Herschel-SPIRE Spectroscopy of Embedded Protostars (COPS-SPIRE)

CO in Protostars

Yao-Lun Yang
The University of Texas at Austin
Jun. 20 2017, ISMS 2017
Collaborators:
Joel Green, Neal Evans, Jeong-Eun Lee, Jes Jørgensen,
Joseph Mottram, Lars Kristensen, Edwin Bergin, Odysseas Dionatos,
Jeroen Bouwman, Gregory Herczeg, Ewine van Dishoeck, Agata Karska,
Tim van Kempen, Rebecca Larson, and Umut Yıldız
Active star formation within embedded protostars

- Embedded protostars are at the earliest stage of star formation.
Active star formation within embedded protostars

- Embedded protostars are at the earliest stage of star formation.
- The envelope provides abundant dust and gas for the growth of protostar. The mass accretion/ejection occurred at the embedded phase determines the conditions for disk evolution and planet formation.

(e.g. Jorgensen+2009, Kristensen+2012, Yen+2015)
Active star formation within embedded protostars

- Embedded protostars are at the earliest stage of star formation.
- The envelope provides abundant dust and gas for the growth of protostar. The mass accretion/ejection occurred at the embedded phase determines the conditions for disk evolution and planet formation. (e.g. Jorgensen+2009, Kristensen+2012, Yen+2015)
- Active outflows and jets, resulting from the mass infall/accretion, also feedbacks to the envelope. (e.g. Offner+2014, Nisini+2015, Yıldız+2015)
Sampling a wide range of source properties

Yang+2017

Yao-Lun Yang | UT-Austin
What physical processes drive the early stage of star formation?

Shock scenario
(Mottram et al. 2014)

- Cavity shocks
- Cold entrained outflow
- Spot shocks

Wind scenario
(Yvart et al. 2016)

- Disk wind
- Broad cavity shock/wind
- Spot shock (hot)
- Orange spot

Envelope (not shown) also contributes to the CO emission at the source velocity.

Yao-Lun Yang | UT-Austin
A single CO emission line exhibits multiple velocity components

CO \(J = 16 \rightarrow 15 \) velocity-resolved spectra

Kristensen+2017

For CO \(J = 16 \rightarrow 15 \):
- 20% spot shock
- 80% cavity shock/wind

Yao-Lun Yang | UT-Austin
Correlations of CO Emission Lines:
From $J = 4 \rightarrow 3$ to $J = 36 \rightarrow 35$

Yao-Lun Yang | UT-Austin

SPIRE

PACS
Correlations of CO Emission Lines:
From \(J = 4 \rightarrow 3 \) to \(J = 36 \rightarrow 35 \)

Spearman’s \(\rho \): the goodness of the relation can be described by a monotonic function, including the upper limits.

\[
\rho = 0.794, \ 4.4\sigma \\
\rho = 0.509, \ 2.7\sigma
\]
Bipolar morphology of CO emission

Yao-Lun Yang | UT-Austin
How to systematically study the morphology of CO emission?

Yao-Lun Yang | UT-Austin
Spatial Extent of CO Emission

Yao-Lun Yang | UT-Austin
Spatial Extent of CO Emission

Yao-Lun Yang | UT-Austin
Spatial Extent of CO Emission

BHR71

\(F_{outer}/F_{cen} \)

\(\theta_{polar} [\text{deg.}] \)

- CO4-3
- CO5-4
- CO6-5
- CO7-6
- CO8-7
- CO9-8
- CO10-9
- CO11-10
- CO12-11
- CO13-12
The variation of bipolar feature as a function of J-level

![Graph showing the variation of bipolar feature as a function of J_{up}.]
Summary

• The correlations of CO suffer from the instrumental systematic biases. Within the coverage of each module, the correlation shows a smooth variation without sharp edges.
Summary

- The correlations of CO suffer from the instrumental systematic biases. Within the coverage of each module, the correlation shows a smooth variation without sharp edges.

- The velocity-resolved spectra of CO show multiple velocity components (Kristensen+2017). The smooth distribution of the correlation strength indicates that each excitation mechanism contributes to a wide range of CO rotational lines.
Summary

• The correlations of CO suffer from the instrumental systematic biases. Within the coverage of each module, the correlation shows a smooth variation without sharp edges.

• The velocity-resolved spectra of CO show multiple velocity components (Kristensen+2017). The smooth distribution of the correlation strength indicates that each excitation mechanism contributes to a wide range of CO rotational lines.

• We develop a new method to visualize the morphology of the CO emission from Herschel data by comparing the flux ratio to the central spaxel and smoothing the profile as a function of polar angle.
Summary

• The correlations of CO suffer from the instrumental systematic biases. Within the coverage of each module, the correlation shows a smooth variation without sharp edges.

• The velocity-resolved spectra of CO show multiple velocity components (Kristensen+2017). The smooth distribution of the correlation strength indicates that each excitation mechanism contributes to a wide range of CO rotational lines.

• We develop a new method to visualize the morphology of the CO emission from Herschel data by comparing the flux ratio to the central spaxel and smoothing the profile as a function of polar angle.

• Bipolar features are found in 50% of the sources at low-\(J\) CO lines, which may decrease as the \(J\)-level increases.