SiO Outflows as Tracers of Massive Star Formation in Infrared Dark Clouds

Mengyao Liu, Jonathan C. Tan, Shuo Kong

ISMS, June 20th, 2017
Massive Star Formation

- “Standard” model of isolated low-mass star formation

- Massive Star Formation??
 - Difficulty in observation
 - Turbulent Core Accretion vs. Competitive Accretion vs. Protostellar Collision

(Shu+ 1987)
Evolutionary Sequence for Massive Star Formation

- **Cold Collapsing Core**
- **Hot Molecular Core**
- **Hyper Compact HII Region**
- **Ultra Compact HII Region**
- **HII region / OB Association**

(Credit: Cormac Purcell)
Outline

- Pre-stellar Cores —— N_2D^+
- Early-stage Protostars —— SiO
 - SiO detection
 - SiO and 1.3mm continuum
 - SiO and infrared emission
- Later-stage Protostars —— MIR, FIR
A Hunt for Massive Starless Cores

- 30 clumps in 7 *Infrared Dark Clouds (IRDCs)* (2.4-5.7 kpc)
- Over 100 N_2D^+ cores identified as *pre-stellar* candidates (Kong+ 2017)
- SiO outflows as a tracer of *protostars* (Liu+ in prep.)

IRDC-C Spitzer 8µm

ALMA Cycle 2

- Band 6: 1.3mm continuum, $N_2D^+(3-2)$, $C^{18}O(2-1)$, SiO(5-4), DCN(3-2), DCO+(3-2), CH$_3$OH(5-4).
- Angular resolution ~1”. Sensitivity: 0.2mJy/beam for continuum, 20mJy/beam/0.2km/s for molecular lines.
SiO(5-4) over 1.3mm continuum

PV Diagram
C9

SiO(5-4) over 1.3mm continuum
SiO Detection

- Detected SiO emission in 20 out of the 30 clumps.
- Detection rate: 67%
 - 95% López-Sepulcre et al. 2011 for IR-dark clumps
 - 61% Csengeri et al. 2016 for IR-quiet clumps
- 17 clumps: SiO & continuum & dense gas
- 6 clumps: SiO stronger than 10σ & continuum & dense gas
SiO and Continuum Cores

- 17 clumps: SiO & 1.3mm continuum & dense gas
- 4 high-mass cores (7-370M☉):
 - A1, C2, C9, D9
- 6 intermediate-mass cores (2-15M☉):
 - A3, B2, C4, C6, D6, H5
- But we miss flux...

T for cores: 20 - 50 K
SiO Outflow Properties

- Mid- to early-B type stars
 - Mass outflow rates $\sim 10^{-5}$ to a few $\times 10^{-3} \, M_\odot/\text{yr}$
 - Momentum rates $\sim 10^{-4}$ to $10^{-2} \, M_\odot \, \text{km/s}/\text{yr}$

(Arce et al. 2007)

- LTE, optically thin
- T for outflows: 18K
- SiO abundance: H_2/SiO$\sim 10^9$

Table 3. Estimated physical parameters for SiO outflows

<table>
<thead>
<tr>
<th>Source</th>
<th>$M_{\text{out}}^{\text{blue}}$ (M_\odot)</th>
<th>$L_{\text{flow}}^{\text{blue}}$ (pc)</th>
<th>$t_{\text{dyn}}^{\text{blue}}$ (10^3 yr)</th>
<th>$M_{\text{out}}^{\text{red}}$ (M_\odot)</th>
<th>$L_{\text{flow}}^{\text{red}}$ (pc)</th>
<th>$t_{\text{dyn}}^{\text{red}}$ (10^3 yr)</th>
<th>M_{out} (M_\odot)</th>
<th>P_{out} ($M_\odot , \text{km s}^{-1}$)</th>
<th>E_{out} (10^{43} erg)</th>
<th>$\dot{M}{\text{out}}$ ($10^{-4} , M\odot , \text{yr}^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>0.004</td>
<td>0.03</td>
<td>5.23</td>
<td>0.170</td>
<td>0.13</td>
<td>2.42</td>
<td>0.17</td>
<td>1.88</td>
<td>35.41</td>
<td>0.71</td>
</tr>
<tr>
<td>B2</td>
<td>0.035</td>
<td>0.08</td>
<td>15.36</td>
<td>0.261</td>
<td>0.15</td>
<td>7.72</td>
<td>0.30</td>
<td>1.01</td>
<td>4.75</td>
<td>0.36</td>
</tr>
<tr>
<td>C2</td>
<td>0.147</td>
<td>0.12</td>
<td>8.43</td>
<td>0.063</td>
<td>0.08</td>
<td>4.98</td>
<td>0.21</td>
<td>1.66</td>
<td>15.29</td>
<td>0.30</td>
</tr>
<tr>
<td>C6</td>
<td>0.245</td>
<td>0.21</td>
<td>13.47</td>
<td>0.211</td>
<td>0.08</td>
<td>5.28</td>
<td>0.46</td>
<td>4.35</td>
<td>48.16</td>
<td>0.58</td>
</tr>
<tr>
<td>C9</td>
<td>0.839</td>
<td>0.20</td>
<td>11.43</td>
<td>1.434</td>
<td>0.39</td>
<td>16.97</td>
<td>2.27</td>
<td>24.39</td>
<td>316.19</td>
<td>1.58</td>
</tr>
<tr>
<td>H6</td>
<td>0.002</td>
<td>0.00</td>
<td>0.03</td>
<td>0.030</td>
<td>0.04</td>
<td>1.52</td>
<td>0.03</td>
<td>0.16</td>
<td>1.24</td>
<td>0.78</td>
</tr>
</tbody>
</table>
SiO Outflow Properties

