U.S. Pesticide Sales and Usage

Under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Federal Food, Drug, and Cosmetic Act (FFDCA), U.S. Environmental Protection Agency (EPA), in cooperation with the states and other agencies, such as the Food and Drug Administration (FDA) and the U.S. Department of Agriculture (USDA), is responsible for regulating the production and use of pesticides in the United States. This report provides contemporary and historical economic information on the U.S. pesticide-producing and -using sectors covered by these state and federal regulatory programs. Economic profile information covers a variety of topics, particularly the pesticide market with respect to dollar values and quantities of active ingredient. The EPA Pesticide Program has issued such market reports since 1979.

This report is intended only to present objective economic profile and trend information reflecting the best available information on pesticide sales and use. It does not attempt to interpret, reach conclusions about, or make inferences about the data. Detailed analysis of causal factors or implications, such as potential impacts on human health, the environment, or the economy, falls beyond the scope of this project.

We caution the reader not to infer too much from changes in the amount of pesticides used from year to year. Changes in the amount of pesticides used are not necessarily correlated with changes in the level of pest control or changes in the human health and environmental risks associated with pesticide use.

Neither EPA nor any other agency has a program devoted specifically to estimating the overall pesticide market in terms of dollars spent and quantity of active ingredient used on an annual basis. This report uses the best available information from the public domain and proprietary sources. The numbers in the report represent approximate values rather than precise values with known statistical properties.

The agency has a wide variety of public and proprietary information upon which to base estimates of pesticide sales and use. The Pesticide Data Center in the Biological and Economic Analysis Division (BEAD) of EPA’s Office of Pesticide Programs (OPP) maintains extensive files and library materials. These materials cover different pesticide types and groupings in the agricultural market sector, which accounts for a majority of the use of conventional pesticides, and in nonagricultural market sectors. The agency uses three national database services for the agricultural sector, including one from the USDA, and a number of more specific data sources. Similar data sources cover the nonagricultural sectors. EPA also uses proprietary data sources, with vendor permission, to estimate...
Figure 1. World and U.S. Pesticide Amounts of Active Ingredient at User Level, by Pesticide

“Other” includes nematicides, fumigants, rodenticides, molluscicides, aquatic and fish pesticides, avicides, other miscellaneous conventional pesticides, plus other chemicals used as pesticides, such as sulfur and petroleum.

Table 1. Most Commonly Used Conventional Pesticide Active Ingredients, Agricultural Market Sector; 2001, 1999, 1997, and 1987 Estimates (Ranked by range in millions of pounds of active ingredient)

