Microwave spectroscopy has been restricted to the investigation of small molecules in the last years. However, with the advent of FTMW and CP-FTMW spectroscopies coupled with laser vaporization techniques it has turned into a very competitive methodology in the studies of moderate-size molecules. In particular, the studies of relatively large molecular aggregatesa, b are very interesting, being a bridge between microsystems and molecular bulk.

Here, we present the study of two pentamers of difluoromethane \((\text{CH}_2\text{F}_2)_5\) and the water clusters \((\text{CH}_2\text{F}_2)_1\cdots(\text{H}_2\text{O})_2\), \((\text{CH}_2\text{F}_2)_2\cdots(\text{H}_2\text{O})_1\) and \((\text{CH}_2\text{F}_2)_2\cdots(\text{H}_2\text{O})_2\) stabilized by weak hydrogen bonds networks (O-H\cdots-F, C-H\cdots-F and C-H\cdots-O interactions). The experiments were carried out in the CP-FTMW spectrometers of Bilbao (Spain)c and Virginia (USA). In addition, the experimental work was supported by theoretical calculations. The force fields were specifically parameterized for reproduce others oligomers where WHB interactions play a crucial role.