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Abstract

The Louvain method [1] is a successful technique for community detection that
decomposes a network by optimizing the modularity of the partitions. It was
not designed, however, for cases where a network is incomplete and network
nodes contain some unused information. A new method is introduced here,
Propagation Mergence (PM), that was designed to handle incomplete networks,
and leverage node information to improve community detection. PM utilizes
PageRank, propagation, and greedy merging to 1) locate local hubs, 2) discover
small subgraphs, and then 3) create larger subgraphs via merging. An illus-
trative literature network example is presented to demonstrate that PM yields
results that improve upon the Louvain method.

1 Introduction

Propagation Mergence (PM) works differently than Louvain method. We be-
lieve its effectiveness should contribute to its ability to pick up subtle differences
in textural information. To get a good measurement of the content (in this case
textual information) of a given network, we introduce the concept of content
vectors which describe the content of nodes or subgraphs. In PM, content vec-
tors were generated by a data-driven approach (TopMine [2] ) and TF-IDF [4]
measurements from abstracts (which contain textual information) of each pa-
per. Once the content vectors are ready, we will assign the similarity as the
weight for each edge. Then we run PageRank on this network to identify the
most influential nodes. Using these selected nodes as “local hubs,” we can per-
form a variant of PageRank to propagate the topics information from the local
hubs to form many small subgraphs. In the final stage, we greedily merge small
subgraphs based on their similarity to obtain the final solution.

The complete algorithm consists of the following stages:
1. Vector preparation: set up content vectors and topic vectors for each node.
2. PageRank: find most influential nodes as sources.
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3. Propagation: build local clusters.
4. Mergence: merge local clusters into final clusters.

2 Content vectors, PageRank

2.1 Content vectors

In applications involving textural information, phrases are more meaningful
than words. Instead of using bag-of-words as features, we use bag-of-phrases to
build the content vectors. The raw input for this stage are the text descriptions
of the papers. In our experiment, we concatenate the abstract and three copies
of the title (all from one paper) to form such text description.

Notice that the ordering of words and punctuations should be preserved for
phrases extractor. For phrases extractor, we can choose NLP approach or data-
driven approach. In this experiment, we choose a data-driven approach from
the first half of the TopMine algorithm. This simple algorithm uses expectation
of merging two words as a statistical measurement to discover phrases from the
text. More details can be found in the original paper [2].

After obtaining bag-of-phrases for each paper, we then use them to generate
TF-IDF vectors. TF-IDF (term frequency - inverse document frequency) can
filter out common word/phrases among all the papers, for example, “case study”
and “design problem” are very common in papers from Design Automation Con-
ference. The TF-IDF weight for phrase i in document j is:

pij = TF · IDF

TF =
appearances of phrase i in document j

total number of phrases in document j

IDF = ln
total number of document

number of document with i in it

After TF-IDF vectors are ready, we can define weight for each directed edge:

wij =
σ(vi, vj)∑
c∈C σ(vi, vc)

where σ is the cosine similarity function, and vi is the TF-IDF vector for node
i. Ci is all the outgoing edges from node i. Bi is all incoming edges of node i.
Ai = Bi ∪ Ci is the set of all edges connected of node i.

2.2 PageRank

After we set up the weight, we can run PageRank [3] on the entire network.
The updating method for si (PageRank score of node i) is written as follow:

si =
∑
j∈Bi

wijsj
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where wij ∈ [0, 1] is the normalized weight of edge we defined previously.

Using power method, we can update score si = 1 for all the nodes in the
network until converge. Since all edge were normalized, the sum of all score will
remain as a constant throughout the updates.

In the sense of finding the most influential nodes, what PageRank essentially
doing is transferring credits from papers to papers. The underlying assumption
is that if paper i cites another paper j and their similarity is high, then more
credit will go from i to j. But since the weights of all outgoing edges of each
node add up exactly to 1, no credit will be created or be destroyed during the
transferring process.

Figure 1: visualization of top 50 most influential nodes in the network.

