PRECISE DETERMINATION OF THE ISOTOPIC RATIOS OF HC$_3$N IN THE MASSIVE STAR-FORMING REGION Sgr B2(M)

TAKAHIRO OYAMA, MITSUNORI ARAKI, Faculty of Science Division I, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan; SHURO TAKANO, College of Engineering, Nihon University, Fukushima, Japan; NOBUHIKO KUZE, Faculty of Science and Technology, Sophia University, Tokyo, Japan; YOSHIHIRO SUMIYOSHI, Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, Maebashi, Japan; KOICHI TSUKIYAMA, Faculty of Science Division I, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan; YASUKI ENDO, Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan.

Isotopic ratio is a critical parameter in understanding galactic chemical evolution. In addition, carbon isotopic ratio of an organic molecule reflects its formation mechanism. In the present study, we observed the simplest cyanopolyne HC$_3$N and its isotopomers in the massive star-forming region Sgr B2(M) with Nobeyama 45 m radio telescope. The column density and the rotational temperature of HC$_3$N were determined to be 1.6×10^{15} cm$^{-2}$ and 163 K, respectively. The ratios of the column densities for the 13C isotopomers were derived to be [H13CCCN]:[HC13CCN]:[HCC13CN] = 1:1.03(4):0.99(3), where the rotational temperature was fixed to that of HC$_3$N. The ratios are almost the same, suggesting no isotopic fractionation for the specific carbon atoms in HC$_3$N. Therefore, it is considered that the 13C isotope exchange reactions do not contribute to make difference among the column densities of the three 13C isotopomers in the relatively warm region of Sgr B2(M). In contrast, the reported ratios in TMC-1 and L1527 are 1:1.01(2):1.35(3), respectively, where the ratios show higher abundance of HCC13CN.

We also observed the transitions in the vibrational excited states of HC$_3$N. The rotational temperature of 362 K in the ν_4, ν_5, ν_6 and ν_7 excited states was obviously different from that of the vibrational ground state.