<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>2001</th>
<th>1999</th>
<th>1997</th>
<th>1987</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type</td>
<td>Rank</td>
<td>Range</td>
<td>Rank</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>H</td>
<td>1</td>
<td>85–90</td>
<td>2</td>
</tr>
<tr>
<td>Atrazine</td>
<td>H</td>
<td>2</td>
<td>74–80</td>
<td>1</td>
</tr>
<tr>
<td>Metam sodium</td>
<td>Fum</td>
<td>3</td>
<td>57–62</td>
<td>3</td>
</tr>
<tr>
<td>Acetochlor</td>
<td>H</td>
<td>4</td>
<td>30–35</td>
<td>4</td>
</tr>
<tr>
<td>2,4-D</td>
<td>H</td>
<td>5</td>
<td>28–33</td>
<td>6</td>
</tr>
<tr>
<td>Malathion</td>
<td>I</td>
<td>6</td>
<td>20–25</td>
<td>7</td>
</tr>
<tr>
<td>Methyl bromide</td>
<td>Fum</td>
<td>7</td>
<td>20–25</td>
<td>5</td>
</tr>
<tr>
<td>Metolachlor-s</td>
<td>H</td>
<td>9</td>
<td>20–24</td>
<td>12</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>H</td>
<td>10</td>
<td>15–22</td>
<td>8</td>
</tr>
<tr>
<td>Trifluralin</td>
<td>H</td>
<td>12</td>
<td>12–16</td>
<td>9</td>
</tr>
<tr>
<td>Chlorothalonil</td>
<td>F</td>
<td>13</td>
<td>8–11</td>
<td>13</td>
</tr>
<tr>
<td>Copper</td>
<td>F</td>
<td>14</td>
<td>8–10</td>
<td>15</td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>I</td>
<td>15</td>
<td>8–10</td>
<td>16</td>
</tr>
<tr>
<td>Alachlor</td>
<td>H</td>
<td>16</td>
<td>6–9</td>
<td>17</td>
</tr>
<tr>
<td>Propanil</td>
<td>H</td>
<td>17</td>
<td>6–9</td>
<td>18</td>
</tr>
<tr>
<td>Chloropicrin</td>
<td>FUM</td>
<td>18</td>
<td>5–9</td>
<td>14</td>
</tr>
<tr>
<td>Dimethenamid</td>
<td>H</td>
<td>19</td>
<td>6–8</td>
<td>20</td>
</tr>
<tr>
<td>Mancozeb</td>
<td>F</td>
<td>20</td>
<td>6–8</td>
<td>21</td>
</tr>
<tr>
<td>Ethephon</td>
<td>PGR</td>
<td>21</td>
<td>5–8</td>
<td>24</td>
</tr>
<tr>
<td>EPTC</td>
<td>H</td>
<td>22</td>
<td>5–6</td>
<td>19</td>
</tr>
<tr>
<td>Simazine</td>
<td>H</td>
<td>23</td>
<td>5–7</td>
<td>NA</td>
</tr>
<tr>
<td>Dicamba</td>
<td>H</td>
<td>24</td>
<td>5–7</td>
<td>22</td>
</tr>
<tr>
<td>Sulfosate</td>
<td>H</td>
<td>25</td>
<td>3–7</td>
<td>NA</td>
</tr>
</tbody>
</table>

Note: List is limited to conventional pesticides and does not include sulfur and petroleum oil usage. H indicates herbicide; I, insecticide; Fum, fumigant; F, fungicide; and PGR, plant-growth regulator. NA indicates that an estimate is not available. Source: EPA estimates based on USDA/NASS and EPA proprietary data.
Table 2. Most Commonly Used Conventional Pesticide Active Ingredients, Home and Garden Market Sector, 2001 and 1999 Estimates (Ranked by range in millions of pounds of active ingredient)

<table>
<thead>
<tr>
<th>Type</th>
<th>2001 Rank</th>
<th>Range (Millions of Pounds)</th>
<th>1999 Rank</th>
<th>Range (Millions of Pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D</td>
<td>H 1</td>
<td>8–11</td>
<td>1</td>
<td>7–9</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>H 2</td>
<td>5–8</td>
<td>2</td>
<td>5–8</td>
</tr>
<tr>
<td>Pendimethalin</td>
<td>H 3</td>
<td>3–6</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Diazinon</td>
<td>I 4</td>
<td>4–6</td>
<td>5</td>
<td>2–4</td>
</tr>
<tr>
<td>MCPP</td>
<td>H 5</td>
<td>4–6</td>
<td>3</td>
<td>3–5</td>
</tr>
<tr>
<td>Carbaryl</td>
<td>I 6</td>
<td>2–4</td>
<td>7</td>
<td>2–4</td>
</tr>
<tr>
<td>Dicamba</td>
<td>H 7</td>
<td>2–4</td>
<td>4</td>
<td>3–5</td>
</tr>
<tr>
<td>Malathion</td>
<td>I 8</td>
<td>1–3</td>
<td>9</td>
<td>1–3</td>
</tr>
<tr>
<td>DCPA</td>
<td>H 9</td>
<td>1–3</td>
<td>10</td>
<td>1–3</td>
</tr>
<tr>
<td>Benefin</td>
<td>H 10</td>
<td>1–3</td>
<td>8</td>
<td>1–3</td>
</tr>
</tbody>
</table>

Note: Does not include moth controls: Paradichlorobenzene (30 to 35 million pounds per year) and napthalene (2 to 4 million pounds per year). Also does not include insect repellent N,N-diethyl-meta-toluamide (5 to 7 millions pounds per year). H indicates herbicide and I, insecticide. NA indicates that an estimate is not available.

