FIRST HIGH RESOLUTION IR SPECTRA OF 2,2-D$_2$-PROPANE. THE ν_{15} (B_1) A-TYPE BAND NEAR 954.709 cm$^{-1}$.

DETERMINATION OF GROUND AND UPPER STATE CONSTANTS.

DANIEL GJURAJ, Department of Physics, Iona College, New Rochelle, NY, USA; S.J. DAUNT, ROBERT GRZYWACZ, Department of Physics & Astronomy, The University of Tennessee-Knoxville, Knoxville, TN, USA; WALTER LAFFERTY, Optical Technology Division, National Institute of Standards and Technology, Gaithersburg, MD, USA; JEAN-MARIE FLAUD, CNRS, Universités Paris Est Créteil et Paris Diderot, LISA, Créteil, France; BRANT E. BILLINGHURST, EFD, Canadian Light Source Inc., Saskatoon, Saskatchewan, Canada.

As part of our project on the study of isotopologues of propane we have taken the spectra of the 2-D and 2,2-D$_2$ substituted species. There have been no studies of these species since the early IR studies.abcd

We recorded high resolution ($\Delta \nu = 0.0009$ cm$^{-1}$) FTS data on the Canadian Light Source Far-IR beamline. The spectra of all bands of both species in the region examined (500 - 1250 cm$^{-1}$) show torsionally perturbed lines, all but one band appearing globally perturbed. Virtually all bands were not amenable to analysis at present except for the ν_{15} (B_1) A-type band centered at 954.709 cm$^{-1}$. One can still see a few perturbed lines with torsional components but overall most lines were single and could be readily assigned using traditional methods. The spectrum is modelled well using PGOPHER.e No MW determined GS constants were available so we have analyzed about 3500 levels to determine both ground state and upper state rotational constants.
