Rotational Parameters from Vibronic Eigenfunctions of Jahn-Teller Active Molecules

Scott Garner and Terry A. Miller

The Ohio State University

June 19, 2017
Advances in theory allow for greater insight into the role conical intersections play in determining molecular properties.
The Jahn-Teller effect distorts molecular geometry to lower symmetry and break degeneracies.

Breaking symmetry creates conical intersections on potential energy surfaces.
Rotational Hamiltonian

\[H = H_R + H_{COR} + H_{CD} + H_{JT} \]

\[H_R = C N_z^2 + B (N_x^2 + N_y^2) \]
\[H_{COR} = -C \xi_t N_z \]

\[H_{CD} = -D_N N^4 - D_{NK} N^2 N_z^2 - D_K N_z^4 - \]
\[\eta N_z \xi_t N_z L_z - \eta_k \xi_k N_z^3 L_z \]

\[H_{JT} = h_1 \left[L_-^2 N_+^2 + L_+^2 N_+^2 \right] \]
\[+ h_2 \left[L_-^2 (N_z N_+ + N_+ N_z) + L_+^2 (N_z N_+ + N_+ N_z) \right] \]
h_1 Parameter from H_{JT}

- Experimental value for vibrationless state h_1 is well known
- We want to predict h_1 for various vibrationally excited states using electronic structure calculations

- Cyclopentadienyl radical (CP): A Great Candidate!
Simulations of Cyclopentadienyl $\tilde{A}^2A'' \leftarrow \tilde{X}^2E''$ 0^0_0
h_1 Fundamental Definition

- An element of the rovibronic Hamiltonian

\[
h_1 = \frac{1}{2} \left[\langle E_j^k, + | \left| B_{++} \right| E_j^k, - \rangle + \langle E_j^k, - | \left| B_{--} \right| E_j^k, + \rangle \right]
\]

\[
| E_j^k, \pm \rangle \equiv | \pm j, n_j, E_j^k, \Sigma \rangle = \sum_i \left(c_{i,n_j,\Sigma} | \pm \Lambda_i \rangle \prod_{k=1}^{p} | v_{k,i}, \pm l_{k,i} \rangle \right)
\]

\[
\times \prod_{n=1}^{3N-6-2p} | v_{n,i} \rangle \left| \pm \Sigma_i \right\rangle
\]

- A measure of geometric distortions due to Jahn-Teller effects

An Expression for h_1

- Watson derived h_1 through a perturbation type analysis

\[q^{JT} = 2 \sum_t k_t \omega_t C_{ta}^{xx} = 2 \sum_t k_t \frac{\partial B_{xx}}{\partial q_{ta}} \]

\[h_1 = \frac{1}{2} q^{JT} = \sum_t k_t \frac{\partial B_{xx}}{\partial q_{ta}} \]

\[D_t \equiv \frac{1}{2} k_t^2 \]

Results from Perturbation Analysis on CP

<table>
<thead>
<tr>
<th>Vibrational Mode Frequency</th>
<th>$D \equiv \frac{1}{2} k_t^2$ (unitless)</th>
<th>$\frac{\partial B_{xx}}{\partial q_a}$ (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>846.7</td>
<td>0.184852507</td>
<td>-0.00726066</td>
</tr>
<tr>
<td>1072.7</td>
<td>0.358097239</td>
<td>0.006906353</td>
</tr>
<tr>
<td>1421</td>
<td>0.634506116</td>
<td>0.00175759</td>
</tr>
<tr>
<td>3165.9</td>
<td>8.09396E-05</td>
<td>0.000909696</td>
</tr>
<tr>
<td>Calculated h_1</td>
<td></td>
<td>0.003398 cm$^{-1}$</td>
</tr>
<tr>
<td>Magnitude Experimental h_1</td>
<td></td>
<td>0.00706 cm$^{-1}$</td>
</tr>
</tbody>
</table>

Perturbation type analyses works best only in cases of small distortions. Limited to cases of linear Jahn-Teller effects.

Results from Perturbation Analysis on CP

<table>
<thead>
<tr>
<th>Vibrational Mode Frequency</th>
<th>$D \equiv \frac{1}{2} k^2$ (unitless)</th>
<th>$\frac{\partial B_{xx}}{\partial q_a}$ (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>846.7</td>
<td>0.184852507</td>
<td>-0.00726066</td>
</tr>
<tr>
<td>1072.7</td>
<td>0.358097239</td>
<td>0.006906353</td>
</tr>
<tr>
<td>1421</td>
<td>0.634506116</td>
<td>0.00175759</td>
</tr>
<tr>
<td>3165.9</td>
<td>8.09396E-05</td>
<td>0.000909696</td>
</tr>
<tr>
<td>Calculated h_1</td>
<td></td>
<td>0.003398 cm$^{-1}$</td>
</tr>
<tr>
<td>Magnitude Experimental h_1</td>
<td></td>
<td>0.00706 cm$^{-1}$</td>
</tr>
</tbody>
</table>

- Perturbation type analyses works best only in cases of small distortions.
- Limited to cases of linear Jahn-Teller effects.

