Tunneling switching is a fundamental phenomenon of interest in molecular quantum dynamics including also chiral molecules and parity violation.a,b,c Deuterated phenols have been identified as prototypical achiral candidates.d We report the high resolution spectroscopic investigation of the ortho-D-phenol in the GHz and THz ranges following our recent discovery of tunneling switching in its isotopomer meta-D-phenol.e Here we report new results on ortho-D-phenol. The pure rotational spectra were recorded in the range of 72-117 GHz and assigned to the syn- and anti- structures in the ground and the first excited torsional states. Specific torsional states were assigned based on a comparison of experimental rotational constants with the quasiadiabatic channel reaction path Hamiltonian (RPH) calculations. The torsional fundamental at 308 cm-1 and the first hot band at 275 cm-1 were subsequently assigned. The analyses of pure rotational and rovibrational spectra shall be discussed in detail in relation to possible tunneling switching.

cS. Albert, Z. Chen, C. Fábri, R. Prentner M. Quack and D. Zindel, paper at this meeting.