JET-COOLED INFRARED LASER SPECTROSCOPY OF DIMETHYL SULFIDE: HIGH RESOLUTION ANALYSIS OF THE ν_{14} CH$_3$-BENDING MODE

ATEF JABRI, Department of Chemistry, MONARIS, CNRS, UMR 8233, Sorbonne Universités, UPMC Univ Paris 06, Paris, France; ISABELLE KLEINER, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS et Universités Paris Est et Paris Diderot, Créteil, France; PIERRE ASSELIN, Department of Chemistry, MONARIS, CNRS, UMR 8233, Sorbonne Universités, UPMC Univ Paris 06, Paris, France.

The rovibrational spectrum of the ν_{14} CH$_3$-bending mode of dimethyl sulfide (CH$_3$)$_2$S was recorded in the 963-987 cm$^{-1}$ spectral region using our sensitive tunable quantum cascade laser spectrometer coupled to a pulsed slit jeta b. The combined use of a high dilution (CH$_3$)$_2$S/Ar gas mixture expanded at high backing pressure through a slit nozzle enabled to obtain an efficient vibrational cooling which narrows the rotational distribution and eliminates hot bands arising from three low frequency modes below 300 cm$^{-1}$ c. The characteristic PQR band contour of a b_1 symmetry mode centered at 975.29 cm$^{-1}$ was observed and will be compared with theoretical calculations at the CCSD(T)/VTZ levelc (ν_{14} mode at 986 cm$^{-1}$) and room temperature experiments at low resolution (974 cm$^{-1}$) d. Starting from the accurate set of ground state parameters derived from microwave, millimeter and far-infrared measurements, the rovibrational analysis will be presented and discussed.

dJ. W. Ypenburg & H. Gerding, Recueil des Travaux Chimiques des Pays-Bas, 90, 885 (1971)