- Mid- to early-B type stars
 - Mass outflow rates $\sim 10^{-5}$ to a few $\times 10^{-3}$ M⊙/yr
 - Momentum rates $\sim 10^{-4}$ to 10^{-2} M⊙ km/s/yr

(Arce et al. 2007)

Early-stage or SiO not tracing the full extent

<table>
<thead>
<tr>
<th>Source</th>
<th>$M_{\text{out}}^{\text{blue}}$ (M⊙)</th>
<th>$L_{\text{flow}}^{\text{blue}}$ (pc)</th>
<th>$t_{\text{dyn}}^{\text{blue}}$ (10^3 yr)</th>
<th>$M_{\text{out}}^{\text{red}}$ (M⊙)</th>
<th>$L_{\text{flow}}^{\text{red}}$ (pc)</th>
<th>$t_{\text{dyn}}^{\text{red}}$ (10^3 yr)</th>
<th>M_{out} (M⊙)</th>
<th>P_{out} (M⊙ km s^-1)</th>
<th>E_{out} (10^{43} erg)</th>
<th>\dot{M}_{out} (10^{-4} M⊙ yr^-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>0.004</td>
<td>0.03</td>
<td>5.23</td>
<td>0.170</td>
<td>0.13</td>
<td>2.42</td>
<td>0.17</td>
<td>1.88</td>
<td>35.41</td>
<td>0.71</td>
</tr>
<tr>
<td>B2</td>
<td>0.035</td>
<td>0.08</td>
<td>15.36</td>
<td>0.261</td>
<td>0.15</td>
<td>7.72</td>
<td>0.30</td>
<td>1.01</td>
<td>4.75</td>
<td>0.36</td>
</tr>
<tr>
<td>C2</td>
<td>0.147</td>
<td>0.12</td>
<td>8.43</td>
<td>0.063</td>
<td>0.08</td>
<td>4.98</td>
<td>0.21</td>
<td>1.66</td>
<td>15.29</td>
<td>0.30</td>
</tr>
<tr>
<td>C6</td>
<td>0.245</td>
<td>0.21</td>
<td>13.47</td>
<td>0.211</td>
<td>0.08</td>
<td>5.28</td>
<td>0.46</td>
<td>4.35</td>
<td>48.16</td>
<td>0.58</td>
</tr>
<tr>
<td>C9</td>
<td>0.839</td>
<td>0.20</td>
<td>11.43</td>
<td>1.434</td>
<td>0.39</td>
<td>16.97</td>
<td>2.27</td>
<td>24.39</td>
<td>316.19</td>
<td>1.58</td>
</tr>
<tr>
<td>H6</td>
<td>0.002</td>
<td>0.00</td>
<td>0.03</td>
<td>0.030</td>
<td>0.04</td>
<td>1.52</td>
<td>0.03</td>
<td>0.16</td>
<td>1.24</td>
<td>0.78</td>
</tr>
</tbody>
</table>

- LTE, optically thin
- T for outflows: 18K
- SiO abundance: H₂/SiO~10⁹
Infrared Emission

70μm Herschel image
SiO
1.3mm continuum
Infrared Emission

8μm 24μm 70μm 160μm

C6 C6 C6 C6

C9 C9 C9 C9
Infrared Emission

- Aperture photometry
- SED fitting
 - Zhang & Tan Radiative Transfer (RT) Models
 - Based on Turbulent Core Accretion Scenario
 - Five free parameters: M_c, Σ_{cl}, m_*, θ_{view} and A_V
Infrared Emission

- Aperture photometry
- SED fitting

- Luminosity $\sim 10^1$-10^3 L\odot, C9 $< 5\times10^3$ L\odot
- Returned protostellar mass ~ 0.5-4M\odot

- Lack of MIR emission
- Low luminosity
- Low current stellar mass

> Early Stage
L_{SiO} vs. L_{bol}

- L_{SiO} tend to be proportional to L_{bol} in a large L_{bol} span

- More powerful shocks?

SiO (5-4) data in this paper
SiO (2-1) data from Duarte-Cabral et al. (2014)
SiO (5-4) data from Csengeri et al. (2016)

$f(x) = 0.63x + 7.44$

$\alpha = 0.63 \pm 0.08$
Later-stage Protostars

- SOFIA MAssive (SOMA) Star Formation Survey
- 10 to 40μm images
- 22 protostars observed by the end of Cycle 4
- 30" scale bars
- 37μm images
High resolution MIR and FIR images which reveal heated outflow cavities.

Extended MIR emission that aligns with known outflows

Brighter on the near-facing, blue-shifted side, more symmetric at longer wavelengths

SEDs can be well fit by Zhang & Tan RT models and yield key physical parameters

SED fitting with Zhang & Tan RT models

(De Buizer+ 2017)
Future Work

onset of ionization in early-stage protostars

ALMA

hyper-compact sources

VLA

more evolved sources

SOFIA

hyper-compact sources

Cold Collapsing Core

Hot Molecular Core

Hyper Compact HII Region

Ultra Compact HII Region

HII region / OB Association

Clumpy Molecular Cloud

Cold Collapsing Core

Hot Molecular Core

Ionized gas

Chemical Shells

SiO

CH$_3$CN

HCO$^+$

HCN

Clumpy Molecular Cloud

5x104 Years

1x105 Years

1.5x105 Years

(Credit: Cormac Purcell)
Take-away

- Characterize sources from pre-stellar phase to hyper-compact phase in different high-mass star forming regions with different tracers.
- SiO outflows seem to be a valid tracer of massive protostars in IRDCs.
Thanks!