Source: EPA proprietary data.

Figure 2. Amount of Conventional Pesticide Active Ingredient Used in the United States, by Pesticide Type and Market Sector, 2001 Estimates

Under the U.S. Food Quality Protection Act of 1996, reductions have occurred in registered uses for organophosphate insecticides, particularly indoor and outdoor residential uses. Organophosphate insecticides as a group represent many of the older, conventional insecticides generally characterized as having relatively high toxicity to humans and other animals. Common organophosphates include acephate (Ortho), chlorpyrifos (Lorsban, Dursban), diazinon, dimethoate (Cython), malathion, and terbopos (Counter).
agricultural and nonagricultural market sectors. These proprietary data sources, produced by well-known organizations, also serve pesticide registrants and other private-sector firms analyzing the U.S. pesticide market.

This report profiles the U.S. pesticide industry for the years 2000 and 2001. Data, estimated using several different parameters (for example, pesticide type, pesticide group, market sector), appear in tabular format. The scope of the report is largely inclusive of the U.S. pesticide industry and includes data on expenditures, volume, imports, exports, firms, individuals involved in production and use of pesticides, number of pesticides, and number of certified applicators, among other topics. The report includes graphical representations of the data where useful. Although most of the information covers the years 2000 and 2001, this report also includes a historical section. (Phil Nixon)

Spring Sprayer Preparation

With spring approaching, now is a good time to begin preparation for the coming spraying season. There are a few things that applicators can do in early spring that will help make their pesticide applications more successful this year. As an additional reference, check out the “Springtime Sprayer Shakedown” fact sheet on the Web at http://www.pesticidesafety.uiuc.edu/facts/calibration/prep_and_checklist.pdf.

The off-season is a good time to select nozzles. Become familiar with new types of nozzles and advances in drift reduction, pattern uniformity, target coverage, and nozzle materials. By understanding options before the season starts, you can avoid rushed or uninformed decisions. Pesticide labels provide information on nozzle selection such as droplet size or nozzle type and pressure range under “directions for use.” If an applicator has an idea of what pesticides may be used, these decisions can be made well before

For Figures 4 and 5: Excludes wood preservatives, specialty biocides, and chlorine/hypochlorites. Other conventional pesticides include nematicides andfumigants. “Other” includes sulfur, petroleum, and other chemicals used as pesticides (for example, sulfuric acid and insect repellents).

Source: EPA estimates based on Croplife America annual surveys, USDA/NASS, and EPA proprietary data.
“crunch time.” This way, the sprayer can be pre-configured for multiple pest-control situations.

For herbicide applications, consider choosing a nozzle designed to reduce the risk of drift. Pre-orifice or drift-reduction, turbulence-chamber, and air-induction nozzle designs all reduce the amount of small droplets created. You can watch a video of these nozzles in operation and compare spray patterns with the University of Illinois Virtual Spray Table, http://www.pesticidesafety.uiuc.edu/facts/calibration/spray.htm.

If you are preparing your sprayer for the potential threat of soybean rust, see the January 2005 Illinois Pesticide Review (IPR). Remember that no matter what kind of application you are making, controlling droplet size is important. When selecting your nozzle size and operating pressure, remember to select for both the correct flow rate in gallons per minute (GPM) and the required droplet size. For a review of droplet size measurement and classification, see the article in the January 2004 IPR.

When the sprayer is pulled out in the spring, it should be closely inspected. It is essential that the sprayer be properly cleaned after the previous season. If it was properly winterized, the springtime preparation will be much easier. Check the pump for signs of damage or wear, including the bearings. Open it up and check the impeller, rollers, or diaphragm for wear. Also look over the pressure gauge and replace it if it isn’t zeroed or is cracked or otherwise damaged. Check any hoses, tank fittings, and shutoff valves for degradation or cracking. Inspect all strainers and nozzles for visible signs of damage, wear, or abuse. Replace those that are damaged and clean those that are plugged, using clean water. For safety, never blow through a nozzle. Also, never use anything metal to clean a nozzle. The orifice is finely machined and may be easily damaged. Instead, use a special nozzle brush or stiff-bristled toothbrush. Clearly mark the toothbrush to indicate it is not fit to be used for anything else, to reduce the risk of accidental poisoning.