Figure 1 highlight the top 50 nodes in a network. Notice that these nodes
were distributed evenly on the network, thus this ranking can also be used to
find the “local centers” of the network.

3 Propagation Mergence

The idea behind Propagation is that once we obtain the most influential nodes
in the network, we can use these nodes as “sources” to propagate topics/belief
through the network, and hopefully, the Propagation itself is enough to form
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accurate subgraphs (communities) around the “sources.” However in our ex-
periment, using this approach alone yields poor result.

To improve this approach, we add another stage called Mergence into our algo-
rithm. The idea behind Mergence is to decompose the network into many small
local subgraphs first, and then greedily merge them into bigger subgraphs based
on some criteria. This additional stage allows the coexistence of different sizes
of subgraphs after the Mergence stage.

3.1 Propagation

For propagation, we design a simple algorithm using PageRank again. We first
pick a set of “sources” from the previous stage (the most influential nodes) and
set up their topics vectors as unique one-hot vectors (such that the length of the
topics vectors is equal to the number of sources). For example, if we pick five
sources, (in practice, we will need to pick up to a few hundred sources.) then
the topics vector for the second source will be:

t2nd source =


0
1
0
0
0


After setup, we update the topics vector of the “non-sources” nodes using
PageRank via a topological order until they converge (topical order can speed
up the convergence time; notice that we don’t update the “source” nodes.) For
each node i, the update method for the topic vector is defined as:

ti =
∑
j∈Ai

wijtj

For example, when updating node 101, if it has 3 connections, each with weight
0.6, 0.3, 0.1, then the new topics vector for node 101 is:

t101 = 0.6 ∗


0

0.3
0.5
0.2
0

 + 0.3 ∗


0.1
0.8
0.1
0
0

 + 0.1 ∗


0
0

0.7
0.2
0.1


This algorithm can run quickly on an implementation such as Numpy in Python.
However, if we replace the topic vector with a dictionary and set up a threshold
for message passing, the overall computational complexity can be decreased to
match the ordinary PageRank.

When all the topics vectors converge, we determine the initial subgraph as-
signments based on the index of the largest entry in the topic vector of each
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nodes. For example, node 101 belong to cluster 2 if

t101 =


0.01
0.56
0.29
0.1
0.04


3.2 Mergence

In the Mergence stage, we merge subgraphs greedily by ranking the options of
merging two subgraphs based on the criteria we choose (unlike Louvain method,
the merge operation in Propagation Mergence is permanent). In our experiment,
we choose the textural similarity as the main criteria. The content vector of a
subgraph is defined as:

gi =

∑
j∈Gi

vj

|Gi|
where Gi is the set of all nodes in the subgraph i. The combined vector gij is
defined as:

gij =
|Gi| · gi + |Gj | · gj
|Gi|+ |Gj |

The score of merging subgraph i and j is defined as the cosine similarity of two
content vectors divided by the combined size:

scoresimilarity
ij =

σ(gi, gj)

|Gi|+ |Gj |
where the denominator could be seen as the regulation term for the “loss” func-
tion. By adding the size penalty, we prevent some subgraphs becoming too big
and similar to all its neighbor.

Another criterion we may want to consider is the concentration of the con-
tent of the subgraph, which measurement could be calculated by the entropy of
the combined vector of subgraphs i,j:

scoreentropyij = −entropy(gij)

In addition, we can also add modularity function as a filter to refuse options
that decrease the overall modularity of the partition.

scoresimilarity+modularity
ij = scoresimilarity

ij · (∆Q > 0)

where (∆Q > 0) is a Boolean expression, and ∆Q can be simplified analytically
from the modularity function Q [1].

