TUNNELING EFFECTS AND CONFORMATION DETERMINATION OF THE POLAR FORMS OF 1,3,5-TRISILAPENTANE

FRANK E MARSHALL, Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA; WILLIAM RAYMOND NEAL TONKS, Chemistry, College of Charleston, Charleston, SC, USA; DAVID JOSEPH GILCRIST, Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA; CHARLES J. WURREY, Department of Chemistry, University of Missouri - Kansas City, Kansas City, MO, USA; GAMIL A GUIRGIS, Chemistry, College of Charleston, Charleston, SC, USA; G. S. GRUBBS II, Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA.

1,3,5-trisilapentane has been synthesized and studied in the microwave region for the first time using CP-FTMW spectroscopy. The lowest calculated energy structure, C_2 is essentially non-polar with a calculated dipole of 0.063 D. However, slightly higher in energy at 145 cm$^{-1}$ and 196 cm$^{-1}$ are the calculated energies for the C_1 and C_{2v} conformations, respectively. These structures have much larger dipoles calculated at 1.07 D for C_1 and 4.88 D for C_{2v}. Both of these structures have been confirmed using experiment and the details of such analysis will be discussed.

In addition to the structure determination, 1,3,5-trisilapentane has two terminal -SiH$_3$ groups. The calculated barrier to internal rotation of these groups are calculated to be 327.5 cm$^{-1}$ for C_{2v}, and 343.2 cm$^{-1}$ for C_1. This barrier is low enough to exhibit internal rotation splitting in the spectra and treatment of these motions in the analysis will be discussed.