MASS-ANALYZED THRESHOLD IONIZATION SPECTROSCOPY AND SPIN-ORBIT COUPLING OF CERIUM-HYDROCARBON COMPLEXES

YUCHEN ZHANG, SUDESH KUMARI, Department of Chemistry, University of Kentucky, Lexington, KY, USA; MICHAEL W SCHMIDT, MARK S GORDON, Department of Chemistry, Iowa State University, Ames, IA, USA; DONG-SHENG YANG, Department of Chemistry, University of Kentucky, Lexington, KY, USA.

Ce(C\textsubscript{2}H\textsubscript{2}) and Ce(C\textsubscript{4}H\textsubscript{6}) are produced by the Ce-mediated ethylene activation and investigated by mass-analyzed threshold ionization (MATI) spectroscopy, isotopic substitutions, and relativistic quantum chemical computations. The MATI spectrum of Ce(C\textsubscript{2}H\textsubscript{2}) exhibits two nearly identical band systems separated by 128 cm-1, and that of Ce(C\textsubscript{4}H\textsubscript{6}) shows three similar band systems separated by 55 and 105 cm-1. These separations are not affected by deuteration. The observed band systems for the two Ce-hydrocarbon species are attributed to the spin-orbit splitting arising from interactions of triplet and singlet states. Ce(C\textsubscript{2}H\textsubscript{2}) is a metallacyclopene in C\textsubscript{2v} symmetry, and Ce(C\textsubscript{4}H\textsubscript{6}) is a metallacyclopentene in C\textsubscript{s} symmetry. The low-energy valence electron configurations of the neutral and ionic states of each species are Ce 4f16s1 and Ce 4f1, respectively. The remaining two electrons that are associated with the isolated Ce atom or ion are spin paired in a molecular orbital that is a bonding combination between a Ce 5d orbital and a hydrocarbon π* antibonding orbital.