After the initial “dry” inspection is complete and any defects are repaired, partially fill the sprayer with clean water and check it out again. Repair any leaks from fittings, hoses, valves, or strainers; then flush the boom before putting on nozzles and nozzle strainers. After they are reattached, spray clean water to check your pump, pressure gauge, and pressure controls. A high-quality oil-filled gauge can be used to check the accuracy of the usual sprayer gauge. Operate the sprayer over the expected range of operating pressures to check the pressure controls and pump capacity. Using a spare gauge, check the pressure at the boom and compare it to the reading at the standard pressure gauge. Excessive pressure drop indicates restricted or undersized hoses or fittings that should be replaced.

Continue spraying clean water to check the spray nozzles. Check each nozzle for wear using a flow meter or by collecting its output for a minute. Discard nozzles with a 10% or more flow increase over their rating when new, or any nozzle that is off 5% or more from the average of all the nozzles. Next, visually check patterns for unevenness or streaking and replace damaged nozzles. Adjust boom height to obtain the correct nozzle pattern overlap while keeping the boom as near the target as is practical. It is sometimes helpful to drive over a concrete surface spraying clean water and then observing the drying pattern. Over-applied streaks take longer to dry; under-applied streaks dry more quickly. Finally, see that boom control and nozzle check valves operate properly and shut off completely.

If the sprayer uses a rate controller, follow its manual for calibration. Check the speedometer accuracy by timing and driving a test course of a known distance. One piece of equipment to consider using to improve application accuracy is a handheld wind meter. These accurately measure wind speed, providing information for drift minimization and protection from drift complaints. Meters typically range from $80 to $120. The September 2004 IPR discusses wind meters and other weather-related information.

Money for sprayer maintenance is well spent. The benefits are improved application accuracy, less down time, and improved personal and environmental safety. It is easier, safer, and cheaper to perform sprayer maintenance before the season starts. (Mark Mohr and Scott Bretthauer)

Are You a Little Rusty on What License You Need?

The potential threat of soybean rust is undoubtedly helping sprayer sales across the Midwest. Farmers who purchase a new sprayer for their own use might be interested in helping pay for that sprayer by making additional applications for other farmers. To ensure that everyone has the proper license for the types of applications they might be making, we thought a review of license categories and requirements would be beneficial.

Pesticides considered too hazardous for use by the general public are classified for “restricted use.” A pesticide license is required of anyone who wishes to purchase or apply a restricted use pesticide (RUP). In addition, anyone applying either a restricted or general use pesticide for hire or in the course of employment must have a license. In Illinois, you must be at least 16 years old to hold any type of pesticide applicator license. Restricted use pesticides will be prominently identified as such on their label—all others are general use pesticides. Farmers who do not use RUPs and do not make any pesticide applications for hire do not need to have a license. Fungicides labeled for soybeans are all general use pesticides.

The Illinois Pesticide Act requires farmers and other individuals to become certified as Private Pesticide Applicators to purchase and use RUPs. You are considered a “private pesticide applicator” when applying RUPs on land you own or control for the purpose of producing an agricultural commodity. A Private Pesticide Applicator license is required for persons who—for the purpose of producing an
agricultural commodity primarily intended for sale, consumption, propagation, or other use by humans or animals —use or supervise the use of a restricted use pesticide (1) on property owned, rented, or leased by themselves or their employer, or (2) on no more than two neighbors’ farms as exchange for labor. If you make applications for two or fewer neighbors’ farms in exchange for labor with a general use pesticide, you do not need a license. If, however, you make applications for more than two neighbors in exchange for labor or any applications for profit, then you need a Commercial Applicator license, no matter whether the pesticide is restricted use or general use.

To become certified as a Private Applicator, you must pass (70% correct) a written, closed-book examination administered by the Illinois Department of Agriculture. There is a $15 fee for this 3-year license. Private Applicators wishing to purchase or apply grain fumigants to their own grain must also be certified in Grain Fumigation; the Private Applicator license is not valid for grain fumigation.

