painted sign describing the features in and around Millville, Illinois. Photograph from the Daryl Watson Collection (Apple River, Illinois); used with permission.
Benton Mound is the second highest point in Jo Daviess County and provides a panoramic view of multiple knobs and the rugged topography of the county. Here, participants will learn more of the geology and how the stratigraphy is responsible for the formation of the knobs and highlands.

The following is summarized from Frankie and Nelson (2002): The stop is on the northern flank of Benton Mound about 130 feet (40 meters) below its crest of 1,226 feet (374 meters) above msl. The mound is an erosional remnant protected by its 100-foot (31-meter)-thick cap of Silurian dolomite. From this point, it is possible to view several similar mounds to the north and northwest. Six miles (10 kilometers) away lie three knobs: Mt. Sumner (1,160 feet [354 meters] above msl), Squirrel Grove and Hudson Mounds (slightly higher than Mt. Sumner), and Charles Mound (1,241 feet [378 meters] above msl; Figure 56). These mounds represent what is left of the Dodgeville erosional surface (Figure 9). In addition, more information on the history responsible for the development of this area will be presented.

Just south of Benton Mound, we will pass an old stone house built in 1856 by George N. Townsend, Millville’s postmaster; it is on the historic register (Figure 44). Within the house, holes are still found in the eaves for honeybees to enter their hives, which were located in

Figure 55 The “poster wildflower” of the Driftless Area in Illinois, and specifically Apple River Canyon, is the Bird’s-Eye Primrose (*Primula mistassinica*), a State Endangered Plant. This is the only place it grows in Illinois. Photograph by Michael R. Jeffords (Illinois State Natural History Survey); used with permission.
Figure 56 (a) Numerous Silurian dolomite-capped knobs may be seen in the distance, as viewed from Benton Mound. Photograph by Samuel V. Panno; used with permission. (b) Lidar surface topography map of Jo Daviess County. The darker reddish-brown portions demarcate the highest elevations, which are capped by resistant Silurian-age dolomite. Fourteen named mounds mark the summits along the ridge tops. Map by Donald E. Luman.
the attic. This provided easy access for the owners to collect honey.

Leave STOP 2 and proceed to the stop sign on North Canyon Park Road.

TURN LEFT (south) onto North Canyon Park Road (County Route 10). Use caution—the hill limits visibility.

Travel 2.5 miles (4 kilometers) south to US Route 20.

TURN RIGHT (west) onto US Route 20.

Travel approximately 12.5 miles (20 kilometers), through Woodbine, through Elizabeth (use caution in downtown Elizabeth—US Route 20 makes a sharp curve to the west), to Illinois Route 84. Make sure to enjoy the views along the way!

STOP 3: HANOVER BLUFF NATURE PRESERVE
(latitude 42.221°, longitude −90.310°)

The Hanover Bluff Nature Preserve includes a sizeable abandoned quarry that was mined for aggregate up to the palisades facing the Mississippi River. The result is an area surrounded by high cliffs of Silurian dolomite (Figure 57) that are reminiscent of vistas of the southwestern United States (Figure 58). The following summary is from Frankie and Nelson (2002): The quarry and adjacent property, known as the Lang Property, is made up of 88.4 acres (35.8 hectares). The stratigraphy is dramatically exposed in the quarry and, at the top, consists of the Sweeney Formation, which is characterized by a pinkish gray dolomite with wavy beds and green shale partings. Coral and brachiopod fossils (*Microcardinalia* and *Pentamerus oblongus*) are abundant in this section. Below that is the Blanding Formation, which is a brownish gray dolomite with numerous layers of white chert and abundant silicified corals. Below that is the Mosalem Formation, the upper 20 to 30 feet (6 to 9 meters) of which is gray and argillaceous with bands of chert nodules. The lower part of the formation is argillaceous dolomite that grades into dolomitic shale; fossils are rarely found in this lower formation.

The nature preserve overlooks the former Savanna Army Depot, an ordnance manufacturing, testing, and storage facility located along the Mississippi River that operated from 1918 to 2000 (Figure 50). Activity and construction at the Depot peaked during World War II, raising base employment to more than 7,000 (Figure 59). Today the 13,062-acre (5,286-hectare) property is being managed to meet area economic development and wildlife habitat conservation goals (Figures 45 and 46).