Careful readers may speculate whether it’s possible to omit propagation stage
and let each node form a unique cluster directly from the Mergence stage. In
practice, this is not recommended because we merge subgraphs greedily and
irreversibly (unlike in Louvain method). Propagation is essential for forming
the initial reliable subgraphs.
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4 Observation and Result

4.1 Observation

Since the algorithm run in an unsupervised manner with no true “label” for
the data we used in our application, we built a visualization tool for the human
expert to verify the result. We also run a basic version of the Louvain method
for comparison. We run the algorithm with the following setting:

* criterion = scoresimilarity+modularity

* Initial subgraphs number = 180
* Final subgraphs number = 89
* Propagation iteration number = 300 (times per nodes)

For the same density, Propagation Mergence identifies more communities than
Louvain method. (89 vs. 69 clusters) After careful analysis, we discovered
that some very small communities (1–2 nodes) gain independence from large
communities in Propagation Mergence. Propagation Mergence correctly picks
up the differences in textural information, hence making the separation possible.

To our surprise, Propagation Mergence performs very well even without consid-
ering the structure of the network. In some areas of the network, the partitions
drawn by Louvain method are similar or even identical with those drawn by
Propagation Mergence (see Figure 2a & 2b).

Figure 2a/2b: highlight of the decentralized system communities in Louvain Method (left) and

Propagation Mergence (right)

In some areas when the structures are too complicated for Louvain method,
Propagation Mergence started to show its advantage via reading the content of
the nodes. Here we show a few scenarios where Propagation Mergence makes
more accurate (less obvious mistakes) partitions than Louvain Method.
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Figure 3a/3b: highlight of the Computer aid design communities in Louvain Method (left)

and Propagation Mergence (right)

As shown in Figure 3b, Propagation Mergence recognizes the correct bound-
ary between Computer aid design (blue) and Family Product design (brown),
whereas Louvain method (Figure 3a) fails to recognize the boundary (green).
We believe the property of correctly recognizing the boundary is coming from
the Propagation stage. The similarity measurement dictates the amount of
information that can pass from one node to another. If two nodes show low
similarity, then one node simply cuts off the connection from the other side.

Figure 4a/4b: highlight of the surrogate modeling communities in Louvain Method (left) and

Propagation Mergence (right)

As shown in Figure 4b, Propagation Mergence recognizes a community (pink)
related to Bayesian network, whereas Louvain (Figure 4a) method merges this
community into surrogate modeling community (grey).
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Figure 5a/5b: highlight of the uncertainty design communities in Louvain Method (left) and

Propagation Mergence (right)

As shown in Figure 5a, Louvain method creates two duplicated communities
related to uncertainty design (magenta and green), whereas Propagation Mer-
gence (Figure 5b) correctly merges them (orange). The above two cases show
that Propagation Mergence has advantages when content are more informative
than structural information.

4.2 Result

Figure 6 shows the complete network partitions by Propagation Mergence.

Figure 6: the complete partition result from Propagation Mergence
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The proposed algorithm is able to detect the large communities, with the
high frequency words/phrases reported below:

• reliability, uncertainty, error, random, reliability analysis, probabilistic, interval

• metamodeling, kriging, kriging model, surrogate, surrogate models, model, approximation

• market systems, market, profit, product, consumer, price, preference

• family, product family, product, product platform, redesign, platform, commonality

• visualization, preference, user, content, product, user generated, interaction

• reconfigurable, reconfigurable system, transformation, adaptive, product, concept genera-
tion, system

• decentralized, architecture, process architecture, mistakes, distribution, convergence, im-
pulses

• analytical target, target cascading, analytical target cascading, coordination, target, atc,
network

• robust design, robust optimization, robust, interval uncertainty, variation, computer experi-
ments, sequential quadratic programming

The complete code and the visualization tool for the DAC networks can
be found at (github) https://github.com/sudongqi/Propagation_Mergence.
(demo) http://sudongqi.com/Propagation_Mergence/index.html.

5 Conclusion

We have introduced Propagation Mergence for network clustering based on con-
tent and structural information. It’s a general, unsupervised community detec-
tion algorithm that has been successfully applied in ASME Design Automation
Conference. We showed that when the content of the nodes is available in
the network, using this algorithm can yield much more meaningful results than
Louvain method.
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