For a custom-application business, you must be licensed as a Commercial for Hire Pesticide Applicator. An individual who applies a pesticide (restricted or general use) for any purpose on property other than that owned, rented, or leased by themselves or by their employer must be licensed as Commercial for Hire Pesticide Applicator. Generally, a commercial applicator is a person who owns or manages or is a supervisor for a business applying pesticides for profit. An applicator is the person in an organization who has the responsibility for pesticide purchasing, storage, handling, and use. Each organization must have at least one licensed applicator at each facility location. The categories included on the applicator’s license dictate the areas in which a company may legally apply pesticides. Field Crops is the category one would need to spray soybeans for hire. An applicator may use pesticides or supervise the use of pesticides by licensed operators.

Illinois issues Commercial for Hire Pesticide Operator licenses to qualified individuals employed and directly supervised by a person holding a Commercial for Hire Pesticide Applicator license. A licensed operator is permitted to operate application equipment; handle, mix, and apply pesticides; store pesticides; and dispose of excess pesticides and containers. A license will not be issued unless the person is working under direct supervision of a licensed applicator. The applicator must be accessible to his or her operators when they are working with pesticides. If you work alone or are the only one in your company who applies pesticides, you must be licensed as an applicator.

Illinois law requires that Commercial Applicators and Operators pass (70% correct) a written, closed-book General Standards examination. In addition, applicators must pass one or more category examinations appropriate for the sites to which they apply pesticides. As stated earlier, the required category for making applications to soybeans would be Field Crops. All examinations are administered by the Illinois Department of Agriculture (IDA). Applicator and operator licenses are good for one calendar year and are renewable without examination for 3 years at the discretion of the director of the IDA. For commercial licenses, the current fee is $45 for a 1-year applicator’s license or $35 for a 1-year operator’s license; the certification exam is valid for 3 years if no lapse in licensure occurs. All applicators and operators must reestablish competency (retest) at 3-year intervals.

In addition to the annual fee, a Commercial Applicator applicant must either post a $50,000 surety bond (or two $25,000 bonds—one for bodily injury and the other for property damage) or provide evidence of general liability coverage. This general liability coverage must include a minimum of $50,000 per person and $100,000 per occurrence bodily injury, with an annual aggregate of not less than $500,000; or a combined single limit of not less than $100,000 bodily injury and property damage liability combined, with an annual aggregate of not less than $500,000.

For more information on Private and Commercial Applicator testing and training, including a list of training and testing dates and locations, call University of Illinois Extension at (800)644-2123 or visit http://www.pesticidesafety.uic.edu. There are no more Field Crops category training sessions this winter. However, a Field Crops manual and workbook are available for study at home. Field Crop Applicator exams can be taken on the second afternoon of the remaining Commercial Pesticide Safety Education Program (PSEP) clinics, or testing (without training) is available by appointment at the Illinois Department of Agriculture in Springfield, (217)785-2427 (TDD) or (800)641-3934; Des Plaines, (847)294-4343. (Bruce Paulsrud and Scott Bretthauer)

Pesticide Update

The following information provides registration status of particular pesticides and should not be considered as pesticide recommendations by University of Illinois Extension.

Agronomic

CAMIX (S-metolachlor + mesotrione)–Syngenta–A 2(ee) recommendation has been issued for the following use in several states, including Illinois: Postemergence tank-mix application of Camix at a reduced rate with a solo glyphosate product (for example, Touchdown or Roundup brands) that is registered for use over-the-top in glyphosate-tolerant (for example, Roundup Ready) field corn. This expires 8/1/05. (e-mail from Illinois Department of Agriculture, 2/21/05)

CRUISER-MAXX PAK (thiamethoxam/ metalaxyl-m/fludioxonil)–Syngenta–A new combination fungicide–insecticide for use on soybeans as a seed treatment.