Figure 57 Entrance to the abandoned quarry on the Hanover Bluff Nature Preserve showing a spire of Silurian dolomite that rises about 50 feet (15 meters) above the quarry floor. Photograph by Samuel V. Panno; used with permission.
The infrastructure and buildings associated with the base administration are located in Carroll County to the south and are being managed by the Jo-Carroll Depot Local Redevelopment Authority (2014). More than 11,000 acres (4,452 hectares) of the facility is located in Jo Daviess County. The majority of this acreage is now being jointly managed by the U.S. Fish & Wildlife Service and the Illinois Department of Natural Resources to preserve and restore the high-quality wildlife habitat areas as the Lost Mound Unit of the Upper Mississippi River National Wildlife and Fish Refuge. Before becoming the Savanna Army Depot, this area was known to locals as “The Prairie.” In 1910, Illinois Natural History Survey Ecologist Henry Allan Gleason published his findings after studying the extensive sand prairies he found here. Besides finding many rare plants not previously known in Illinois at The Prairie, he also stated that the sand prairies he found here were the best examples remaining in Illinois at the time (Shank et al. 1985). The creation of the Savanna Army Depot probably saved the largest remaining sand prairie in the state from being converted to row crop production with the advent of irrigation systems. Along with the bottomland forest, the sand prairie and sand savanna areas of the Lost Mound Unit support a host of endangered, threatened, and rare species (Anderson and Muehlenhardt 2002; Illinois Natural History Survey 2014a,b).

Reminders of the property’s history as a proving ground remain. On a January night in 1948, 150 tons (136,078 kilograms) of antitank mines exploded in one of the storage igloos, which were designed to direct any explosions up and down (Utica Observer-Dispatch 1948). No one was injured, but the blast shattered windows in nearby communities, was felt throughout a 30,000-square-mile (77,700-square-kilometer) area, and left a 100-foot (31-meter)-diameter, 50-foot (15-meter)-deep crater (Rowell 2013; RRAVCLUB 2013; Figures 50 and 59). The Depot is a Superfund site; several hundred locations were identified by the USEPA (2013a) as potentially posing environmental concern or requiring environmental investigation. Access to many areas is restricted because of the possibility of unexploded ordnance. As funds are made available, site cleanup is being undertaken by the U.S. Department of the Army so that the property can be transferred from its property inventory (USEPA 2013a,b).

Leave STOP 3 by following the caravan and completing a U-TURN on Whitton Road. Do not leave the caravan formation—follow Whitton Road southeast until the U-turn point.

Continue northwest about 1 mile (1.6 kilometers) to Hanover Hill Road and TURN RIGHT (northeast). Travel 1.5 miles (2.4 kilometers) and TURN LEFT onto West Blanding Road (west).

Follow West Blanding Road for 7 miles (11 kilometers) to Blanding Landing, our LUNCH STOP on the Mississippi River. West Blanding Road becomes South River Road for the last mile of our route. At the entrance to the park, make a LEFT TURN and use caution as you cross the railroad tracks.
LUNCH \((latitude\ 42.281^\circ,\ longitude\ -90.407^\circ)\)

Leave the lunch stop by crossing the railroad tracks and TURNING RIGHT (southeast) onto South River Road. Continue for 1 mile (1.6 kilometers) and TURN LEFT (northeast) onto South Blanding Road.

Travel approximately 3 miles (5 kilometers) to West Chestnut Road and TURN LEFT (west).

Enter Chestnut Mountain Resort and park as a caravan in the parking lot.

Arrive at STOP 4. We will take a short walk to view sinkholes.