Our Approach

We treat the operator as a Taylor series expansion about the conical intersection with respect to normal mode vibrations

\[h_1 = \frac{1}{2} \left[\langle E_j^k, + | B_{++} | E_j^k, - \rangle + \langle E_j^k, - | B_{--} | E_j^k, + \rangle \right] \]

\[B_{\pm \pm} \approx B_{\pm \pm}^{CI} + \sum_k \sum_{m=+, -} \left(\frac{\partial B_{\pm \pm}}{\partial q_{km}} \right)_{CI} q_{km} + \ldots \]
Our Approach

- We treat the operator as a Taylor series expansion about the conical intersection with respect to normal mode vibrations

\[
h_1 = \frac{1}{2} \left[\langle E_j^k, + | B_{++} | E_j^k, - \rangle + \langle E_j^k, - | B_{--} | E_j^k, + \rangle \right]
\]

\[
B_{\pm\pm} \approx B_{\pm\pm}^{\text{CI}} + \sum_k \sum_{m=\pm} p \left(\frac{\partial B_{\pm\pm}}{\partial q_{km}} \right)_{\text{CI}} q_{km} + \ldots
\]

- To simply this operator we express it in Cartesian coordinates

\[
B_{\pm\pm} = \frac{1}{4} \left(B_{xx} - B_{yy} \mp 2iB_{xy} \right) \quad B_{\pm\pm}^{\text{CI}} = 0
\]

\[
B_{\pm\pm} \approx B_{\pm\pm}^{\text{CI}} + \frac{1}{4} \sum_k \sum_{m=\pm} p \left(\frac{\partial B_{xx}}{\partial q_{km}} - \frac{\partial B_{yy}}{\partial q_{km}} \mp 2i \frac{\partial B_{xy}}{\partial q_{km}} \right)_{\text{CI}} q_{km}
\]
We have treated q as the complex combination of the degenerate components

$$q_{k\pm} = q_{ka} \pm i q_{kb}$$

$$\frac{\partial B_{\pm\pm}}{\partial q_{k\pm}} = \frac{1}{8} \left(\frac{\partial B_{xx}}{\partial q_{ka}} - \frac{\partial B_{yy}}{\partial q_{ka}} \mp 2 \frac{\partial B_{xy}}{\partial q_{kb}} \right)$$
With Respect to Complex Combinations

We have treated q as the complex combination of the degenerate components

$$q_{k\pm} = q_{ka} \pm iq_{kb}$$

$$\frac{\partial B_{\pm\pm}}{\partial q_{k\pm}} = \frac{1}{8} \left(\frac{\partial B_{xx}}{\partial q_{ka}} - \frac{\partial B_{yy}}{\partial q_{ka}} \mp 2 \frac{\partial B_{xy}}{\partial q_{kb}} \right)$$

$$\frac{\partial B_{xx}}{\partial q_a} = -\frac{\partial B_{yy}}{\partial q_a} = \frac{\partial B_{xy}}{\partial q_b} \quad \frac{\partial B_{xx}}{\partial q_b} = \frac{\partial B_{yy}}{\partial q_b} = \frac{\partial B_{xy}}{\partial q_a} = 0$$
With Respect to Complex Combinations

- We have treated q as the complex combination of the degenerate components

$$q_{k\pm} = q_{ka} \pm iq_{kb}$$

$$\frac{\partial B_{\pm\pm}}{\partial q_{k\pm}} = \frac{1}{8} \left(\frac{\partial B_{xx}}{\partial q_{ka}} - \frac{\partial B_{yy}}{\partial q_{ka}} \mp 2 \frac{\partial B_{xy}}{\partial q_{kb}} \right)$$

$$\begin{align*}
\frac{\partial B_{xx}}{\partial q_a} &= -\frac{\partial B_{yy}}{\partial q_a} = \frac{\partial B_{xy}}{\partial q_b} \\
\frac{\partial B_{xx}}{\partial q_b} &= \frac{\partial B_{yy}}{\partial q_b} = \frac{\partial B_{xy}}{\partial q_a} = 0 \\
\frac{\partial B_{-\pm}}{\partial q_{k+}} &= \frac{\partial B_{++}}{\partial q_{k-}} = \frac{1}{2} \frac{\partial B_{xx}}{\partial q_a} \\
\frac{\partial B_{++}}{\partial q_{k+}} &= \frac{\partial B_{--}}{\partial q_{k-}} = 0
\end{align*}$$
A Simple Expression

\[h_1 = \frac{1}{2} \left[\langle E_j^k, + \mid B_{++} \mid E_j^k, - \rangle + \langle E_j^k, - \mid B_{--} \mid E_j^k, + \rangle \right] \]