LUMAX (S-metolachlor + atrazine + mesotrione)–Syngenta–A 2(ee) recommendation has been issued for the following use in several states, including Illinois: Postemergence tank-mix application of LUMAX at a reduced rate with a solo glyphosate product (for example, Touchdown or Roundup brands) that is
registered for use over-the-top in glyphosate-tolerant (for example, Roundup Ready) field corn. This expires 8/1/05. (e-mail from Illinois Department of Agriculture, 2/21/05)

STORCIDE II (chlorpyrifos-methyl/delta-methrin)—Gustafson—A new seed treatment being put on the market to replace Stor- cide (chlorpyrifos-methyl/oyfluthrin) and Reldan (chlorpyrifos-methyl).

STRATEGO (trifloxystrobin/propiconazole)—Bayer Crop Science—Added to their label the use on soybeans to control Asian rust.

VORTEX (ipconazole)—Bayer Crop Science—This new seed treatment being developed for use on corn, sorghum, and cotton is expected to be introduced next year. It will be marketed by Bayer’s seed-treatment division, Gustafson.

FRUIT/VEGETABLE

ABBA .15EC (abamectin)—Farm Saver—A new formulation for use on fruits and vegetables. [insecticide]

AGRI-MEK (abermectin)—Syngenta—Added to their label the use on spinach, basil, and avocados. [insecticide]

AUXIGRO WP (GABA)—Emerald Bio Agriculture Corp—Added to their label the control of various diseases, such as pow- dery mildew, brown rot, and shot hole, on almonds, grapes, and stone fruits.

DRY-UP (COC/copper sulfate/sulphur)—Willbur Ellis—A new combination fungicide being developed for use on grapes to control powdery mildew and bunch rot.

ENVIDOR (spiro diclofen)—Bayer Crop Science—Registration is expected late this year for use on stone fruit, pome fruit, citrus, and nut crops to control mites.

INDAR (fenbuconazole)—Dow AgroSciences—Proposed to EPA to extend time-limited residue tolerances on stone fruits (except plums), pecans, and bananas. The comment period expired 12-17-04. (FR, vol. 69, 11-17-04) [fungicide]

MATRIC (chromafenozide)—Nippon Kayaku/Sanko Agro—A new insect-growth regulator being jointly developed by these two Japanese companies.

PCNB 10% GRANULES (PCNB)—Amvac—Added to their label the use on potatoes and the control of leaf spot and snow mold.

SERENADE MAX (Bacillus subtilis strain QST 713)—Agra Quest—A new formulation that is more concentrated. It also has new labeling that includes stone fruit, citrus, tropical fruits, bushberries, and strawberries. [fungicide]

UPBEET (triflusulfuron-methyl)—DuPont—Added to their label the use on Belgium endive and chicory. [herbicide]

VENOM 20SC (dinotefuran)—Valent—A new insecticide to control whiteflies, leafminers, leaffoppers, and other insects in vegetables.

VYDATE (oxamyl)—DuPont—Added to their label the use on potatoes. [insecticide]

TURF/ORNAMENTAL

AKARI (fenpyroximate)—Nichimo America—Added to their label the use on outdoor ornamentals and nonbearing fruit trees. [fungicide]

FACINATION (gibberellins/N6-benzyl adenine)—Valent BioSciences—Added to the label for this growth regulator are the uses on poinsettias, bedding plants, potted ornamentals, field-grown ornamentals, and bulb crops.

FENSTAR (fenamidine)—Bayer Crop Science—A new fungicide being used on ornamentals to control phytophthora, pythium, and downy mildew.

NATURE’S GLORY (acetic acid)—Ecoval—An organic, quick-burndown, nonselective herbicide for lawn and garden use.

QUALI-PRO (abamectin)—Farm Saver—A new formulation for use on ornamentals; a .15EC formulation. [insecticide]

SAFARI (dinotefuran)—Valent—Received EPA registration to use on ornamentals to control white flies, aphids, scale, fungus gnats, mealybugs, and many others.

TRIMMIT 25C (paclobutrazol)—Syngenta—A growth regulator to control turfgrass growth.

UPSTAR GOLD (bifenthrin)—United Phosphorus—A new formulation to use for termite control on lawns, parks, and ornamentals.

UPSTAR SC (bifenthrin)—United Phosphorus—A new formulation for use on ornamentals and turf. [insecticide]

STRUCTURAL

OPTI GARD 27 (thiamethoxam)—Syngenta—Received EPA registration to use as a wood injection treatment and a zone treatment and to control termites, carpenter ants, and many other insects.