STOP 4: CHESTNUT MOUNTAIN COVER-COLLAPSE SINKHOLES OVERLYING SILURIAN DOLOMITE \((latitude\ 42.325^\circ,\ longitude\ -90.394^\circ)\)

Numerous cover-collapse sinkholes are found throughout the highlands of western Jo Daviess County in fine-grained sediments overlying crevices in Silurian dolomite (Figure 60). Along the road to the Chestnut Mountain Ski Resort, we will stop at several sinkholes just off the road. The sinkholes formed as a result of the collapse of sediment into solution-enlarged crevices. These sinkholes are usually circular and range from 30 to 70 feet (9 to 21 meters) in diameter and from 10 to 20 feet (3 to 6 meters) deep. The sinkholes are similar to the sucker holes in size, shape, and depth, but they lack the ejecta that forms elevated rings around the sucker holes. The sinkholes form in sediments overlying large crevices (about 3 feet [1 meter] wide) within the underlying Silurian dolomite. Because of the linear nature of crevices, the sinkholes often form en echelon (sometimes more than six in a row) along the trend of the crevices (Figure 12).

Leave STOP 4 by driving east on West Chestnut Road.

Obey the stop sign and then TURN LEFT (north) onto South Blanding Road.

Continue 400 feet (122 meters), obey the stop sign, and TURN LEFT (northwest) onto West Blackjack Road (County Route 8).

Figure 60 This cover-collapse sinkhole overlying a Silurian dolomite crevice is about 20 feet (6 meters) in diameter and about 10 feet (3 meters) deep. The lack of ejecta around the rim of the sinkhole and the fact that ore minerals did not occur in Silurian dolomite are evidence that this is not a sucker hole. Photograph by Samuel V. Panno; used with permission.

STOP 5: CASPER BLUFF LAND AND WATER RESERVE \((latitude\ 42.358^\circ,\ longitude\ -90.427^\circ)\)

The Casper Bluff Land and Water Reserve is located on the sloping bluff top along the east side of the Mississippi overlooking the mouths of the Galena River and Smallpox Creek. The 80-acre (32-hectare) preserve is named for Dave and Pat Casper, the former owners, who worked with the JDCF to allow them to purchase the property. The bluff top is home to stands of oak trees, restored prairie, walking trails, and striking vistas across the Mississippi River to the Iowa bluffs.
The preserve is also significant because it contains a large portion of the Aiken Mound Group (11JD5). This 1-mile (1.6-kilometer)-long Native American burial mound group was constructed by Late Woodland (A.D. 600–1000) people and consists of conical and linear mounds as well as a ritual enclosure and a large bird effigy (Figure 61). At one time, the group contained more than 50 mounds, but today, approximately 20 remain intact. The bluff spurs adjacent to and around the mounds also contain abundant evidence of habitation by a long sequence of Native American cultures over many millennia. These mounds are part of a larger sacred landscape that includes an almost continuous chain of mound groups extending from the Keough Effigy Mounds Land and Water Reserve southeast to the Casper Bluff Land and Water Reserve (Figure 62).

The Aiken Mounds (11JD5) are also important because local pioneer archaeologist William Baker Nickerson created a detailed map of the mounds and conducted limited excavations at the ritual enclosure and bird effigy at the end of the 19th century. Nickerson was so impressed with the mound group that he used it as an example in his prescient 1911 publication, The Mound Builders—A Plea for the Conservation of the Antiquities of the Central and Southern States. Nickerson penned this article more than a century ago, and his plea has at last been answered.

Leave STOP 5 by exiting the reserve driveway and TURNING LEFT (north) onto South Pilot Knob Road.
Continue about 2 miles (3.2 kilometers) to the stop sign at North Blackjack Road.
Obey the stop sign and TURN LEFT (north) onto North Blackjack Road.
Follow the route into Galena, approximately 2 miles (3.2 kilometers).
Slow down as you enter Galena and follow the curve to the RIGHT (north) onto Fourth Street.
Travel 300 feet (91.4 meters) to US Route 20 (Decatur/Spring Street) and obey the stop sign.
TURN LEFT (west) onto US Route 20 and continue 2 blocks (400 feet [122 meters]).
TURN RIGHT (north) onto Park Avenue.
Continue 400 feet (122 meters) to Bouthillier Street and TURN LEFT.
Cross the railroad tracks and enter Depot Park; arrive at STOPS 6 and 7 (a two-part stop).
Please park in the available parking spaces. The trip will end here.
Thank you for joining us. We hope you enjoyed the trip. Please travel home safely.
STOP 6: NATURAL SPRING (latitude 42.409°, longitude –90.430°)

Figure 63 Spring along the Galena River Trail. It is possible that the spring is an abandoned flowing artesian well. The photograph was taken in February of 2014, when most of the county was covered with snow. The warmth and movement of the upwelling groundwater warmed the surrounding ground and melted the snow. Photograph by Samuel V. Panno; used with permission.

