Light, Molecules, Action!
Using light to power molecular devices

USING ULTRAFAST UV-VISIBLE AND X-RAY SPECTROSCOPY TO PROBE EXCITED STATE DYNAMICS IN PHOTOACTIVE MOLECULES.

Cobalamin (Vitamin B₁₂)
Photochemistry
Light is a versatile energy source

- Light (esp. laser light) can be shaped, timed, tuned, focused, aimed and delivered at a target as required.

- Spatial and temporal control of molecular activation.

Optically controlled molecular devices

- motors, switches, activators, junctions, memory, logic circuits, actuators, sensors, and delivery platforms.

Function is controlled by photochemistry

- Photon energy produces action via movement of charge, change in shape or cleavage of a bond – light activates a change in the chemical nature of a molecular system.
The photochemistry of cobalamins is of interest:

- Newly discovered B_{12} based photoreceptor proteins use light to control gene activation and carotenoid synthesis.

- The upper group “R” can be replaced by a drug (e.g., a cancer drug) to allow photoactivated drug delivery.

- Reactive radicals can be produced with spatiotemporal control.

- Photoresponsive “anti-vitamins” allow control of biological availability.

- Molecular switches and sensors can be developed by designing appropriate ligands, “R”.

![B12 Analogs: Anti-Vitamins and Optical Control](image)
B₁₂ Photolysis

\[
\text{AdoCbl} + h\nu \xrightarrow{\varphi \approx 100\% \ (20\%)} \text{Ado}^* + \text{Cbl}^* \\
\text{EtPhCbl} + h\nu \xrightarrow{\varphi < 1\%} \text{EtPh}^* + \text{Cbl}^* \\
\text{HOCbl} + h\nu \xrightarrow{\varphi \approx 2\%} \text{OH}^* + \text{Cbl}^* \\
\text{H}_2\text{OCbl}^+ + h\nu \xrightarrow{\varphi \approx 2\%} \text{OH}^* + \text{H}^+ + \text{Cbl}^* \\
\text{CNCbl} + h\nu \xrightarrow{\varphi \leq 10^{-4}} \text{CN}^* + \text{Cbl}^*
\]

Photochemistry is controlled by the lowest singlet state (S₁) surface or by branching of states at higher energy, bypassing S₁ state barriers.
B₁₂ Spectra

Typical UV-Visible Spectra

Wavelength (nm)

280 380 480 580 680

ε (10³ M⁻¹ cm⁻¹)

γ-band region

αβ-band region

CNCbl
H₂OClb
AdoClb
Co–OH₂⁺
Co–OH
H₂OClb
HOCbl
EtPhClb
PhEtyClb

Co–R =

AdoClb
CNCbl
H₂OClb
HOCbl
EtPhClb
PhEtyClb
HOCl (B$_{12b}$) Photolysis

pH 10.3, 99+\% HOCl

\[\text{HOCl} + h\nu \xrightarrow{\varphi=2\%} \text{OH}^* + \text{Cbl}^* \]

\(\lambda_{\text{exc}}: \)
- 269 nm
- 404 nm
- 535 nm
- 560 nm
- 575 nm

HOCbl (B$_{12b}$) Photolysis

$\tau_1 = 0.32 \pm 0.08$ ps
$\tau_2 = 5.50 \pm 0.17$ ps
HOCbl (B$_{12b}$) Photolysis

pH 10.3, 99+% HOCbl

HOCbl + $h\nu \xrightarrow{\varphi=2\% \lambda<300\text{nm}}$ OH$^+$ + Cbl*

269 nm only:

$\varepsilon (10^3 \text{M}^{-1} \text{cm}^{-1})$

-6 0 6 12 18 24

Wavelength (nm)

$\Delta \varepsilon (10^3 \text{M}^{-1} \text{cm}^{-1})$

-0.250 -0.125 0.000 0.125 0.250

Wavelength (nm)

0.32 \pm 0.08 \text{ ps}
5.50 \pm 0.17 \text{ ps}

Cob(II) \sim2\% yield

\gg 100 \text{ ps}
HOCbl (B\textsubscript{12b}) Photolysis

The surfaces for three different electronic configurations define the lowest excited state surface for cobalamins. (Calculations: Kozlowski et al.)

Photochemistry is controlled by the lowest surface or by branching of states at higher energy.
The surfaces for three different electronic configurations define the lowest excited state surface for cobalamins. (Calculations: Kozlowski et al.)

Photochemistry is controlled by the lowest surface or by branching of states at higher energy.
Antivitamin B_{12} EtPhCbl

- Photo conditional “anti-vitamin” B_{12}.
- Metabolically inert.
- Optical control of biological availability.

$$\text{EtPhCbl} + h\nu \xrightarrow{\phi<1\%} \lambda<600nm \text{EtPh}^+ + \text{Cbl}^+$$

Antivitamin B_{12} EtPhCbl

![Diagram of Antivitamin B_{12} EtPhCbl]

- N$_\text{DMS}$($\text{Co}^{II}(\text{corrin})-\text{R}$) \rightarrow {N$_\text{DMS}$($\text{Co}^{III}(\text{corrin})^{+} + \text{R}^{+}$)}
- IC \rightarrow GS
- Co-N$_\text{Hx}$ bond
- Co-"R" bond
- MLCT \rightarrow I
- LF \rightarrow IV
- IC \rightarrow GS

![Absorption Spectra of Antivitamin B_{12} EtPhCbl]

Absorption Intensity

ΔA (mOD)

Wavelength (nm)