MANY

BIOMITE (citronellol)—Natural Plant Products—EPA approved an application to register this new active ingredient to control mites on agricultural crops, on ornamental plants, and in landscape settings. (FR, vol. 69, 12-29-04)

CARBAMATE WDG (ferbam)—Taminco Inc.—Proposed to EPA to delete from their label the use on cherries, grapes, pears, tobacco, trees, flowers, pine seedlings and plant beds, nursery stock, and various ornamentals. This should have become effective 1-11-05. There will be a 12-month period to dispose of inventory. (FR, vol. 69, 11-12-04)

CRUISER (thiamethoxam)—Syngenta—Added to their label the use as a seed treatment on legume vegetables and oilseed crops and for use on potatoes. [insecticide]

DANISARABA/OK-5101 (cyflumetofen)—Otsuka Chemical—Proposed to EPA to use in greenhouse ornamentals and turf. [herbicide]

DI SYSTON 15G (disulfoton)—Bayer Crop Science—The company has asked for a voluntary termination of the use of this product on beans, Brussels sprouts, cabbage, cauliflower, cotton, peanuts, peppers, radishes, and cloves. They will maintain the use on Christmas trees in North Carolina and coffee trees in Puerto Rico. They will also maintain the registration on the 8E formulation. Comments must be received by 6-13-05. (FR, vol. 69, 12-15-04) [insecticide]
GLISSADE (Muscodor albus strain QST 20799)—Agrquest—A new biological fungicide to control such diseases as Fusarium, Phytophthora, Pythium, Rhizoctonia, and Verticillium in compost piles, potting soils, oilseed, propagating beds.

MATAREX 4% (metaldehyde)—Desagrose—A new formulation of snail-and-slug bait for use on ornamentals and crops.

NO FLY (Paecilomyces fumosoroseus strain FE-9901)—Future Eco—A new biological insecticide used to control whiteflies is being developed by this Spanish company.

SONATA (Bacillus pumilus strain QST 2806)—EPA approved an application to register this new active ingredient to control various diseases on crops. (FR, vol. 69, 12-29-04)

Other

AMVAC—The company has made an agreement with Bayer Crop Science to market their aldicarb (Bolster15G) insecticide through Amvac’s Smart Box Applicators next year in the United States on soybeans.

ARVESTA—This U.S. subsidiary of Arvesta Life Sciences has been granted exclusive marketing rights to Sumitomo’s clothianidin insecticide in the United States and Mexico. It is sold as Clutch in agriculture, Arena on turf, and Celero on ornamentals: Registration is pending in the United States on apples, pears, and tobacco.

CEREXAGRI—The company has made an alliance with the Belgium company Taminco to produce and market the fungicide Ziram 76DF in the United States.

EMERALD BIO AGRICULTURE—The company is selling its biopesticide business to the Colombian company Laverdam. This includes the Beauvaria bassiana products Botani Gard ES, Botani Gard 22WP, and Mycotrol O, and the manufacturing plant located in Butte, MT.

LIMAGRAIN—The company has purchased Advanta Seed, excluding its sugar-beet seed business; but including an Oregon grass seed-breeding facility and an N.D. sunflower-breeding facility.

MONSANTO—The company will introduce its genetically modified, triple-trait corn next year. It will be glyphosate-resistant, as well as corn root worm— and European corn borer—resistant.

SYNGENTA—The company plans to close 12 seed units in the United States as it combines its Golden Harvest and Garst Seed businesses.

SYNGENTA—The company has renamed its genetically modified corn varieties to Agrisure. The glyphosate-resistant trait will be called Agrisure GT Advantage, and the corn borer resistant—trait will be Agrisure CB Advantage. These will be available in the United States in 2005.

UNITED PHOSPHORUS—The company has acquired AgValue of Visalia, CA, for $38 million.

VALENT—The company will market Isagro’s fungicide Domark (tetraconazole) in the United States to control Asian soybean rust on soybeans.

(Michelle Wiesbrook, unless otherwise noted, adapted from Agricultural Chemical News, January and February 2005.)