A spring is located along the Galena River Trail in Galena, Illinois (Figure 63). The history of the spring is uncertain, and it is possible that it is an abandoned flowing artesian well. A building could be seen in close proximity to the spring in 1893, based on a plat book of the area. However, the structure could have been either a spring house or a well house. Locals stated that the spring was used to clean cement trucks at one point, and chunks of concrete may be found within the spring pool and surrounding area. The specific conductance of the spring water changes very little throughout the year, indicating a constant chemical composition. Its chemical composition is similar to that of the city’s wells, which are approximately 1,600 feet (488 meters) deep and tap sandstone of the Cambrian-age Mount Simon Sandstone that were under flowing artesian conditions when they were drilled.

The Cl⁻ concentration of water from the unnamed Galena Trail spring is 1.1 mg/L. The very low Cl⁻ concentration of the spring, the constant temperature, and the specific conductance data for the spring might suggest a relatively deep source (150 feet [46 meters] or greater based on unpublished data by S. Panno, ISGS) that is not mixing with shallow groundwater. The terms “deep” and “shallow,” in this case, may be thought of in terms of water quality and not depth. Deep may be used to refer to pristine groundwater unaffected by human-related contaminants, whereas shallow may be used to refer to groundwater affected by human-related contaminants. Groundwater affected by recent recharge from rainfall and snowmelt would reflect the effects of seasonal temperature changes and would reveal the presence of surface-borne contaminants such as road salt. Little or no local or near-surface influence on the spring water is apparent even after significant rainfall or snowmelt events, based on data provided by E.L. Baranski. Specific conductance and temperature for the spring are a stable 460 µS/cm and 13.3 °C all year long. Data for the stable isotopes of deuterium (−53 parts per thousand) and oxygen-18 (−8.0 parts per thousand) from a shallow private well in Galena and the Galena Trail spring are essentially identical and fall close to what would be expected at the latitude of Jo Daviess County. (Isotopes of precipitation change with changes in latitude, becoming lighter to the north and heavier to the south because of temperature and humidity effects.)

It is apparent that groundwater for shallow private wells in the area (about 100 feet [31 meters] deep) and the Galena Trail spring are from the same aquifer (Galena-Platteville); however, the chemical composition of groundwater from shallow wells in the area is affected by surface-borne contaminants, as discussed above, whereas the Galena Trail spring is not. This suggests a relatively deep source of groundwater for the unnamed spring that is unmixed with shallow, typically chemically influenced groundwater. The actual source of the water (either a natural spring or an abandoned well) has not been determined at this time.

STOP 7: GALENA, ILLINOIS (latitude 42.420°, longitude –90.436°)

Galena lies across the Galena River from our vantage point in the Depot parking lot (Figure 40). The City of Galena is an incredibly well-preserved example of a 19th-century boomtown that became the largest river port north of St. Louis prior to the Civil War (Figures 64 and 65). It was the product of geography and geology. Rich veins of lead ore were found here and across the Illinois border into Wisconsin. Galena was the hub of navigation for the boats of the time (Figure 66). Main and Bench Streets represent old river terraces, formed
as the Galena River channel adjusted to changing Mississippi River levels because of glacial meltwater. The channel of the stream was scoured and then buried in sediment. The pilings for the walk bridge you see had to be sunk 90 feet (27 meters) before hitting bedrock.