\[h_1 = \frac{1}{4} \sum_k \frac{\partial B_{xx}}{\partial q_a} \left(\langle E_j^k, + \mid q_{k-} \mid E_j^k, - \rangle + \langle E_j^k, - \mid q_{k+} \mid E_j^k, + \rangle \right) \]

\[< q > \equiv \langle E_j^k, + \mid q_{k-} \mid E_j^k, - \rangle + \langle E_j^k, - \mid q_{k+} \mid E_j^k, + \rangle \]
A Simple Expression

\[h_1 = \frac{1}{2} \left[\langle E_j^k, + | B_{++} | E_j^k, - \rangle + \langle E_j^k, - | B_{--} | E_j^k, + \rangle \right] \]

\[h_1 = \frac{1}{4} \sum_k \frac{\partial B_{xx}}{\partial q_a} \left(\langle E_j^k, + | q_{k-} | E_j^k, - \rangle + \langle E_j^k, - | q_{k+} | E_j^k, + \rangle \right) \]

\[\langle q \rangle \equiv \langle E_j^k, + | q_{k-} | E_j^k, - \rangle + \langle E_j^k, - | q_{k+} | E_j^k, + \rangle \]

\[h_1 = \frac{1}{4} \sum_k \frac{\partial B_{xx}}{\partial q_a} \langle q \rangle \]

This relatively simple expression only requires two components:
- Derivatives of rotational constants
- Matrix elements of the ladder operators
Derivatives of B

Derivatives taken by uniform grid central finite differentiation in Cartesian coordinates

$$\frac{\partial B_{xx}}{\partial q_a} \approx \frac{B_{xx}(\omega + \delta q_a) - B_{xx}(\omega - \delta q_a)}{2\delta}$$

<table>
<thead>
<tr>
<th>Vibrational Mode Frequency</th>
<th>$\frac{\partial B_{xx}}{\partial q_a}$ in cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>846.7</td>
<td>-0.00726066</td>
</tr>
<tr>
<td>1072.7</td>
<td>0.006906353</td>
</tr>
<tr>
<td>1421</td>
<td>0.00175759</td>
</tr>
<tr>
<td>3165.9</td>
<td>0.000909696</td>
</tr>
</tbody>
</table>

Cartesian coordinates provided courtesy of Dr. John Stanton
Rotational Parameters from Vibronic Eigenfunctions of Jahn-Teller Active Molecules

B(q) for Degenerate 1072.7 cm$^{-1}$ Vibration
Calculating $< q >$

- SOCJT 2 calculates spin vibronic eigenfunctions and eigenvalues
- $q_{k\pm}$ are the ladder operators on the polar harmonic oscillator

$$
\langle v + 1, l + 1 | q_+ | v, l \rangle = \sqrt{(v + l + 2)/(2\gamma)}
$$

$$
\langle v + 1, l - 1 | q_- | v, l \rangle = \sqrt{(v - l + 2)/(2\gamma)}
$$

$$
\langle v - 1, l + 1 | q_+ | v, l \rangle = \sqrt{(v - l)/(2\gamma)}
$$

$$
\langle v - 1, l - 1 | q_- | v, l \rangle = \sqrt{(v + l)/(2\gamma)}
$$

- For reduced normal coordinates

$$\gamma = 1$$

Results from Cyclopentadienyl Vibrationless State

<table>
<thead>
<tr>
<th>Vibrational Frequency</th>
<th>$\langle q \rangle$</th>
<th>$\frac{\partial B_{xx}}{\partial q_a}$ in cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>853.9</td>
<td>1.332448803</td>
<td>-0.00726066</td>
</tr>
<tr>
<td>1133.9</td>
<td>-1.943826112</td>
<td>0.006906353</td>
</tr>
<tr>
<td>1512.2</td>
<td>-2.604903871</td>
<td>0.00175759</td>
</tr>
<tr>
<td>3371.8</td>
<td>0.029440343</td>
<td>0.000909696</td>
</tr>
</tbody>
</table>

| Calculated h_1 | -0.00691 cm$^{-1}$ |
| Magnitude Experimental h_1 | 0.00706a cm$^{-1}$ |

Extension to Vibrationally Excited States

- SOCJT 2 produces eigenvalues and eigenvectors for all vibrational states
- Predicting h_1 requires a calculation of $\langle q \rangle$
Conclusions

Accomplishments

- A simple formulation and code to predict h_1 for vibrational states using electronic structure parameters
- Determining h_1 helps benchmark potential energy surfaces for JT distorted molecules

Upcoming

- Extension to high order terms in the Taylor expansion for increasingly accurate calculations
- Use the calculated values for h_1 to determine rotational structure and verify assignments of vibrational bands
- Apply methodology to other parameters in rovibronic Hamiltonian
Acknowledgments

- The Miller Group at Ohio State
 - Dr. Terry A. Miller
 - Dr. Ketan Sharma
 - Meng Huang
 - Yi Yan
- Dr. John Stanton at The University of Florida