- 13 ps
- 247 ps
Antivitamin B$_{12}$ EtPhCbl

\[
\text{IC} \xrightarrow{\text{N$_{\text{DMSO}}$}} \left\{\text{Co}^{II}(\text{corrin})-\text{R}\right\} \xrightarrow{\text{N$_{\text{DMSO}}$}} \left\{\text{N$_{\text{DMSO}}$}-\text{Co}^{II}(\text{corrin})]^{+} + \text{R}^{+}\right\}
\]

\[
\text{Co-N$_{\text{NIX}}$ bond} \xrightarrow{\text{III}} \text{LF} \xrightarrow{\text{IV}} \text{IC} \xrightarrow{\text{IC}} \text{GS} \xrightarrow{\text{IC}} \text{GS} \xrightarrow{\text{N$_{\text{DMSO}}$}} \left\{\text{N$_{\text{DMSO}}$}-\text{Co}^{I}(\text{corrin})]^{+} + \text{R}^{+}\right\}
\]

\[
\text{Co-"R" bond}
\]

\[
\begin{align*}
\text{Intensity} & \quad \text{Wavelength (nm)} \\
\text{pH 1} & \quad \text{pH } \sim 7
\end{align*}
\]

\[
\Delta A \text{(mOD)}
\]

\[
\frac{9\%}{\text{Base Off Yield}}
\]
Coenzyme B$_{12}$: AdoCbl

In Ethylene Glycol
Coenzyme B$_{12}$: AdoCbl

In Water (~pH 7)
Vitamin B₁₂: CNCbl

- **Absorbance**
 - Wavelength (nm):
 - 250, 325, 400, 475, 550, 625, 700, 775, 850
 - γ-band
 - αβ-band

- **Chemical Structures**
 - [Co^{II}(corrin)]⁻
 - N_{DMAB}-[Co^{II}(corrin)]⁻ + R⁺
 - N_{DMAB}-[Co^{II}(corrin)]⁻ + R⁺
 - Co-N __{DMAB} bond
 - Co-“R” bond

- **Graphs**
 - ΔA (mOD)
 - Wavelength (nm): 280 to 530
 - Time Delay (ps): -5 to 20
 - ΔA (mOD)
 - Wavelength (nm): 300 to 530
 - Time Delay (ps): -0.6 to 1.2

- **Chemistry Symbols**
 - IC
 - GS
 - MLCT
 - LF
 - X
 - I
 - II
 - III
 - IV
Vitamin B\textsubscript{12}: CNCbl
Vitamin B_{12}: CNCbl

Femtosecond XANES of Vitamin B$_{12}$
Polarized XANES of Electronically Excited Vitamin B$_{12}$

- X-ray absorption near edge structure
- Sensitive to electronic and structural changes.

Optical excitation is along “x”.
Perpendicular in-plane direction is “y”.
The “z” direction is out-of-plane.

Probe at the cobalt K-edge excited Co 1s electrons.

Measuring the difference signal across the near edge region.

\[\Delta S = S_{\text{Laser On}} - S_{\text{Laser Off}} \]

Perpendicular difference signal.
Excited State XANES

\[\Delta S_{\parallel/\perp} = S_{\text{Laser On}} - S_{\text{Laser Off}} \]

Parallel

\[\Delta S_{\text{isotropic}} = \Delta S_{\parallel} + 2\Delta S_{\perp} \]

Perpendicular

\[S_{ES} = \Delta S_{\text{isotropic}} + \alpha S_{GS} \]
Excited State XANES
Comparison with Simulation

Co-C≡N 1.857 2.216
Co-N_{imd} 2.054 2.275
Polarized XANES
Comparison with Simulation

\[\Delta S_{∥} = 0.6 \Delta S_x + 0.2 \Delta S_y + 0.2 \Delta S_z \]
\[\Delta S_{⊥} = 0.2 \Delta S_x + 0.4 \Delta S_y + 0.4 \Delta S_z \]

\[\Delta S_x = 2 \Delta S_{∥} - \Delta S_{⊥} \]
\[\Delta S_{y+z} = 3 \Delta S_{⊥} - \Delta S_{∥} \]
Structural changes around the Co atom.

- With pulse: modest ring changes. \((\pi^1\pi^1)\)
- \(\tau_1 = 0.11\) ps: Axial bond elongation.
 \(\rightarrow((\pi/d)^1(\pi^*/d_{xy}+n^*/\sigma^*d_{z2})^1)\)
- \(\tau_2 = 0.26\) ps: Corrin ring/axial relaxation
 \(\rightarrow(\pi^1(\sigma^*d_{z2})^1)\)
- \(\tau_3 = 6.2\) ps: Excited state population decay.
 \(\rightarrow(\pi^2)\)
- Ultrafast XAS and UV-Vis combine to give picture of the structural and electronic dynamics on the excited state surface.
Acknowledgements

Students:
- Ted Wiley
- Nick Miller
- Laura Kiefer
- William Miller
- Jon Elrod
- Anushka Gupta

Collaborators:
- Pawel Kozlowski (Univ. Louisville)
- Bernhard Kräutler (Univ. of Innsbruck)
- Kevin Kubarych
- Ken Spears
- Jim Penner-Hahn
- Aniruddha Deb

Synthesis of novel designed compounds

Theoretical simulation and prediction
- Roberto Alonso-Mori
- James M. Glownia
- Jake Koralek
- Marcin Sikorski
- Diling Zhu

Spectroscopic and Physical measurements

Development of light sources

Funding:
- NSF
- SLAC National Accelerator Laboratory

Our group,
- Jim Penner-Hahn
- Kevin Kubarych

LCLS Beamline scientists