Despite periods of Pleistocene sedimentation, the first miners found a clear and deep stream more than 200 feet (61 meters) wide, but mining and farming choked it with new sediment, ruining the river trade that had fueled Galena’s growth. The railroad, arriving in 1854, carried away what trade remained, mostly to Chicago. The U.S. Army Corps of Engineers instituted a massive flood control project in 1948 as flooding became more frequent (Figure 67). The levee and floodgates (the latter still used) saved the downtown commercial district—along with the town’s future as a major tourist destination. Yet the river you see now is but a remnant
Figure 66 The steamboat Nominee docked in Galena, with two men and a stack of pigs of lead (ingots) in the foreground, circa 1852. Most of the buildings seen in this photograph are still standing. Photograph courtesy of the Alfred W. Mueller Collection (Galena, Illinois).

Figure 67 Photograph of the 100 block of South Main Street in Galena, Illinois, during the flood of 1911. During the early half of the 20th century, Galena experienced repeated flooding that threatened its downtown. Floodgates installed in 1951 by the U.S. Army Corps of Engineers, and last used in 2005, have spared the city from damaging floods. Photograph courtesy of the Alfred W. Mueller Collection (Galena, Illinois).
of its former self (Figure 68)—a reminder of 150 years of environmental degradation.

Many local citizen activists have taken actions to re-mediate the environmental damage to the area and its wildlife in Jo Daviess County. For example, no group has done more to further the success of the Eastern Bluebird in Jo Daviess County, Illinois, than the Natural Area Guardians. Established in 1990, the organization has held bluebird workshops for years, teaching newcomers the basics of bluebird care and nest monitoring. The county typically fledges between 800 and 1,500 nestlings per year (Figure 69), depending on predation, disease, weather, and number of reports from monitors. The Natural Area Guardians now carry on their work as part of the JDCF as the Conservation Guardians of Northwest Illinois.

References

Geologic time chart showing the succession of life forms through time (from Collinson 2002). Vertical lines do not indicate evolutionary paths for organisms.
Characteristic fossils of the Ordovician Platteville and Galena Groups: (a) trilobite *Gabricerasaurus* sp.; (b) trilobite *Thaleops ovata*; (c) trilobite *Encrinurus* sp.; (d) crinoid *Cupulocrinus gracilis*; (e) colonial coral *Foerstophyllum* sp.; (f) ostracod *Eoleperditia fabulites*; (g) brachiopod *Dalmanella* sp.; (h) brachiopod *Sowerbyella punctostriata*; (i) brachiopod *Campylorrhiss deflexa*; (j) brachiopod *Hesperorrhis concava*; (k) horn coral *Streptelasma* sp.; (l) trepostome bryozoan; (m) brachiopod *Strophomena platiniensis*; (n) blue-green algae *Receptaculites oweni*; (o) clam *Vanuxemia* sp.; (p) snail *Maclurites* sp.; (q, r) brachiopod *Opikina minnesotensis*; (s) snail *Hormotoma major*; (t) cephalopod *Richardsdoceras* sp.; (u) snail *Ectomaria* sp.; (v) snail *Phragmolites* sp.; (w) snail *Tetranota* sp.; (x) snail *Lophospira* sp.; (y) snail *Clathrospira* sp. Fossils are from the Platteville Group, except g, h, k, n, and s, which are from the Galena Group. All specimens shown approximately life size (from Kolata and Nimz 2010, p. 150). Photographs by Dennis R. Kolata.
Characteristic fossils of the Silurian Period and the Early Devonian Epoch. (a, b) Trilobite *Gravicalymene celebra*, 1.25×, Joliet Dolomite; (c, d) spiriferid brachiopods, 1.5×; (e) brachiopod *Schuchertera* sp., 1.8×; (f) cephalopod *Dawsonoceras annulatum*, 0.7×, Racine Dolomite; (g) brachiopod *Amphigenia curta*, 1.4×; (h) cystoid *Caryocrinites* sp., 1.2×, Racine Dolomite; (i) bivalve *Amphicoelia neglecta*, 1.0×, Racine Dolomite; (j) trilobite pygidium *Glyptambon gassi*, 2.0×, Racine Dolomite; (k) trilobite pygidium *Arctinurus occidentalis*, 0.9×, Racine Dolomite; (l) brachiopod *Pentamerus* sp., 0.9×, Marcus Dolomite; (m) brachiopod *Eodevonaria arcuata* (upper) and spiriferid brachiopods (lower), 1.1×; (n) colonial coral *Halysites* sp., 0.6×; (o) colonial coral *Favosites* sp., 0.6×, Louisville Limestone. Fossils c, d, e, g, and m are from the Lower Devonian Clear Creek Formation (from Kolata and Nimz 2010, p. 162).
Glossary

