DETERMINATION OF METHANOL PHOTOLYSIS BRANCHING RATIOS VIA ROTATIONAL SPECTROSCOPY

Carson Powers, Morgan N. McCabe, Susanna L. Widicus Weaver

Department of Chemistry, Emory University

Wednesday, June 21, 2017
Methanol Photolysis in the Interstellar Medium (ISM)

- Radicals are mobile on grain surfaces at $T > 20$ K and can combine with other radicals.

\[
\begin{align*}
\text{CH}_3\text{OH} & \underset{hv}{\rightarrow} \text{CH}_2\text{OH} + \text{H} \\
& \rightarrow \text{CH}_3\text{O} + \text{H} \\
& \rightarrow \text{CH}_3 + \text{OH} \\
\text{H}_2\text{O}, \text{CO, CH}_3\text{OH}, \text{NH}_3, \text{H}_2\text{CO} & \text{Ice mantle}
\end{align*}
\]

\[
\begin{align*}
\text{H}_2\text{O} & \rightarrow \text{glycolaldehyde} \\
\text{CO} & \rightarrow \text{methyl formate} \\
\text{CH}_3\text{CO} & \rightarrow \text{acetone}
\end{align*}
\]

Previous Studies of Methanol Photolysis Branching Ratios

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Hagege et al. (1968)</th>
<th>Öberg et al. (2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$OH \rightarrow CH$_2$OH + H</td>
<td>~75%</td>
<td>~73%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>~15%</td>
</tr>
<tr>
<td>\rightarrow CH$_3$O + H</td>
<td>~5%</td>
<td>~12%</td>
</tr>
<tr>
<td>\rightarrow CH$_2$ + H$_2$O</td>
<td></td>
<td>~0%</td>
</tr>
<tr>
<td>\rightarrow CH$_3$ + OH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\rightarrow HCOH + H$_2$</td>
<td>~20%</td>
<td></td>
</tr>
<tr>
<td>\rightarrow CO + 2H$_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\rightarrow H$_2$CO + H$_2$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Experimental Setup

- Excimer Laser
- Cylindrical Focusing Lens
- Pulsed Valve with Fused Silica Capillary Tube
- Beam Block
- Microwave Synthesizer (250 kHz-50GHz)
- Millimeter/Submillimeter Frequency Multiplier (x3-x27)
- Multipass Optical System
- Oscilloscope
- Detector
Multipass Optical Path
Parent Methanol Reference Lines

Intensity

$3^+_{0,3}-2^+_{0,2}$ $3^-_{1,3}-2^-_{1,1}$ $3^+_{0,3}-2^+_{0,2}$ $3^+_{1,3}-2^+_{1,1}$ $1^+_{1,0}-1^+_{0,1}$ $4^+_{0,4}-3^+_{0,3}$

Frequency (MHz)

145093.70 145097.38 145103.13 145131.81 165050.12 193454.36
Rotation Diagram for Parent Methanol

\[T = 12 \pm 5 \text{ K} \]

\[N_{\text{methanol}} = (1.19 \pm 0.03) \times 10^{17} \text{ cm}^{-2} \]
Laser Photolysis + Methanol Depletion

![Graph showing detector signal over time with annotations for Laser RFI, Methanol Depletion, Baseline, and Methanol Absorption.]
Formaldehyde Photolysis Product

$T = 19 \text{ K}$

$\frac{N}{N_{\text{methanol}}} = (3.7 \pm 0.4) \times 10^{-5}$
Methanol Dissociation

Lyman alpha = 235.19 kcal/mol

Methoxy Photolysis Product

\[T = 3.7 \, \text{K} \]

\[\frac{N}{N_{\text{methanol}}} = (6 \pm 2) \times 10^{-4} \]
Hydroxymethyl Photolysis Product

Caveats:
-- No line strength information included
-- Our fit of the reported lines does not converge

\[
T = 0.6 \text{ K} \\
\frac{N}{N_{\text{methanol}}} = (8.1 \pm 3) \times 10^{-4}
\]
Methanol Photolysis Branching Ratios

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Hagege et al. (1968)</th>
<th>Öberg et al. (2009)</th>
<th>This Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$OH + h$_v$</td>
<td>CH$_3$ + OH</td>
<td>< 5%</td>
<td>12%</td>
</tr>
<tr>
<td></td>
<td>CH$_3$O + H</td>
<td>~75%</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>CH$_2$OH + H</td>
<td>~75%</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>H$_2$CO + H</td>
<td>20%</td>
<td>0%</td>
</tr>
</tbody>
</table>

*assumed

Conclusions and Future Work

- Determine optimal laser position on tube
- Try different Ar/CH$_3$OH ratios
- Collect more hydroxymethyl lines, refine fit
- Measure other branching ratios for COMs
- Try other laser wavelengths, compare branching ratio changes
Acknowledgements

- Luyao Zou, AJ Mesko, Kevin Roenitz
- Undergraduates: (on project) Samuel Zinga; (off project) Elena Jordanov, Lindsay Rhoades, Houston Smith
- Past Group Members: Brian Hays and Jake Laas
- NASA Emerging Worlds Award NNX15AH74G
Boltzmann Diagram Analysis

- Formula for integrated line intensities:
 \[
 \int_{-\infty}^{\infty} I_b \, d\nu = \frac{hc^3Ag_u N_T}{8\pi k\nu^3Q(T_{rot})} e^{-E_u/kT_{rot}}
 \]

- Conversion of Einstein A to B coefficient:
 \[
 A_{1\rightarrow0} = B_{1\rightarrow0} \frac{8\pi\hbar\nu^3}{c^3}
 \]

- Y versus X: \[
 \ln[(\int_{-\infty}^{\infty} I_b \, d\nu)(k/(\hbar^2 \nu B_{g_u}))] \text{ versus } E_u = E_1 + h\nu
 \]

- Inverse of slope is proportional absolute \(T_{rot}\) of molecules in supersonic expansion

- The relationship \(e^{y-intercept} Q(T_{rot})\) allows for the determination of relative abundance ratio

<table>
<thead>
<tr>
<th>Variables</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h)</td>
<td>Planck constant</td>
</tr>
<tr>
<td>(c)</td>
<td>Speed of light</td>
</tr>
<tr>
<td>(A)</td>
<td>Einstein A coefficient</td>
</tr>
<tr>
<td>(g_u)</td>
<td>Upper State degeneracy</td>
</tr>
<tr>
<td>(k)</td>
<td>Boltzmann constant</td>
</tr>
<tr>
<td>(\nu)</td>
<td>Frequency (MHz)</td>
</tr>
<tr>
<td>(N_T)</td>
<td>Number density</td>
</tr>
<tr>
<td>(Q(T_{rot}))</td>
<td>Rotational Partition Function</td>
</tr>
<tr>
<td>(E_u)</td>
<td>Upper State Energy</td>
</tr>
<tr>
<td>(T_{rot})</td>
<td>Rotational Temperature</td>
</tr>
</tbody>
</table>