The following definitions are adapted in total or in part from several sources. The principal source is R.L. Bates and J.A. Jackson, eds., 1987, *Glossary of Geology*, 3rd ed.: Alexandria, Virginia, American Geological Institute, 788 p.

age An interval of geologic time; a division of an epoch.

algific talus slope A rare combination of geologic conditions that sustain an ecosystem that exists in the Driftless Area (algific = cold producing). These features occur only in karst areas and sustain flora and fauna from the Pleistocene epoch.

anticline A convex-upward rock fold in which strata have been bent into an arch; the strata on either side of the core of the arch are inclined in opposite directions away from the axis or crest; the core contains older rocks than does the perimeter of the structure (see also syncline).

anticlinorium A complex structure having smaller structures, such as domes, anticlines, and synclines, superimposed on its broad upwarp.

aquifer A body of geologic material that is saturated with water and through which water can easily move to yield significant quantities of water to a spring or a well.

arch A broad, structural upward bowing or uplift of sedimentary rocks that can separate adjacent structural basins and that formed as a result of horizontal tectonic compression of the crust.

argillaceous Said of rock or sediment that contains, or is composed of, clay-sized particles or clay minerals.

basement complex Rocks of igneous or metamorphic origin that underlie the oldest sedimentary rocks in a region.

basin A structural low area that generally receives thicker deposits of sediments than adjacent areas; the low areas tend to sink more readily, partly because of the weight of the thicker sediments.

bedrock The solid rock (sedimentary, igneous, or metamorphic) that underlies the unconsolidated materials near the surface (for example, soil, sand, gravel, glacial till, etc.).

calcite A common rock-forming mineral consisting of calcium carbonate (CaCO₃); it may be white, colorless, or pale shades of gray, yellow, and blue; it has perfect rhombohedral cleavage, appears vitreous, and has a hardness of 3 on the Mohs scale; it effervesces (fizzes) readily in cold dilute hydrochloric acid. It is the principal constituent of limestone.

chert Silicon dioxide (SiO₂); a compact, massive rock composed of minute particles of quartz, chalcedony, or both; it is similar to flint but lighter in color.

conformable Said of strata deposited one upon another without interruption in accumulation of sediment; beds are parallel.

cover-collapse sinkholes Sinkholes formed in sediment overlying creviced bedrock. These features form when soil falls into the crevice and is repeatedly washed away by groundwater. A silo-shaped cavity forms in the soil from the bedrock–soil interface and works its way to the land surface. Erosion causes the collapse feature to develop into a bowl-shaped depression in the soil.

crevice A narrow opening in rock that is wider than a fracture. If present in a bedrock aquifer, crevices can provide pathways for rapid groundwater flow.

dolomite A mineral, calcium magnesium carbonate (CaMg(CO₃)₂); also the name applied to sedimentary rocks composed largely of the mineral. It is white, colorless, or tinged yellow, brown, pink, or gray; has perfect rhombohedral cleavage; appears pearly to vitreous; and effervesces feebly in cold dilute hydrochloric acid.

downgradient Refers to the direction of flow of groundwater within an aquifer, similar to the term “downstream” for surface water.

drift All rock material transported by a glacier and deposited either directly by the ice or reworked and deposited by meltwater streams, the wind, or both.

Driftless Area A 16,000-square-mile (41,440-square-kilometer) area in northeastern Iowa, southwestern Wisconsin, southwestern Minnesota, and northwestern Illinois where the absence of glacial drift suggests that the area may not have been directly affected by glaciation.

en echelon A diagonal line of equally spaced items or geologic features.

epoch An interval of geologic time; a division of a period (for example, Pleistocene Epoch).

era The unit of geologic time that is next in magnitude beneath an eon; it consists of two or more periods (for example, Paleozoic Era).

fault A fracture in crustal rock along which movement occurs. The boundaries of the fracture act as a planes along which sliding occurs relative to each side of the fault. Movement may be vertical, sideways, or both.

floodplain The surface or strip of relatively smooth land adjacent to a stream channel produced by the erosion and deposition actions of the stream; the area covered with water when the stream overflows its banks at times of high water. It is built of alluvium carried by the stream during floods and deposited in the sluggish water beyond the influence of the swiftest current.

formation The basic rock unit, one distinctive enough to be readily recognizable in the field and widespread and thick enough to be plotted on a map. It describes the strata, such as limestone, sandstone, shale, or combinations of these and other rock types. Formations have formal names, such as Joliet Formation or St. Louis...
Limestone (Formation), generally derived from the geographic localities where the unit was first recognized and described.

fossil Any remains or traces of a once-living plant or animal preserved in rocks (arbitrarily excludes recent remains); any evidence of ancient life. Also used to refer to any object that existed in the geologic past and for which evidence remains (for example, a fossil waterfall).

galena A mineral made up of lead sulfide (PbS₂) that is the major ore of lead. Galena is gray and silvery in color, is very dense, and forms crystals in the shape of a cube or octahedron (eight-sided). Galena is often associated with sphalerite.

glacier A large, slow-moving mass of ice formed on land by the compaction and recrystallization of snow.

igneous Said of a rock or mineral that solidified from molten or partly molten material (that is, from magma).

joint A fracture or crack in rocks along which there has been no movement of the opposing sides (see also fault).

karst Collective term for the landforms and subterranean features found in areas with relatively thin soils underlain by limestone or other soluble rocks; characterized by many sinkholes separated by steep ridges or irregular hills. Tunnels and caves formed by dissolution of the bedrock by groundwater honeycomb the subsurface. Named for the region around Karst in the Dinaric Alps of Croatia, where such features were first recognized and described.

karst aquifer An aquifer whose connected porosity is dominated by fractures, crevices, and conduits. Groundwater flow through a karst aquifer can be as rapid as meters per second (several feet per second) rather than the more typical meters per year (several feet per year) in a sand and gravel aquifer, for example. Because of rapid recharge to these aquifers, they can be highly susceptible to groundwater contamination.

lidar Light detection and ranging is a remote sensing technique that uses a pulsating laser sensor to scan the Earth’s surface. The reflected light pulses are detected by instruments that record the location of each return pulse in three dimensions. After processing, lidar point cloud data provide a detailed three-dimensional elevation model of the surface.

limestone A sedimentary rock consisting primarily of calcium carbonate (CaCO₃; the mineral calcite). Limestone is generally formed by accumulation, mostly in place or with only short transport, of the shells of marine animals, but it may also form by direct chemical precipitation from solution in hot springs or caves and, in some instances, in the ocean.

loess A homogeneous, unstratified accumulation of silt-sized material deposited by the wind.

metamorphic Any rock derived from preexisting rocks by mineralogical, chemical, and structural changes, essentially in the solid state, in response to marked changes in temperature, pressure, shearing stress, and chemical environment at depth in the Earth’s crust (for example, gneisses, schists, marbles, and quartzites).

mine A place where economically valuable minerals are extracted from the Earth either as underground workings or as open pit excavations. Minerals or valuable materials can include aggregate, metals, and coal.

mineral A naturally formed chemical element or compound having a definite chemical composition, an ordered internal arrangement of its atoms, and a characteristic crystal form and physical properties.

nonlithified Loose sediment that has not been converted to rock by natural geologic processes.

ore A mineral of economic value that can be commercially mined at a profit. Ore minerals include galena and sphalerite.

palisades A picturesque, extended rock cliff or line of bold cliffs rising precipitously from the margin of a stream or lake.

peneplain A land surface of regional scope worn down by erosion to a nearly flat or broadly undulating plain.

period An interval of geologic time; a division of an era (for example, Cambrian, Jurassic, and Tertiary).

quarry A mine that is open (not underground) and the source of aggregate, rock, and sand and gravel. Quarries often appear as large holes in the Earth with steep cliffs on all sides.

relief (a) A term used loosely for the actual physical shape, configuration, or general unevenness of a part of Earth’s surface, considered with reference to variations of height and slope or to irregularities of the land surface; the elevations or differences in elevation, considered collectively, of a land surface (frequently confused with topography). (b) The vertical difference in elevation between the hilltops or mountain summits and the lowlands or valleys of a given regional extent.
rift (a) A narrow cleft, fissure, or other opening in rock made by cracking or splitting; (b) a long, narrow continental trough that is bounded by normal faults—a graben of regional extent. Formed in places where the forces of plate tectonics are beginning to split a continent (for example, the East African Rift Valley).

sediment Solid fragmental matter, either inorganic or organic, that originates from weathering of rocks and is transported and deposited by air, water, or ice or that is accumulated by other natural agents, such as chemical precipitation from solution or secretion from organisms. When deposited, sediment generally forms layers of loose, unconsolidated material (for example, sand, gravel, silt, mud, till, loess, and alluvium).

sedimentary A rock resulting from the consolidation of loose sediment that has accumulated in layers (for example, sandstone, siltstone, mudstone, and limestone).

silt A rock fragment or detrital particle smaller than a very fine sand grain and larger than coarse clay, having a diameter in the range of 4 to 62 microns; the upper size limit is approximately the smallest size that can be distinguished with the unaided eye.

sinkhole Any closed depression in the land surface formed as a result of the collapse of the underlying soil or bedrock into a cavity. Sinkholes are common in areas where bedrock is near land surface and susceptible to dissolution by infiltrating surface water. The essential component of a hydrologically active sinkhole is a drain that allows any water that flows into the sinkhole to flow out the bottom into an underground conduit.

sphalerite A mineral made up of zinc sulfide that is a major source of zinc. Sphalerite can be black, brown, red, green, or yellow and is often referred to by miners as black jack.

stage, substage Geologic time–rock units; the strata formed during an age or subage, respectively. Generally applied to glacial episodes (for example, Woodfordian Substage of the Wisconsinan Stage).

stratigraphy The study, definition, and description of major and minor natural divisions of rocks, particularly the study of their form, arrangement, geographic distribution, chronologic succession, naming or classification, correlation, and mutual relationships of rock strata.

sucker holes Holes found in mining areas of northwestern Illinois that were dug by early miners as a means of accessing shallow ore minerals along crevice-filling ore deposits in areas with shallow soils. (Illinois settlers were referred to as suckers in the 19th century, and Illinois was referred to as The Sucker State.)

syncline A convex-downward fold in which the strata have been bent to form a trough; the strata on either side of the core of the trough are inclined in opposite directions toward the axis of the fold; the core area of the fold contains the youngest rocks (see also anticline).

system A fundamental geologic time–rock unit of worldwide significance; the strata of a system are those deposited during a period of geologic time (for example, rocks formed during the Pennsylvanian Period are included in the Pennsylvanian System).

tectonic Pertaining to the global forces that cause folding and faulting of the Earth’s crust; also used to classify or describe features or structures formed by the action of those forces.

tectonics The branch of geology dealing with the broad architecture of the upper (outer) part of Earth; that is, the major structural or deformational features, their origins, historical evolution, and relations to each other. It is similar to structural geology but generally deals with larger features, such as whole mountain ranges or continents.

terrace A relatively flat area above an active floodplain that represents an older, higher floodplain. A terrace forms when a stream erodes downward to a new lower level.

till Nonlithified, nonsorted, unstratified drift deposited by and underneath a glacier and consisting of a heterogeneous mixture of different sizes and kinds of rock fragments.

topography The natural or physical surface features of a region, considered collectively as to form; the features revealed by the contour lines of a map.

unconformity A substantial break or gap in the geologic record where a rock unit is overlain by another that is not next in stratigraphic succession.

water table The point in a well or opening in the Earth where groundwater begins. It generally marks the top of the zone where the pores in the surrounding rocks are fully saturated with water.

weathering The group of processes, both chemical and physical, whereby rocks on exposure to the weather change in character and decay and finally crumble to soil.